
C. R. Acad. Sci. Paris, Ser. I 355 (2017) 956–959
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical analysis/Dynamical systems

A note on singularity of a recently introduced family 

of Minkowski’s question-mark functions

Note sur la singularité d’une famille de fonctions « Minkowski’s 

question-mark » récemment introduite

Juan Fernández Sánchez a, Wolfgang Trutschnig b

a Grupo de Investigación de Análisis Matemático, Universidad de Almería, La Cañada de San Urbano, Almería, Spain
b Department for Mathematics, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 September 2016
Accepted after revision 5 September 2017
Available online 19 September 2017

Presented by the Editorial Board

We point out a mistake in the proof of the main theorem in a recent article on a family of 
generalized Minkowski’s question-mark functions, saying that each member of the family 
is a singular homeomorphism, and provide two alternative proofs, one based on the 
ergodicity of the Gauss map G and the α-Lüroth map Lα , and another one focusing more 
on classical properties of continued fraction expansions.
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r é s u m é

Nous mettons en évidence une erreur dans la démonstration du théroème principal 
dans un article récent traitant d’une famille de fonctions « Minkowski’s question-mark »
généralisées, stipulant que chaque membre de la famille est un homéomorphisme singulier, 
et nous produisons deux preuves alternatives, l’une basée sur l’ergodicité de l’application 
de Gauss G et de l’application α-Lüroth Lα , l’autre se focalisant davantage sur des 
propriétés classiques des décompositions de fractions continues.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Based on continued fraction- and generalized Lüroth expansions, a new family of Minkowski’s question-mark functions 
was recently introduced in [1]. When proving the main theorem of the paper (Theorem 1.3), the author correctly shows that 
each member ?α of the family is a strictly increasing homeomorphism of the unit interval [0, 1] and then tackles proving 
that ?α is singular (in the sense that ?α has derivative zero λ-a.e.). Unfortunately, the presented proof of singularity is 
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incorrect, implying that the theorem is still formally unproven. The main objective of this note is to provide two correct 
proofs of the singularity of ?α for every partition α.

The rest of this note is organized as follows: we first introduce some notation (essentially following [1] with some slight 
modifications) in Section 2, point out what exactly went wrong in [1], and then prove Theorem 1.3 in [1] using two different 
methods in Section 3.

2. Notation

In the sequel, B([0, 1]) will denote the Borel σ -field on [0, 1], and λ will denote the Lebesgue measure on B([0, 1]). We 
will write N∞ = {1, 2, 3, . . .} ∪ {∞} and will refer to � := (N∞)N as a code-space. As usual, G : [0, 1] → [0, 1] will denote 
the Gauss map, defined by G(0) = 0 and G(x) = 1

x − ⌊ 1
x

⌋
for x ∈ (0, 1]. Set si = 1

i for every i ∈ N and s∞ = 0. Then the 
intervals I∞ = {s∞}, I1 = (s2, s1], I2 = (s3, s2], . . . form a partition γG of [0, 1]. Coding orbits of G via γG , the continued 
fraction expansion cf : [0, 1] → � is defined by setting cf(x) = a = (a1, a2, a3, . . .) ∈ � if and only if Gi−1(x) ∈ Iai holds for 
every i ∈N. It is well known that G is strongly mixing (hence ergodic) w.r.t. the absolutely continuous probability measure 
μG with density 1

ln 2
1

1+x for x ∈ [0, 1] (see [3]).
In the sequel, we will let α = { J∞, J1, J2, J3, . . .} denote partitions of the unit interval induced by strictly decreasing 

sequences (ti)
∞
i=1 converging to 0 =: t∞ and fulfilling t1 = 1, i.e. we have J∞ = {t∞}, J1 = (t2, t1], J2 = (t3, t2], . . . For each 

such partition α, the α-Lüroth map Lα is defined by Lα(0) = 0 as well as Lα(x) = t j−x
t j−t j+1

for x ∈ (t j+1, t j] and j ∈ N. 
Coding orbits of Lα via α, the α-Lüroth expansion Lürα : [0, 1] → � is defined by setting Lürα(x) = a = (a1, a2, a3, . . .) ∈ �

if and only if Li−1
α (x) ∈ Jai holds for every i ∈ N. Additionally to being strongly mixing w.r.t. λ, the α-Lüroth map is even 

(isomorphic to) a Bernoulli shift (see [2]). Moreover (again see [2]) the transformation �α : � → [0, 1], defined by

�α(a) = ta1 +
∞∑

m=2

(−1)m+1tam

m−1∏
j=1

(ta j − ta j+1), (1)

with the convention t∞+1 = t∞ , fulfills �α ◦ Lürα = id[0,1] .

3. Two proofs of singularity of ?α

Based on cf : [0, 1] → � and �α : � → [0, 1], in [1] the author introduces the (generalized) question-mark function ?α

by setting ?α(x) = �α ◦ cf(x) for every x ∈ [0, 1], and then states the following theorem.

