Mathematical analysis/Dynamical systems

# A note on singularity of a recently introduced family of Minkowski's question-mark functions 

# Note sur la singularité d'une famille de fonctions «Minkowski's question-mark» récemment introduite 

Juan Fernández Sánchez ${ }^{\text {a }}$, Wolfgang Trutschnig ${ }^{\text {b }}$
${ }^{\text {a }}$ Grupo de Investigación de Análisis Matemático, Universidad de Almería, La Cañada de San Urbano, Almería, Spain
${ }^{\text {b }}$ Department for Mathematics, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria

## A R T I C L E I N F O

## Article history:

Received 16 September 2016
Accepted after revision 5 September 2017
Available online 19 September 2017
Presented by the Editorial Board


#### Abstract

We point out a mistake in the proof of the main theorem in a recent article on a family of generalized Minkowski's question-mark functions, saying that each member of the family is a singular homeomorphism, and provide two alternative proofs, one based on the ergodicity of the Gauss map $G$ and the $\alpha$-Lüroth map $L_{\alpha}$, and another one focusing more on classical properties of continued fraction expansions.


© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.


#### Abstract

Ré S U M É Nous mettons en évidence une erreur dans la démonstration du théroème principal dans un article récent traitant d'une famille de fonctions «Minkowski's question-mark» généralisées, stipulant que chaque membre de la famille est un homéomorphisme singulier, et nous produisons deux preuves alternatives, l'une basée sur l'ergodicité de l'application de Gauss $G$ et de l'application $\alpha$-Lüroth $L_{\alpha}$, l'autre se focalisant davantage sur des propriétés classiques des décompositions de fractions continues.


© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## 1. Introduction

Based on continued fraction- and generalized Lüroth expansions, a new family of Minkowski's question-mark functions was recently introduced in [1]. When proving the main theorem of the paper (Theorem 1.3), the author correctly shows that each member $?_{\alpha}$ of the family is a strictly increasing homeomorphism of the unit interval $[0,1]$ and then tackles proving that $?_{\alpha}$ is singular (in the sense that $?_{\alpha}$ has derivative zero $\lambda$-a.e.). Unfortunately, the presented proof of singularity is

[^0]incorrect, implying that the theorem is still formally unproven. The main objective of this note is to provide two correct proofs of the singularity of $?_{\alpha}$ for every partition $\alpha$.

The rest of this note is organized as follows: we first introduce some notation (essentially following [1] with some slight modifications) in Section 2, point out what exactly went wrong in [1], and then prove Theorem 1.3 in [1] using two different methods in Section 3.

## 2. Notation

In the sequel, $\mathcal{B}([0,1])$ will denote the Borel $\sigma$-field on $[0,1]$, and $\lambda$ will denote the Lebesgue measure on $\mathcal{B}([0,1])$. We will write $\mathbb{N}_{\infty}=\{1,2,3, \ldots\} \cup\{\infty\}$ and will refer to $\Sigma:=\left(\mathbb{N}_{\infty}\right)^{\mathbb{N}}$ as a code-space. As usual, $G:[0,1] \rightarrow[0,1]$ will denote the Gauss map, defined by $G(0)=0$ and $G(x)=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor$ for $x \in(0,1]$. Set $s_{i}=\frac{1}{i}$ for every $i \in \mathbb{N}$ and $s_{\infty}=0$. Then the intervals $I_{\infty}=\left\{s_{\infty}\right\}, I_{1}=\left(s_{2}, s_{1}\right], I_{2}=\left(s_{3}, s_{2}\right], \ldots$ form a partition $\gamma_{G}$ of $[0,1]$. Coding orbits of $G$ via $\gamma_{G}$, the continued fraction expansion cf: $[0,1] \rightarrow \Sigma$ is defined by setting $\operatorname{cf}(x)=\underline{a}=\left(a_{1}, a_{2}, a_{3}, \ldots\right) \in \Sigma$ if and only if $G^{i-1}(x) \in I_{a_{i}}$ holds for every $i \in \mathbb{N}$. It is well known that $G$ is strongly mixing (hence ergodic) w.r.t. the absolutely continuous probability measure $\mu_{G}$ with density $\frac{1}{\ln 2} \frac{1}{1+x}$ for $x \in[0,1]$ (see [3]).

