

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical analysis/Dynamical systems

A note on singularity of a recently introduced family of Minkowski's question-mark functions

Note sur la singularité d'une famille de fonctions « Minkowski's question-mark » récemment introduite

Juan Fernández Sánchez^a, Wolfgang Trutschnig^b

^a Grupo de Investigación de Análisis Matemático, Universidad de Almería, La Cañada de San Urbano, Almería, Spain
 ^b Department for Mathematics, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria

ARTICLE INFO

Article history: Received 16 September 2016 Accepted after revision 5 September 2017 Available online 19 September 2017

Presented by the Editorial Board

ABSTRACT

We point out a mistake in the proof of the main theorem in a recent article on a family of generalized Minkowski's question-mark functions, saying that each member of the family is a singular homeomorphism, and provide two alternative proofs, one based on the ergodicity of the Gauss map *G* and the α -Lüroth map L_{α} , and another one focusing more on classical properties of continued fraction expansions.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Nous mettons en évidence une erreur dans la démonstration du théroème principal dans un article récent traitant d'une famille de fonctions «Minkowski's question-mark» généralisées, stipulant que chaque membre de la famille est un homéomorphisme singulier, et nous produisons deux preuves alternatives, l'une basée sur l'ergodicité de l'application de Gauss *G* et de l'application α -Lüroth L_{α} , l'autre se focalisant davantage sur des propriétés classiques des décompositions de fractions continues.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Based on continued fraction- and generalized Lüroth expansions, a new family of Minkowski's question-mark functions was recently introduced in [1]. When proving the main theorem of the paper (Theorem 1.3), the author correctly shows that each member $?_{\alpha}$ of the family is a strictly increasing homeomorphism of the unit interval [0, 1] and then tackles proving that $?_{\alpha}$ is singular (in the sense that $?_{\alpha}$ has derivative zero λ -a.e.). Unfortunately, the presented proof of singularity is

http://dx.doi.org/10.1016/j.crma.2017.09.009

E-mail addresses: juan.fernandez@ual.es (J. Fernández Sánchez), wolfgang@trutschnig.net (W. Trutschnig).

¹⁶³¹⁻⁰⁷³X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

The rest of this note is organized as follows: we first introduce some notation (essentially following [1] with some slight modifications) in Section 2, point out what exactly went wrong in [1], and then prove Theorem 1.3 in [1] using two different methods in Section 3.

2. Notation

In the sequel, $\mathcal{B}([0, 1])$ will denote the Borel σ -field on [0, 1], and λ will denote the Lebesgue measure on $\mathcal{B}([0, 1])$. We will write $\mathbb{N}_{\infty} = \{1, 2, 3, ...\} \cup \{\infty\}$ and will refer to $\Sigma := (\mathbb{N}_{\infty})^{\mathbb{N}}$ as a code-space. As usual, $G : [0, 1] \to [0, 1]$ will denote the Gauss map, defined by G(0) = 0 and $G(x) = \frac{1}{x} - \lfloor \frac{1}{x} \rfloor$ for $x \in (0, 1]$. Set $s_i = \frac{1}{i}$ for every $i \in \mathbb{N}$ and $s_{\infty} = 0$. Then the intervals $I_{\infty} = \{s_{\infty}\}, I_1 = (s_2, s_1], I_2 = (s_3, s_2], ...$ form a partition γ_G of [0, 1]. Coding orbits of G via γ_G , the continued fraction expansion cf : $[0, 1] \to \Sigma$ is defined by setting cf $(x) = \underline{a} = (a_1, a_2, a_3, ...) \in \Sigma$ if and only if $G^{i-1}(x) \in I_{a_i}$ holds for every $i \in \mathbb{N}$. It is well known that G is strongly mixing (hence ergodic) w.r.t. the absolutely continuous probability measure μ_G with density $\frac{1}{122} \frac{1}{11x}$ for $x \in [0, 1]$ (see [3]).

