
C. R. Acad. Sci. Paris, Ser. I 355 (2017) 925–928
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Logic/Topology

Restricting uniformly open surjections ✩

Restrictions des surjections uniformément ouvertes

Tomasz Kania a,b, Martin Rmoutil a,c

a Mathematics Institute, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, United Kingdom
b Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Prague 1, Czech Republic
c Department of Mathematics Education, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Prague 8, 
Czech Republic

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 July 2017
Accepted after revision 12 September 2017
Available online 19 September 2017

Presented by the Editorial Board

We employ the theory of elementary submodels to improve a recent result by Aron, 
Jaramillo and Le Donne (2017) [1] concerning restricting uniformly open, continuous 
surjections to smaller subspaces where they remain surjective. To wit, suppose that X and 
Y are metric spaces and let f : X → Y be a continuous surjection. If X is complete and f
is uniformly open, then X contains a closed subspace Z with the same density as Y such 
that f restricted to Z is still uniformly open and surjective. Moreover, if X is a Banach 
space, then Z may be taken to be a closed linear subspace. A counterpart of this theorem 
for uniform spaces is also established.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous utilisons la théorie des sous-modèles élémentaires pour améliorer un résultat récent 
d’Aron, Jaramillo et Le Donne (2017) [1] sur les restrictions de surjections continues, 
uniformément ouvertes, à des sous-espaces où elles restent surjectives. Précisément, 
supposons que X et Y sont des espaces métriques et f : X → Y une surjection continue. Si 
X est complet et f est uniformément ouverte, alors X contient un sous-espace fermé Z de 
même densité que Y , tel que la restriction de f à Z est encore uniformément ouverte et 
surjective. De plus, si X est un espace de Banach, alors Z peut être pris sous-espace linéaire 
fermé. La contrepartie de ce théorème pour les espaces uniformes est aussi démontrée.
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1. Introduction

Recently, the problem of restricting surjective maps between metric spaces to smaller subspaces where they remain 
surjective attracted considerable attention due to a renewed interest in possible abstract extensions of the Morse–Sard 
theorem. By the Axiom of Choice, every surjection f : X → Y admits a right inverse g : Y → X , whence the range of g is 
usually a smaller subspace of X on which f remains surjective. In the case where X carries an extra structure, the range 
of a (highly non-constructively chosen) g may be still quite large in a certain sense, though. Let us then make the problem 
more precise.

By the density of a topological space Z , we understand the smallest cardinality dens Z of a dense subset of Z . Suppose 
that X and Y are metric spaces and let f : X → Y be a function. It is natural to ask under what circumstances it should be 
possible to find a subspace Z of X with dens Z = dens Y such that f restricted to Z is still surjective as a function into Y . 
Aron, Jaramillo and Ransford ([2]) proved that there exists a C∞-function from the non-separable Hilbert space �2(R2)

onto R2, which fails to be surjective when restricted to any separable subset. On the positive side, Aron, Jaramillo and Le 
Donne ([1, Theorem 1]) proved that one may choose suitable Z when the domain of X is complete and f is continuous 
and uniformly open. However, it does not follow from their proof that the restriction may be taken uniformly open (or even 
open). (We state the definition of a uniformly open map in the subsequent section.)

Theorem A. Suppose that X and Y are metric spaces and let f : X → Y be a continuous surjection. If X is complete and f is uniformly 
open, then X contains a closed subspace Z with dens Z = dens Y such that f restricted to Z is uniformly open and surjective. Moreover, 
if X is a Banach space, then Z may be taken to be a closed linear subspace.

Theorem A indeed strengthens the conclusion of [1, Theorem 1] by uniform openness of f |Z as even restrictions of 
uniformly open bounded bilinear maps on Banach spaces to closed subspaces need not be uniformly open. For example, 
the restriction of multiplication in the space of continuous functions on the Cantor set, which is uniformly open, to certain 
closed subalgebras is no longer so (see [4, Section 3]).

When this work was at the stage of completion, Le Donne has kindly communicated to us the claim that in joint work 
with Jaramillo and Rajala they were able to relax the hypothesis of uniform openness of a continuous surjection to mere 
openness by reducing the proof to the previously established uniformly open case. Our result is of different nature though. 
We show that a uniformly open continuous surjection f : X → Y may be restricted to a uniformly open map on a subspace 
Z of X with dens Z = dens Y in such a way that the range of f contains a dense subset of Y . Since the domain of f is 
complete and f is uniformly open, the range of f must be complete too, so it must be the whole Y . Thus, we shift our 
efforts from focusing on surjectivity of the restriction to showing mere uniform openness, which would automatically imply 
surjectivity.