In the sequel, we will let $\alpha=\left\{J_{\infty}, J_{1}, J_{2}, J_{3}, \ldots\right\}$ denote partitions of the unit interval induced by strictly decreasing sequences $\left(t_{i}\right)_{i=1}^{\infty}$ converging to $0=: t_{\infty}$ and fulfilling $t_{1}=1$, i.e. we have $J_{\infty}=\left\{t_{\infty}\right\}, J_{1}=\left(t_{2}, t_{1}\right], J_{2}=\left(t_{3}, t_{2}\right], \ldots$. For each such partition $\alpha$, the $\alpha$-Lüroth map $L_{\alpha}$ is defined by $L_{\alpha}(0)=0$ as well as $L_{\alpha}(x)=\frac{t_{j}-x}{t_{j}-t_{j+1}}$ for $x \in\left(t_{j+1}, t_{j}\right]$ and $j \in \mathbb{N}$. Coding orbits of $L_{\alpha}$ via $\alpha$, the $\alpha$-Lüroth expansion $\operatorname{Lür}_{\alpha}:[0,1] \rightarrow \Sigma$ is defined by setting Lür ${ }_{\alpha}(x)=\underline{a}=\left(a_{1}, a_{2}, a_{3}, \ldots\right) \in \Sigma$ if and only if $L_{\alpha}^{i-1}(x) \in J_{a_{i}}$ holds for every $i \in \mathbb{N}$. Additionally to being strongly mixing w.r.t. $\lambda$, the $\bar{\alpha}$-Lüroth map is even (isomorphic to) a Bernoulli shift (see [2]). Moreover (again see [2]) the transformation $\Phi_{\alpha}: \Sigma \rightarrow[0,1]$, defined by

$$
\begin{equation*}
\Phi_{\alpha}(\underline{a})=t_{a_{1}}+\sum_{m=2}^{\infty}(-1)^{m+1} t_{a_{m}} \prod_{j=1}^{m-1}\left(t_{a_{j}}-t_{a_{j}+1}\right) \tag{1}
\end{equation*}
$$

with the convention $t_{\infty+1}=t_{\infty}$, fulfills $\Phi_{\alpha} \circ \operatorname{Lür}_{\alpha}=i d_{[0,1]}$.

## 3. Two proofs of singularity of ? ${ }_{\alpha}$

Based on cf: $[0,1] \rightarrow \Sigma$ and $\Phi_{\alpha}: \Sigma \rightarrow[0,1]$, in [1] the author introduces the (generalized) question-mark function $?_{\alpha}$ by setting $?_{\alpha}(x)=\Phi_{\alpha} \circ \operatorname{cf}(x)$ for every $x \in[0,1]$, and then states the following theorem.

Theorem 3.1 ([1]). Given a partition $\alpha$ as above, the map $?_{\alpha}:[0,1] \rightarrow[0,1]$ is an increasing singular homeomorphism fulfiling $L_{\alpha} \circ ?_{\alpha}=?_{\alpha} \circ G$. Moreover, if $t_{1}, t_{2}, \ldots \in \mathbb{Q}$, then $?_{\alpha}$ maps the set $\mathbb{A}_{2}$ of all quadratic surds into $\mathbb{Q}$.