 $\mu_{G} \text{ with density } \frac{1}{\ln 2} \frac{1}{1+x} \text{ for } x \in [0, 1] \text{ (see [3])}.$ In the sequel, we will let $\alpha = \{J_{\infty}, J_{1}, J_{2}, J_{3}, \ldots\}$ denote partitions of the unit interval induced by strictly decreasing sequences $(t_{i})_{i=1}^{\infty}$ converging to $0 =: t_{\infty}$ and fulfilling $t_{1} = 1$, i.e. we have $J_{\infty} = \{t_{\infty}\}, J_{1} = (t_{2}, t_{1}], J_{2} = (t_{3}, t_{2}], \ldots$ For each such partition α , the α -Lüroth map L_{α} is defined by $L_{\alpha}(0) = 0$ as well as $L_{\alpha}(x) = \frac{t_{j}-x}{t_{j}-t_{j+1}}$ for $x \in (t_{j+1}, t_{j}]$ and $j \in \mathbb{N}$. Coding orbits of L_{α} via α , the α -Lüroth expansion Lür_{α}: $[0, 1] \rightarrow \Sigma$ is defined by setting Lür_{α} $(x) = \underline{a} = (a_{1}, a_{2}, a_{3}, \ldots) \in \Sigma$ if and only if $L_{\alpha}^{i-1}(x) \in J_{a_{i}}$ holds for every $i \in \mathbb{N}$. Additionally to being strongly mixing w.r.t. λ , the α -Lüroth map is even (isomorphic to) a Bernoulli shift (see [2]). Moreover (again see [2]) the transformation $\Phi_{\alpha} : \Sigma \rightarrow [0, 1]$, defined by

$$\Phi_{\alpha}(\underline{a}) = t_{a_1} + \sum_{m=2}^{\infty} (-1)^{m+1} t_{a_m} \prod_{j=1}^{m-1} (t_{a_j} - t_{a_j+1}), \tag{1}$$

with the convention $t_{\infty+1} = t_{\infty}$, fulfills $\Phi_{\alpha} \circ \text{Lür}_{\alpha} = id_{[0,1]}$.

3. Two proofs of singularity of $?_{\alpha}$

Based on cf : $[0, 1] \rightarrow \Sigma$ and $\Phi_{\alpha} : \Sigma \rightarrow [0, 1]$, in [1] the author introduces the (generalized) question-mark function $?_{\alpha}$ by setting $?_{\alpha}(x) = \Phi_{\alpha} \circ cf(x)$ for every $x \in [0, 1]$, and then states the following theorem.

Theorem 3.1 ([1]). Given a partition α as above, the map $?_{\alpha} : [0, 1] \rightarrow [0, 1]$ is an increasing singular homeomorphism fulfilling $L_{\alpha} \circ ?_{\alpha} = ?_{\alpha} \circ G$. Moreover, if $t_1, t_2, \ldots \in \mathbb{Q}$, then $?_{\alpha}$ maps the set \mathbb{A}_2 of all quadratic surds into \mathbb{Q} .

In [1], a correct proof for the fact that $?_{\alpha}$ is an increasing homeomorphism and for the assertion concerning \mathbb{A}_2 is given. It is well known that singularity can be shown by establishing the existence of a Borel set $\tilde{B} \subseteq [0, 1]$ fulfilling $\lambda(\tilde{B}) = 0$ and $\lambda(?_{\alpha}(\tilde{B})) = 1$. Letting μ_{α} denote the pull-back of λ via $?_{\alpha}$ (or, equivalently, the push-forward of λ via $?_{\alpha}^{-1}$), defined by $\mu_{\alpha}(B) = \lambda(?_{\alpha}(B))$ for every Borel set $B \in \mathcal{B}([0, 1])$, the author then uses the identity

$$\int_{?_{\alpha}(B)} dx = \int_{B} ?_{\alpha}^{-1}(x) dx$$
(2)

to prove that μ_{α} and μ_{G} are singular with respect to each other. Eq. (2), however, is easily seen to be wrong and should be $\int_{\gamma_{\alpha}(B)} 1 \, dx = \int_{B} 1 \, d\mu_{\alpha} = \mu_{\alpha}(B)$ instead. In fact, considering, for instance, B = [0, 1], we get $\int_{\gamma_{\alpha}([0,1])} dx = \int_{[0,1]} dx = 1$, whereas the right-hand side of Eq. (2) obviously fulfills $\int_{[0,1]} \gamma_{\alpha}^{-1}(x) \, dx < 1$ since γ_{α}^{-1} is a homeomorphism of [0, 1] too. Since the rest of the proof in [1] builds upon Eq. (2), an alternative method is needed to show the singularity of γ_{α} .