Our seemingly overcomplicated proof is based on the method of elementary submodels, a part of model theory. It is fair 
to say that the proof itself could be modelled on the proof of Theorem 2.4, and the machinery from logic could possibly 
be avoided. However, we have good reasons not to do this. The advantage of our approach is the ease with which we may 
impose further requirements on Z , if needed. For example, if X carries an extra structure that can be expressed in terms 
of first-order logic (e.g., if X is a normed space or a normed algebra), f can be restricted to a closed substructure (a closed 
subspace or a closed subalgebra, respectively) and remain uniformly open. In this case, avoiding using elementary submodels 
could bring the danger of being quickly lost in the obscurity of notation and other technical difficulties. Secondly, the 
problem itself appears to be tailor-made for the use of elementary submodels. Let us then take our proof as an opportunity 
for advertising the powerful method of elementary submodels; given its relative simplicity, the reader interested more in 
elementary submodels themselves than in our result may regard the proof as a tutorial of the method.

2. Preliminaries

A map f : X → Y between metric spaces is uniformly open when it has the property that for each ε > 0 there is δ > 0
such that for each x ∈ X one has

B( f (x), δ) ⊆ f (B(x, ε)).

It seems that the notion of uniform openness was first distilled by Michael [9]; however, it had been employed already 
by Schauder ([10, p. 6]) en route to the proof of his open-mapping theorem for complete metric vector spaces.

Let us record Schauder’s lemma in its modern form (see, e.g., [8, Lemma 3.9] for an elementary proof).

Lemma 2.1 (Schauder). Let X and Y be metric spaces such that X is complete. Suppose that f : X → Y is a continuous map. If for each 
ε > 0, there exists δ > 0 such that for any x ∈ X, one has

B( f (x), δ) ⊆ f (B(x, ε)),

then f is uniformly open.
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Remark 2.2. We shall need a formally stronger version of Schauder’s lemma requiring that the postulated inclusion holds 
only for x in a fixed, dense subset D ⊂ X . This is however sufficient. Indeed, let ε > 0 and δ > 0 corresponding to ε/2 be 
given. Take x ∈ X and x′ ∈ D such that d(x, x′) < ε/2 and d

(
f (x), f (x′)

)
< δ/2. We then have

B( f (x), δ/2) ⊆ B( f (x′), δ) ⊆ f (B(x′, ε/2)) ⊆ f (B(x, ε)).

We trust that the following basic property of uniformly open maps requires no explanation.

Lemma 2.3. Let X and Y be metric spaces. Suppose that X is complete. If f : X → Y is a uniformly open map with dense range, then 
f is surjective.

Our method of proof uses elementary submodels; let us therefore describe some of the basic notions and facts we use. 
By formula we shall always mean a formula in the language of ZFC. Let N be a set and φ be a formula. The relativisation of φ
to N is the formula φN , which is obtained from φ by replacing each quantifier of the form ∀x by ∀x ∈ N and each quantifier 
of the form ∃x by ∃x ∈ N . Let ϕ(x1, . . . , xn) be a formula, where x1, . . . , xn are all the free variables of φ. We say that φ is 
absolute for N if

∀a1, . . .an ∈ N : (φN(a1, . . . ,an) ↔ φ(a1, . . . ,an)).

We shall employ the following theorem (see, e.g., [7, Chapter IV, Theorem 7.8]).

Theorem 2.4. Let φ1, . . . , φn be formulae and let A be a set. Then there exists a set M ⊇ A such that φ1, . . . , φn are absolute for M
and |M| � max(ω, |A|).

We refer the reader without background in logic to [6, Chapter 24] for a leisurely exposition of elementary substructures 
and their applications outside set theory.

3. Proof of Theorem A

Proof of Theorem A. It suffices to find a closed subset Z ⊂ X with the same density as Y so that f |Z is uniformly open and 
its range is dense in Y ; indeed the surjectivity is then automatic by Lemma 2.3.