In [1], a correct proof for the fact that $?_{\alpha}$ is an increasing homeomorphism and for the assertion concerning $\mathbb{A}_{2}$ is given. It is well known that singularity can be shown by establishing the existence of a Borel set $\tilde{B} \subseteq[0,1]$ fulfilling $\lambda(\tilde{B})=0$ and $\lambda\left(?_{\alpha}(\tilde{B})\right)=1$. Letting $\mu_{\alpha}$ denote the pull-back of $\lambda$ via ? $?_{\alpha}$ (or, equivalently, the push-forward of $\lambda$ via ? ${ }_{\alpha}^{-1}$ ), defined by $\mu_{\alpha}(B)=\lambda\left(?_{\alpha}(B)\right)$ for every Borel set $B \in \mathcal{B}([0,1])$, the author then uses the identity

$$
\begin{equation*}
\int_{?_{\alpha}(B)} \mathrm{d} x=\int_{B} ?_{\alpha}^{-1}(x) \mathrm{d} x \tag{2}
\end{equation*}
$$

to prove that $\mu_{\alpha}$ and $\mu_{G}$ are singular with respect to each other. Eq. (2), however, is easily seen to be wrong and should be $\int_{?_{\alpha}(B)} 1 \mathrm{~d} x=\int_{B} 1 \mathrm{~d} \mu_{\alpha}=\mu_{\alpha}(B)$ instead. In fact, considering, for instance, $B=[0,1]$, we get $\int_{?_{\alpha}([0,1])} \mathrm{d} x=\int_{[0,1]} \mathrm{d} x=1$, whereas the right-hand side of Eq. (2) obviously fulfills $\int_{[0,1]} ?_{\alpha}^{-1}(x) \mathrm{d} x<1$ since $?_{\alpha}^{-1}$ is a homeomorphism of $[0,1]$ too. Since the rest of the proof in [1] builds upon Eq. (2), an alternative method is needed to show the singularity of $?_{\alpha}$.

We will now provide two proofs of the ${\underset{\tilde{B}}{ }}$ and $L_{\alpha}$ and explicitly constructs a Borel set $\tilde{B}$ with the afore-mentioned properties, the second one is more elementary and directly derives the fact that $?_{\alpha}^{\prime}(x)=0$ for $\lambda$-a.e. $x \in[0,1]$ via some properties of continued fraction expansions.

Proof a. We distinguish two different types of partitions $\alpha$.
Type I: There exists $k \in \mathbb{N}$ such that $t_{k}-t_{k+1} \neq \frac{1}{\ln 2} \ln \frac{(k+1)^{2}}{k(k+2)}$.
Let the Borel sets $\Lambda$ and $\Gamma$ be defined by

$$
\begin{align*}
& \Lambda=\left\{x \in[0,1]: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{1}_{\left(\frac{1}{k+1}, \frac{1}{k}\right]} \circ G^{i}(x)=\frac{1}{\ln 2} \ln \frac{(k+1)^{2}}{k(k+2)} \text { holds for every } k \in \mathbb{N}\right\}  \tag{3}\\
& \Gamma=\left\{x \in[0,1]: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{1}_{\left(t_{k+1}, t_{k}\right]} \circ L_{\alpha}^{i}(x)=t_{k}-t_{k+1} \text { holds for every } k \in \mathbb{N}\right\} . \tag{4}
\end{align*}
$$

The ergodicity of $G$ w.r.t. $\mu_{G}$ and of $L_{\alpha}$ w.r.t. $\lambda$ (see $[2,3]$ ) and the fact that $\mu_{G}$ is absolutely continuous with strictly positive density implies that $\lambda(\Lambda)=\lambda(\Gamma)=1$. Considering that $?_{\alpha}(x)=\Phi_{\alpha} \circ \operatorname{cf}(x)$ holds for every $x \in(0,1]$ and that for every $x \in \Lambda$, we have $\operatorname{cf}(x) \notin \operatorname{Lür}_{\alpha}(\Gamma), ?_{\alpha}(\Lambda) \subseteq \Gamma^{c}$ follows. Hence, choosing $\tilde{B}=\Lambda^{c}$ directly yields $\lambda(\tilde{B})=0$ as well as $1 \geq \lambda\left(?_{\alpha}(\tilde{B})\right) \geq \lambda(\Gamma)=1$, which completes the proof for all partitions $\alpha$ of Type I.