We will now provide two proofs of the singularity of $?_{\alpha}$ for every partition α – the first one uses the ergodicity of *G* and L_{α} and explicitly constructs a Borel set \tilde{B} with the afore-mentioned properties, the second one is more elementary and directly derives the fact that $?'_{\alpha}(x) = 0$ for λ -a.e. $x \in [0, 1]$ via some properties of continued fraction expansions.

Proof a. We distinguish two different types of partitions α .

Type I: There exists $k \in \mathbb{N}$ such that $t_k - t_{k+1} \neq \frac{1}{\ln 2} \ln \frac{(k+1)^2}{k(k+2)}$. Let the Borel sets Λ and Γ be defined by

$$\Lambda = \left\{ x \in [0, 1] : \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{1}_{\left(\frac{1}{k+1}, \frac{1}{k}\right]} \circ G^{i}(x) = \frac{1}{\ln 2} \ln \frac{(k+1)^{2}}{k(k+2)} \text{ holds for every } k \in \mathbb{N} \right\}$$
(3)

$$\Gamma = \left\{ x \in [0, 1] : \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{1}_{(t_{k+1}, t_k]} \circ L^i_{\alpha}(x) = t_k - t_{k+1} \text{ holds for every } k \in \mathbb{N} \right\}.$$
(4)

The ergodicity of *G* w.r.t. μ_G and of L_{α} w.r.t. λ (see [2,3]) and the fact that μ_G is absolutely continuous with strictly positive density implies that $\lambda(\Lambda) = \lambda(\Gamma) = 1$. Considering that $?_{\alpha}(x) = \Phi_{\alpha} \circ cf(x)$ holds for every $x \in (0, 1]$ and that for every $x \in \Lambda$, we have $cf(x) \notin L\ddot{u}r_{\alpha}(\Gamma)$, $?_{\alpha}(\Lambda) \subseteq \Gamma^{c}$ follows. Hence, choosing $\tilde{B} = \Lambda^{c}$ directly yields $\lambda(\tilde{B}) = 0$ as well as $1 \ge \lambda(?_{\alpha}(\tilde{B})) \ge \lambda(\Gamma) = 1$, which completes the proof for all partitions α of Type I.

Type II: For every $k \in \mathbb{N}$, we have $t_k - t_{k+1} = \frac{1}{\ln 2} \ln \frac{(k+1)^2}{k(k+2)}$.

Taking into account $t_1 = 1$, we get that there is only one partition α of Type II, namely the one fulfilling $t_k = \frac{1}{\ln 2} \ln \frac{k+2}{k+1}$ for every $k \in \mathbb{N}$. Instead of considering asymptotic frequencies of single 'digits' of the Lüroth- and continued-fraction expansions, we now consider the asymptotic frequency of the 'block' (1, 1) and set

$$\Lambda = \left\{ x \in [0, 1] : \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{1}_{\left(\frac{1}{2}, 1\right)^2} \circ (G^i(x), G^{i+1}(x)) = \frac{1}{\ln 2} \ln \frac{10}{9} \right\}$$
(5)

$$\Gamma = \left\{ x \in [0,1] : \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{1}_{(\frac{1}{2},1]^2} \circ (L^i_{\alpha}(x), L^{i+1}_{\alpha}(x)) = \left(\frac{\ln\frac{4}{3}}{\ln 2}\right)^2 \right\}.$$
(6)

According to Proposition 4.1.2 in [3], we have $\lambda(\Lambda) = 1$. Moreover, using the fact that L_{α} is (isomorphic to) a Bernoulli shift and that $(t_1 - t_2)^2 = \left(\frac{\ln \frac{4}{3}}{\ln 2}\right)^2$ holds, $\lambda(\Gamma) = 1$ follows. Considering $\left(\frac{\ln \frac{4}{3}}{\ln 2}\right)^2 \neq \frac{\ln \frac{10}{9}}{\ln 2}$ and proceeding as in the second part of the first case and setting $\tilde{B} = \Lambda^c$ completes the proof. \Box