We may suppose that Y is infinite, as otherwise the statement is trivial. Take a set D ⊆ X such that f (D) is dense in Y
and |D| = dens Y , and set

A = D ∪ f (D) ∪Q∪ { f , X,dX , Y ,dY ,<},
where dX and dY are the metrics on X and Y , respectively, and < is the order relation in the real line (we consider the 
relation < as a set, which we include into A as an element, not a subset; similarly for f , X, dX , Y , dY ). Then A has the same 
cardinality as D . Let φ be the following formula:

∀ε ∈ Q+ ∃δ ∈Q+ ∀x ∈ X ∀y ∃z ∈ X : (dY ( f (x), y) < δ → dX (x, z) < ε & y = f (z)).

Since φ is equivalent to f being uniformly open, φ is true by the hypothesis of the theorem. By Theorem 2.4, we may find 
a set M ⊇ A such that φ is absolute for M and |M| = dens Y . Set Z = X ∩ M; we claim that Z has the desired properties.

The validity of φ and its absoluteness for M imply that the following formula holds as well (note that Q+ ⊆ M and that 
all free variables appearing in this formula are also elements of M):

∀ε ∈ Q+ ∃δ ∈Q+ ∀x ∈ X ∩ M ∀y ∈ M ∃z ∈ X ∩ M : (dY ( f (x), y) < δ → dX (x, z) < ε & y = f (z)).

This translates as follows—given ε ∈ Q+ , there is δ ∈Q+ such that for each x ∈ X ∩ M , we have

B( f (x), δ) ∩ M ⊆ f (B(x, ε) ∩ M) ∩ M,

whence

B( f (x), δ) ⊆ B( f (x), δ) ∩ M ⊆ f (B(x, ε) ∩ M) ∩ M ⊆ f (B Z (x, ε)).

Here the first inclusion follows from the fact that f (D) ⊆ A ⊆ M , so M ∩ Y is dense in Y ; by B Z (x, ε) we mean simply 
B(x, ε) ∩ Z , which makes the last inclusion trivial. Finally, by Lemma 2.1 (which can be applied due to the continuity of 
f ; see also Remark 2.2), f |Z is uniformly open. As f (D) is dense in Y , we are in a position to apply Lemma 2.3, which 
concludes the proof.

If X is a Banach space, we may have enlarged A by the operation of addition in X as well as by the operation (λ, x) �→ λx, 
where λ is a scalar and x ∈ X . In this case, we may consider the formula ψ :

∀x, y ∈ X ∀λ1, λ2 ∈Q ∃z ∈ X : (λ1x + λ2 y = z)

(or ∀λ1, λ2 ∈ Q(i) in the case of complex scalars; we would then have included Q(i) in A too). Theorem 2.4 applied to 
formulae ϕ , ψ and the set A yields a set M , for which ϕ , ψ are absolute and so M ∩ X is a closed linear subspace of X
with the desired property. �
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4. An extension to uniform spaces

The generality of the employed method allows us to extend the result to uniformly open maps acting between uniform 
spaces. We refer the reader to James’ book [5] for the unexplained terminology concerning uniform spaces.

Let X and Y be uniform spaces. A function f : X → Y is uniformly open if, for every entourage D of X , there is an 
entourage E of Y such that E [ f (x)] ⊆ f (D[x]) for each x ∈ X . Since every uniform space carries the canonical topological 
structure, we may talk about the density of a uniform space and the continuity of maps defined therebetween.

A uniform space X is super-complete if the hyperspace exp X comprising all compact subsets of X is complete when 
endowed with the Hausdorff uniformity; complete metric spaces with their natural uniformity are super-complete. Dektrajev 
([3]) proved that a map f : X → Y between uniform spaces that has closed range is uniformly open as long as X is 
super-complete and, for every entourage D of X , there is an entourage E of Y such that E [ f (x)] ⊆ f (D[x]) for every x ∈ X . 
Also, if f : X → Y is a uniformly open surjection, where X is a complete uniform space, then Y is complete too. Having 
prepared all the ingredients, by a completely analogous procedure, one may prove the following counterpart of Theorem A.

Theorem B. Suppose that X and Y are uniform spaces and let f : X → Y be a continuous surjection. If X is super-complete and 
f is uniformly open, then X contains a closed subspace Z with dens Z = dens Y such that f restricted to Z is uniformly open and 
surjective.
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