Theorem 3.1 ([1]). Given a partition α as above, the map ?α : [0, 1] → [0, 1] is an increasing singular homeomorphism fulfilling 
Lα◦?α =?α ◦ G. Moreover, if t1, t2, . . . ∈ Q, then ?α maps the set A2 of all quadratic surds into Q.

In [1], a correct proof for the fact that ?α is an increasing homeomorphism and for the assertion concerning A2 is given. 
It is well known that singularity can be shown by establishing the existence of a Borel set B̃ ⊆ [0, 1] fulfilling λ(B̃) = 0
and λ(?α(B̃)) = 1. Letting μα denote the pull-back of λ via ?α (or, equivalently, the push-forward of λ via ?−1

α ), defined by 
μα(B) = λ(?α(B)) for every Borel set B ∈ B([0, 1]), the author then uses the identity∫

?α(B)

dx =
∫
B

?−1
α (x)dx (2)

to prove that μα and μG are singular with respect to each other. Eq. (2), however, is easily seen to be wrong and should 
be 

∫
?α(B)

1 dx = ∫
B 1 dμα = μα(B) instead. In fact, considering, for instance, B = [0, 1], we get 

∫
?α([0,1]) dx = ∫

[0,1] dx = 1, 
whereas the right-hand side of Eq. (2) obviously fulfills 

∫
[0,1]?

−1
α (x) dx < 1 since ?−1

α is a homeomorphism of [0, 1] too. 
Since the rest of the proof in [1] builds upon Eq. (2), an alternative method is needed to show the singularity of ?α .

We will now provide two proofs of the singularity of ?α for every partition α – the first one uses the ergodicity of G
and Lα and explicitly constructs a Borel set B̃ with the afore-mentioned properties, the second one is more elementary and 
directly derives the fact that ?′

α(x) = 0 for λ-a.e. x ∈ [0, 1] via some properties of continued fraction expansions.

Proof a. We distinguish two different types of partitions α.

Type I: There exists k ∈N such that tk − tk+1 	= 1
ln 2 ln (k+1)2

k(k+2)
.

Let the Borel sets � and 	 be defined by

� =
{

x ∈ [0,1] : lim
n→∞

1

n

n−1∑
i=0

1
( 1

k+1 , 1
k ] ◦ Gi(x) = 1

ln 2
ln

(k + 1)2

k(k + 2)
holds for every k ∈N

}
(3)

	 =
{

x ∈ [0,1] : lim
n→∞

1

n

n−1∑
1(tk+1,tk] ◦ Li

α(x) = tk − tk+1 holds for every k ∈N

}
. (4)
i=0
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The ergodicity of G w.r.t. μG and of Lα w.r.t. λ (see [2,3]) and the fact that μG is absolutely continuous with strictly 
positive density implies that λ(�) = λ(	) = 1. Considering that ?α(x) = �α ◦ cf(x) holds for every x ∈ (0, 1] and that for 
every x ∈ �, we have cf(x) 	∈ Lürα(	), ?α(�) ⊆ 	c follows. Hence, choosing B̃ = �c directly yields λ(B̃) = 0 as well as 
1 ≥ λ(?α(B̃)) ≥ λ(	) = 1, which completes the proof for all partitions α of Type I.

Type II: For every k ∈N, we have tk − tk+1 = 1
ln 2 ln (k+1)2

k(k+2)
.

Taking into account t1 = 1, we get that there is only one partition α of Type II, namely the one fulfilling tk = 1
ln 2 ln k+2

k+1
for every k ∈N. Instead of considering asymptotic frequencies of single ‘digits’ of the Lüroth- and continued-fraction expan-
sions, we now consider the asymptotic frequency of the ‘block’ (1, 1) and set

� =
{

x ∈ [0,1] : lim
n→∞

1

n

n−1∑
i=0

1
( 1

2 ,1]2 ◦ (Gi(x), Gi+1(x)) = 1

ln 2
ln

10

9

}
(5)

	 =
{

x ∈ [0,1] : lim
n→∞

1

n

n−1∑
i=0

1
( 1

2 ,1]2 ◦ (Li
α(x), Li+1

α (x)) =
(

ln 4
3

ln 2

)2}
. (6)

According to Proposition 4.1.2 in [3], we have λ(�) = 1. Moreover, using the fact that Lα is (isomorphic to) a Bernoulli shift 
and that (t1 − t2)

2 = ( ln 4
3

ln 2

)2
holds, λ(	) = 1 follows. Considering 

( ln 4
3

ln 2

)2 	= ln 10
9

ln 2 and proceeding as in the second part of the 
first case and setting B̃ = �c completes the proof. �
Remark 1. Instead of using Proposition 4.1.2 in [3] and the fact that Lα is a Bernoulli shift in order to prove λ(�) =
λ(	) = 1 for α of Type II, we could as well consider the maps εG , εLα : [0, 1] → [0, 1]2, defined by εG(x) = (x, G(x)) and 
εLα (x) = (x, Lα(x)), and directly work with the ergodicity of G and Lα . In fact, applying Birkhoff’s ergodic theorem ([4]) to 
the indicator function f : x �→ 1

( 1
2 ,1]2 ◦ εG(x) directly yields that, for μG -a.e. x ∈ [0, 1] (hence for λ-a.e. x ∈ [0, 1]), we get

lim
n→∞

1

n

n−1∑
i=0

1
( 1

2 ,1]2 ◦ (Gi(x), Gi+1(x)) = lim
n→∞

1

n

n−1∑
i=0

f ◦ Gi(x) = 1

ln 2

∫
[0,1]

f (x)
1

1 + x
dx = 1

ln 2
ln

10

9
.