Remark 1. Instead of using Proposition 4.1.2 in [3] and the fact that L_{α} is a Bernoulli shift in order to prove $\lambda(\Lambda) = \lambda(\Gamma) = 1$ for α of Type II, we could as well consider the maps ε_G , $\varepsilon_{L_{\alpha}} : [0, 1] \rightarrow [0, 1]^2$, defined by $\varepsilon_G(x) = (x, G(x))$ and $\varepsilon_{L_{\alpha}}(x) = (x, L_{\alpha}(x))$, and directly work with the ergodicity of *G* and L_{α} . In fact, applying Birkhoff's ergodic theorem ([4]) to the indicator function $f : x \mapsto \mathbf{1}_{(\frac{1}{2}, 1]^2} \circ \varepsilon_G(x)$ directly yields that, for μ_G -a.e. $x \in [0, 1]$ (hence for λ -a.e. $x \in [0, 1]$), we get

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{1}_{(\frac{1}{2},1]^2} \circ (G^i(x), G^{i+1}(x)) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} f \circ G^i(x) = \frac{1}{\ln 2} \int_{[0,1]} f(x) \frac{1}{1+x} dx = \frac{1}{\ln 2} \ln \frac{10}{9}.$$

Proceeding analogously with the function $f : x \mapsto \mathbf{1}_{(\frac{1}{2},1)^2} \circ \varepsilon_{L_{\alpha}}(x)$ shows that $\lambda(\Gamma) = 1$.

Proof b. Let Λ' denote the set of all points $x \in (0, 1)$ at which $?_{\alpha}$ is differentiable and define Λ according to Eq. (3). For every $k \in \mathbb{N}$, define two new Borel sets Λ_1^k, Λ_3^k by

$$\Lambda_1^k = \left\{ x \in [0,1] : \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{1}_{(\frac{1}{2},1] \times (\frac{1}{k+1},\frac{1}{k}]} \circ (G^i(x), G^{i+1}(x)) = \frac{1}{\ln 2} \ln \frac{1 + \frac{k+1}{k+2}}{1 + \frac{k}{k+1}} \right\}$$
$$\Lambda_3^k = \left\{ x \in [0,1] : \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{1}_{(\frac{1}{4},\frac{1}{3}] \times (\frac{1}{k+1},\frac{1}{k}]} \circ (G^i(x), G^{i+1}(x)) = \frac{1}{\ln 2} \ln \frac{1 + \frac{k+1}{3k+4}}{1 + \frac{k}{3k+1}} \right\}.$$

Following the same reasoning as in Remark 1 (or using Proposition 4.1.2 in [3]), we get $\lambda(\Lambda_1^k \cap \Lambda_3^k) = 1$, implying that $\Omega := \Lambda' \cap \Lambda \cap \bigcap_{k=1}^{\infty} (\Lambda_1^k \cap \Lambda_3^k)$ fulfills $\lambda(\Omega) = 1$. Fix $x \in \Omega$ and set $\underline{a} := cf(x) \in \Sigma$. Additionally, for every $n \ge 3$, let $x_n, y_n \in \mathbb{Q} \cap [0, 1]$ be defined by

$$x_{n} = [a_{1}, a_{2}, \dots, a_{n}] := \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{\dots + \frac{1}{a_{n}}}}}, \quad y_{n} = [a_{1}, a_{2}, \dots, a_{n} + 1] := \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{\dots + \frac{1}{a_{n} + 1}}}}.$$
(7)

Then we have $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = x$ as well as $x \in (x_n, y_n)$ for *n* even and $x \in (y_n, x_n)$ for *n* odd. Setting $x_n = \frac{p_n}{q_n}$ with p_n, q_n relatively prime and using the recurrence relations (1.12) in [2], we get $y_n = \frac{(a_n+1)p_{n-1}+p_{n-2}}{(a_n+1)q_{n-1}+q_{n-2}} = \frac{p_n+p_{n-1}}{q_n-q_{n-1}}$, which implies $x_n - y_n = (-1)^{n+1} \frac{1}{q_n(q_n+q_{n-1})}$. On the other hand, considering $?_{\alpha}(x_n) = \Phi_{\alpha}((a_1, a_2, \dots, a_n, \infty, \infty, \dots))$ and $?_{\alpha}(y_n) = \Phi_{\alpha}((a_1, a_2, \dots, a_n + 1, \infty, \infty, \dots))$, using Eq. (1) yields:

$$\delta_n := \frac{?_{\alpha}(x_n) - ?_{\alpha}(y_n)}{x_n - y_n} = \frac{(-1)^{n+1} \prod_{j=1}^n (t_{a_j} - t_{a_j+1})}{(-1)^{n+1} \frac{1}{q_n(q_n + q_{n-1})}} = q_n(q_n + q_{n-1}) \prod_{j=1}^n (t_{a_j} - t_{a_j+1}) \ge 0.$$
(8)

Since, by construction, $?_{\alpha}$ is differentiable at *x*, obviously $\lim_{n\to\infty} \delta_n = ?'_{\alpha}(x) \ge 0$ holds.

Suppose now that $?'_{\alpha}(x) > 0$. Then $\lim_{n \to \infty} \frac{\delta_n}{\delta_{n-1}} = 1$ follows, from which, again using the recurrence relations (1.12) in [2], we get:

$$1 = \lim_{n \to \infty} \frac{\delta_n}{\delta_{n-1}} = \lim_{n \to \infty} (t_{a_n} - t_{a_{n+1}}) \frac{q_n(q_n + q_{n-1})}{q_{n-1}(q_{n-1} + q_{n-2})} = \lim_{n \to \infty} (t_{a_n} - t_{a_{n+1}}) \frac{\frac{q_n^2}{q_{n-1}^2} + \frac{q_n}{q_{n-1}}}{1 + \frac{q_{n-2}}{q_{n-1}}}$$
$$= \lim_{n \to \infty} (t_{a_n} - t_{a_{n+1}}) \frac{\left(a_n + \frac{q_{n-2}}{q_{n-1}}\right)^2 + \left(a_n + \frac{q_{n-2}}{q_{n-1}}\right)}{1 + \frac{q_{n-2}}{q_{n-1}}}.$$
(9)

Fix an arbitrary $k \in \mathbb{N}$. Letting let $(n_j)_{j \in \mathbb{N}}$ denote the subsequence of all indices with $a_{n_j} = k$, Eq. (9) simplifies into

$$1 = (t_k - t_{k+1}) \lim_{j \to \infty} \frac{\left(k + \frac{q_{n_j-2}}{q_{n_j-1}}\right)^2 + \left(k + \frac{q_{n_j-2}}{q_{n_j-1}}\right)}{1 + \frac{q_{n_j-2}}{q_{n_j-1}}}.$$
(10)

By construction of Ω , we have that $(a_{n_j-1}, a_{n_j}) = (1, k)$ is fulfilled infinitely often and that the same is true for $(a_{n_j-1}, a_{n_j}) = (3, k)$. Using the same notation as in Eq. (7), according to [2], $\frac{q_{n_j-2}}{q_{n_j-1}} = [a_{n_j-1}, \ldots, a_2, a_1]$ holds, from which we conclude that $\frac{q_{n_j-2}}{q_{n_j-1}}$ lies infinitely often in $(\frac{1}{2}, 1]$ and infinitely often in $(\frac{1}{4}, \frac{1}{3}]$. This contradicts Eq. (10), implying that we can not have $?'_{\alpha}(x) > 0$ if $x \in \Omega$. Since $x \in \Omega$ was arbitrary, we have shown that $?'_{\alpha} = 0$ holds λ -a.e., which completes the proof. \Box

Acknowledgements

The authors have been supported by the Ministerio de Economía y Competitividad (Spain) under research project MTM2014-60594.

References

- [1] A. Arroyo, Generalised Lüroth expansions and a family of Minkowski's question-mark functions, C. R. Acad. Sci. Paris, Ser. I 353 (2015) 943–946.
- [2] K. Dajani, C.C. Kraaikamp, Ergodic Theory of Numbers, Carus Mathematical Monographs, vol. 29, The Mathematical Association of America, 2002.
- [3] M. Iosifescu, C. Kraaikamp, Metrical Theory of Continued Fractions, Springer Science+Business Media, Dordrecht, The Netherlands, 2002.
- [4] P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982.