Type II: For every $k \in \mathbb{N}$, we have $t_{k}-t_{k+1}=\frac{1}{\ln 2} \ln \frac{(k+1)^{2}}{k(k+2)}$.
Taking into account $t_{1}=1$, we get that there is only one partition $\alpha$ of Type II, namely the one fulfilling $t_{k}=\frac{1}{\ln 2} \ln \frac{k+2}{k+1}$ for every $k \in \mathbb{N}$. Instead of considering asymptotic frequencies of single 'digits' of the Lüroth- and continued-fraction expansions, we now consider the asymptotic frequency of the 'block' $(1,1)$ and set

$$
\begin{align*}
& \Lambda=\left\{x \in[0,1]: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{1}_{\left(\frac{1}{2}, 1\right]^{2}} \circ\left(G^{i}(x), G^{i+1}(x)\right)=\frac{1}{\ln 2} \ln \frac{10}{9}\right\}  \tag{5}\\
& \Gamma=\left\{x \in[0,1]: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{1}_{\left(\frac{1}{2}, 1\right]^{2}} \circ\left(L_{\alpha}^{i}(x), L_{\alpha}^{i+1}(x)\right)=\left(\frac{\ln \frac{4}{3}}{\ln 2}\right)^{2}\right\} \tag{6}
\end{align*}
$$

According to Proposition 4.1.2 in [3], we have $\lambda(\Lambda)=1$. Moreover, using the fact that $L_{\alpha}$ is (isomorphic to) a Bernoulli shift and that $\left(t_{1}-t_{2}\right)^{2}=\left(\frac{\ln \frac{4}{3}}{\ln 2}\right)^{2}$ holds, $\lambda(\Gamma)=1$ follows. Considering $\left(\frac{\ln \frac{4}{3}}{\ln 2}\right)^{2} \neq \frac{\ln \frac{10}{9}}{\ln 2}$ and proceeding as in the second part of the first case and setting $\tilde{B}=\Lambda^{c}$ completes the proof.

Remark 1. Instead of using Proposition 4.1 .2 in [3] and the fact that $L_{\alpha}$ is a Bernoulli shift in order to prove $\lambda(\Lambda)=$ $\lambda(\Gamma)=1$ for $\alpha$ of Type II, we could as well consider the maps $\varepsilon_{G}, \varepsilon_{L_{\alpha}}:[0,1] \rightarrow[0,1]^{2}$, defined by $\varepsilon_{G}(x)=(x, G(x))$ and $\varepsilon_{L_{\alpha}}(x)=\left(x, L_{\alpha}(x)\right)$, and directly work with the ergodicity of $G$ and $L_{\alpha}$. In fact, applying Birkhoff's ergodic theorem ([4]) to the indicator function $f: x \mapsto \mathbf{1}_{\left(\frac{1}{2}, 1\right]^{2}} \circ \varepsilon_{G}(x)$ directly yields that, for $\mu_{G}$-a.e. $x \in[0,1]$ (hence for $\lambda$-a.e. $\left.x \in[0,1]\right)$, we get

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{1}_{\left(\frac{1}{2}, 1\right]^{2}} \circ\left(G^{i}(x), G^{i+1}(x)\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} f \circ G^{i}(x)=\frac{1}{\ln 2} \int_{[0,1]} f(x) \frac{1}{1+x} \mathrm{~d} x=\frac{1}{\ln 2} \ln \frac{10}{9}
$$

Proceeding analogously with the function $f: x \mapsto \mathbf{1}_{\left(\frac{1}{2}, 1\right]^{2}} \circ \varepsilon_{L_{\alpha}}(x)$ shows that $\lambda(\Gamma)=1$.
Proof b. Let $\Lambda^{\prime}$ denote the set of all points $x \in(0,1)$ at which $?_{\alpha}$ is differentiable and define $\Lambda$ according to Eq. (3). For every $k \in \mathbb{N}$, define two new Borel sets $\Lambda_{1}^{k}, \Lambda_{3}^{k}$ by