Proceeding analogously with the function f : x �→ 1
( 1

2 ,1]2 ◦ εLα (x) shows that λ(	) = 1.

Proof b. Let �′ denote the set of all points x ∈ (0, 1) at which ?α is differentiable and define � according to Eq. (3). For 
every k ∈N, define two new Borel sets �k

1, �
k
3 by

�k
1 =

{
x ∈ [0,1] : lim

n→∞
1

n

n−1∑
i=0

1
( 1

2 ,1]×( 1
k+1 , 1

k ] ◦ (Gi(x), Gi+1(x)) = 1

ln 2
ln

1 + k+1
k+2

1 + k
k+1

}

�k
3 =

{
x ∈ [0,1] : lim

n→∞
1

n

n−1∑
i=0

1
( 1

4 , 1
3 ]×( 1

k+1 , 1
k ] ◦ (Gi(x), Gi+1(x)) = 1

ln 2
ln

1 + k+1
3k+4

1 + k
3k+1

}
.

Following the same reasoning as in Remark 1 (or using Proposition 4.1.2 in [3]), we get λ(�k
1 ∩ �k

3) = 1, implying that � :=
�′ ∩� ∩⋂∞

k=1(�
k
1 ∩�k

3) fulfills λ(�) = 1. Fix x ∈ � and set a := cf(x) ∈ �. Additionally, for every n ≥ 3, let xn, yn ∈ Q ∩[0, 1]
be defined by

xn = [a1,a2, . . . ,an] := 1

a1 + 1

a2 + 1

· · · + 1
an

, yn = [a1,a2, . . . ,an + 1] := 1

a1 + 1

a2 + 1

· · · + 1
an+1

. (7)

Then we have limn→∞ xn = limn→∞ yn = x as well as x ∈ (xn, yn) for n even and x ∈ (yn, xn) for n odd. Setting xn = pn
qn

with pn, qn relatively prime and using the recurrence relations (1.12) in [2], we get yn = (an+1)pn−1+pn−2
(an+1)qn−1+qn−2

= pn+pn−1
qn−qn−1

, which 
implies xn − yn = (−1)n+1 1

qn(qn+qn−1)
. On the other hand, considering ?α(xn) = �α((a1, a2, . . . , an, ∞, ∞, . . .)) and ?α(yn) =

�α((a1, a2, . . . , an + 1, ∞, ∞, . . .)), using Eq. (1) yields:

δn := ?α(xn)−?α(yn)

xn − yn
= (−1)n+1 ∏n

j=1(ta j − ta j+1)

(−1)n+1 1
qn(qn+qn−1)

= qn(qn + qn−1)

n∏
j=1

(ta j − ta j+1) ≥ 0. (8)

Since, by construction, ?α is differentiable at x, obviously limn→∞ δn =?′
α(x) ≥ 0 holds.
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Suppose now that ?′
α(x) > 0. Then limn→∞ δn

δn−1
= 1 follows, from which, again using the recurrence relations (1.12) 

in [2], we get:

1 = lim
n→∞

δn

δn−1
= lim

n→∞(tan − tan+1)
qn(qn + qn−1)

qn−1(qn−1 + qn−2)
= lim

n→∞(tan − tan+1)

q2
n

q2
n−1

+ qn
qn−1

1 + qn−2
qn−1

= lim
n→∞(tan − tan+1)

(
an + qn−2

qn−1

)2 + (an + qn−2
qn−1

)

1 + qn−2
qn−1

. (9)

Fix an arbitrary k ∈N. Letting let (n j) j∈N denote the subsequence of all indices with an j = k, Eq. (9) simplifies into

1 = (tk − tk+1) lim
j→∞

(
k + qn j−2

qn j−1

)2 + (k + qn j−2

qn j−1
)

1 + qn j−2

qn j−1

. (10)

By construction of �, we have that (an j−1, an j ) = (1, k) is fulfilled infinitely often and that the same is true for (an j −1, an j ) =
(3, k). Using the same notation as in Eq. (7), according to [2], 

qn j−2

qn j−1
= [an j−1, . . . , a2, a1] holds, from which we conclude that 

qn j−2

qn j−1
lies infinitely often in ( 1

2 , 1] and infinitely often in ( 1
4 , 13 ]. This contradicts Eq. (10), implying that we can not have 

?′
α(x) > 0 if x ∈ �. Since x ∈ � was arbitrary, we have shown that ?′

α = 0 holds λ-a.e., which completes the proof. �
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