$$
\begin{aligned}
& \Lambda_{1}^{k}=\left\{x \in[0,1]: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{1}_{\left(\frac{1}{2}, 1\right] \times\left(\frac{1}{k+1}, \frac{1}{k}\right]} \circ\left(G^{i}(x), G^{i+1}(x)\right)=\frac{1}{\ln 2} \ln \frac{1+\frac{k+1}{k+2}}{1+\frac{k}{k+1}}\right\} \\
& \Lambda_{3}^{k}=\left\{x \in[0,1]: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{1}_{\left(\frac{1}{4}, \frac{1}{3}\right] \times\left(\frac{1}{k+1}, \frac{1}{k}\right]} \circ\left(G^{i}(x), G^{i+1}(x)\right)=\frac{1}{\ln 2} \ln \frac{1+\frac{k+1}{3 k+4}}{1+\frac{k}{3 k+1}}\right\} .
\end{aligned}
$$

Following the same reasoning as in Remark 1 (or using Proposition 4.1.2 in [3]), we get $\lambda\left(\Lambda_{1}^{k} \cap \Lambda_{3}^{k}\right)=1$, implying that $\Omega:=$ $\Lambda^{\prime} \cap \Lambda \cap \bigcap_{k=1}^{\infty}\left(\Lambda_{1}^{k} \cap \Lambda_{3}^{k}\right)$ fulfills $\lambda(\Omega)=1$. Fix $x \in \Omega$ and set $\underline{a}:=\operatorname{cf}(x) \in \Sigma$. Additionally, for every $n \geq 3$, let $x_{n}, y_{n} \in \mathbb{Q} \cap[0,1]$ be defined by

$$
\begin{equation*}
x_{n}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]:=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\cdots+\frac{1}{a_{n}}}}}, \quad y_{n}=\left[a_{1}, a_{2}, \ldots, a_{n}+1\right]:=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\cdots+\frac{1}{a_{n}+1}}}} . \tag{7}
\end{equation*}
$$

Then we have $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=x$ as well as $x \in\left(x_{n}, y_{n}\right)$ for $n$ even and $x \in\left(y_{n}, x_{n}\right)$ for $n$ odd. Setting $x_{n}=\frac{p_{n}}{q_{n}}$ with $p_{n}, q_{n}$ relatively prime and using the recurrence relations (1.12) in [2], we get $y_{n}=\frac{\left(a_{n}+1\right) p_{n-1}+p_{n-2}}{\left(a_{n}+1\right) q_{n-1}+q_{n-2}}=\frac{p_{n}+p_{n-1}}{q_{n}-q_{n-1}}$, which implies $x_{n}-y_{n}=(-1)^{n+1} \frac{1}{q_{n}\left(q_{n}+q_{n-1}\right)}$. On the other hand, considering $?_{\alpha}\left(x_{n}\right)=\Phi_{\alpha}\left(\left(a_{1}, a_{2}, \ldots, a_{n}, \infty, \infty, \ldots\right)\right)$ and $?_{\alpha}\left(y_{n}\right)=$ $\Phi_{\alpha}\left(\left(a_{1}, a_{2}, \ldots, a_{n}+1, \infty, \infty, \ldots\right)\right)$, using Eq. (1) yields:

$$
\begin{equation*}
\delta_{n}:=\frac{?_{\alpha}\left(x_{n}\right)-?_{\alpha}\left(y_{n}\right)}{x_{n}-y_{n}}=\frac{(-1)^{n+1} \prod_{j=1}^{n}\left(t_{a_{j}}-t_{a_{j}+1}\right)}{(-1)^{n+1} \frac{1}{q_{n}\left(q_{n}+q_{n-1}\right)}}=q_{n}\left(q_{n}+q_{n-1}\right) \prod_{j=1}^{n}\left(t_{a_{j}}-t_{a_{j}+1}\right) \geq 0 \tag{8}
\end{equation*}
$$

Since, by construction, $?_{\alpha}$ is differentiable at $x$, obviously $\lim _{n \rightarrow \infty} \delta_{n}=?_{\alpha}^{\prime}(x) \geq 0$ holds.

Suppose now that $?_{\alpha}^{\prime}(x)>0$. Then $\lim _{n \rightarrow \infty} \frac{\delta_{n}}{\delta_{n-1}}=1$ follows, from which, again using the recurrence relations (1.12) in [2], we get:

$$
\begin{align*}
1 & =\lim _{n \rightarrow \infty} \frac{\delta_{n}}{\delta_{n-1}}=\lim _{n \rightarrow \infty}\left(t_{a_{n}}-t_{a_{n}+1}\right) \frac{q_{n}\left(q_{n}+q_{n-1}\right)}{q_{n-1}\left(q_{n-1}+q_{n-2}\right)}=\lim _{n \rightarrow \infty}\left(t_{a_{n}}-t_{a_{n}+1}\right) \frac{\frac{q_{n}^{2}}{q_{n-1}^{2}}+\frac{q_{n}}{q_{n-1}}}{1+\frac{q_{n-2}}{q_{n-1}}} \\
& =\lim _{n \rightarrow \infty}\left(t_{a_{n}}-t_{a_{n}+1}\right) \frac{\left(a_{n}+\frac{q_{n-2}}{q_{n-1}}\right)^{2}+\left(a_{n}+\frac{q_{n-2}}{q_{n-1}}\right)}{1+\frac{q_{n-2}}{q_{n-1}}} \tag{9}
\end{align*}
$$

Fix an arbitrary $k \in \mathbb{N}$. Letting let $\left(n_{j}\right)_{j \in \mathbb{N}}$ denote the subsequence of all indices with $a_{n_{j}}=k$, Eq. (9) simplifies into

$$
\begin{equation*}
1=\left(t_{k}-t_{k+1}\right) \lim _{j \rightarrow \infty} \frac{\left(k+\frac{q_{n_{j}-2}}{q_{n_{j}-1}}\right)^{2}+\left(k+\frac{q_{n_{j}-2}}{q_{n_{j}-1}}\right)}{1+\frac{q_{n_{j}-2}}{q_{n_{j}-1}}} \tag{10}
\end{equation*}
$$

By construction of $\Omega$, we have that $\left(a_{n_{j}-1}, a_{n_{j}}\right)=(1, k)$ is fulfilled infinitely often and that the same is true for $\left(a_{n_{j}-1}, a_{n_{j}}\right)=$ $(3, k)$. Using the same notation as in Eq. (7), according to [2], $\frac{q_{n_{j}-2}}{q_{n_{j}-1}}=\left[a_{n_{j}-1}, \ldots, a_{2}, a_{1}\right]$ holds, from which we conclude that $\frac{q_{n_{j}-2}}{q_{n_{j}-1}}$ lies infinitely often in ( $\frac{1}{2}, 1$ ] and infinitely often in ( $\left.\frac{1}{4}, \frac{1}{3}\right]$. This contradicts Eq. (10), implying that we can not have $?_{\alpha}^{\prime}(x)>0$ if $x \in \Omega$. Since $x \in \Omega$ was arbitrary, we have shown that $?^{\prime}{ }_{\alpha}=0$ holds $\lambda$-a.e., which completes the proof.

## Acknowledgements

The authors have been supported by the Ministerio de Economía y Competitividad (Spain) under research project MTM2014-60594.

## References

[1] A. Arroyo, Generalised Lüroth expansions and a family of Minkowski's question-mark functions, C. R. Acad. Sci. Paris, Ser. I 353 (2015) $943-946$.
[2] K. Dajani, C.C. Kraaikamp, Ergodic Theory of Numbers, Carus Mathematical Monographs, vol. 29, The Mathematical Association of America, 2002.
[3] M. Iosifescu, C. Kraaikamp, Metrical Theory of Continued Fractions, Springer Science+Business Media, Dordrecht, The Netherlands, 2002.
[4] P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982.


[^0]:    E-mail addresses: juan.fernandez@ual.es (J. Fernández Sánchez), wolfgang@trutschnig.net (W. Trutschnig).
    http://dx.doi.org/10.1016/j.crma.2017.09.009
    1631-073X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

