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We give a new description of Pollack’s plus and minus p-adic logarithms log±
p in terms of 

distributions. In particular, if μ± denote the pre-images of log±
p under the Amice transform, 

we give explicit formulae for the values μ±(a + pn
Zp) for all a ∈ Zp and all integers n ≥ 1. 

Our formulae imply that the distribution μ− agrees with a distribution studied by Koblitz 
in 1977. Furthermore, we show that a similar description exists for Loeffler’s two-variable 
analogues of these plus and minus logarithms.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous donnons une nouvelle description des logarithmes p-adiques plus et moins définis 
par Pollack en termes de distributions. En particulier, si μ± dénote la pré-image de log±

p
sous la transformation d’Amice, nous donnons des formules explicites pour les valeurs 
μ±

(
a + pn

Zp
)

pour tout a ∈ Zp et tout entier n ≥ 1. Nos formules impliquent que la 
distribution μ− correspond à une distribution étudiée par Koblitz en 1977. Par ailleurs, 
nous montrons qu’il existe une description similaire, due à Loeffler, pour des analogues à 
deux variables de ces logarithmes plus et moins.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let p a fixed prime and E an elliptic curve with good supersingular reduction at p. Amice–Vélu [1] and Visik [12]
constructed two p-adic L-functions, Lα and Lβ , corresponding to the two roots (α and β) of the Hecke polynomial X2 −
ap X + p. These p-adic L-functions can be regarded as distributions on the Galois group Z×

p . When evaluated at Dirichlet 
characters of p-power conductor, these distributions interpolate the complex L-values of E twisted by these characters.

Unlike the good ordinary case, where the p-adic L-function can be used to formulate the Iwasawa main conjecture of 
E at p, the p-adic L-functions in the supersingular case are less suited for the study of Iwasawa theory. The main reason 
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is that they turn out to be unbounded distributions, rather than bounded measures on Z×
p . In the case where ap = 0, 

Pollack [11] resolved this issue by defining the plus/minus logarithms, which we denote by log±
p , and proved that there 

exist two bounded measures, L+ and L− , such that

Lλ = log+
p L+ + λ log−

p L−, (1)

for λ ∈ {α, β}.
Kobayashi [7] formulated an Iwasawa main conjecture using the p-adic L-functions constructed by Pollack and showed 

that one inclusion of this conjecture holds true. More recently, Wan [13] has announced a proof for the other inclusion of 
the conjecture.

In [11], log±
p are defined to be power series given by infinite products of cyclotomic polynomials. In this article, we show 

that these power series may be described in terms of distributions. We define the following subsets of Zp :

S+
n := {a ∈ Zp : all even powers of p vanish in the p-adic expansion of a modulo pn};

S−
n := {a ∈ Zp : all odd powers of p vanish in the p-adic expansion of a modulo pn}.

Our main result describes the distributions attached to log±
p in terms of these S±

n .

Theorem 1.1 (Corollary 3.7). Let μ± be the distributions whose Amice transforms equal log±
p . Then, μ+ is characterized by

μ+(a + pnZp) =
{

p−�(n+2)/2� if a ∈ S+
n ,

0 otherwise.

The distribution μ− is characterized by

μ−(a + pnZp) =
{

p−�(n+3)/2� if a ∈ S−
n ,

0 otherwise.

It is a straightforward exercise to verify that the values given in Theorem 1.1 are additive. In fact, the values of μ−(a +
pnZp) are precisely those given in [8, Chapter II, §3, Exercise 7] (after multiplying by p).

Since the works of Kobayashi [7] and Pollack [11], many attempts to generalize the plus/minus Iwasawa theory have been 
made. For example, Darmon–Iovita [3], Longo–Vigni [10], Castella–Wan [2] have studied the behaviour of an elliptic curve 
with supersingular reduction at p over the anticyclotomic Zp -extension of an imaginary quadratic field. Iovita–Pollack [4]
have done something similar for more general Zp -extensions of a number field. In all these works, the plus and minus 
logarithms play an important role.

Another direction that has been taken was the study of two-variable plus/minus Iwasawa theory as introduced by Loef-
fler [9] and Kim [6,5]. More specifically, they studied the p-adic L-functions and Selmer groups of E over the Z2

p-extension 
of an imaginary quadratic field K where p splits. This leads to the construction of four 2-variable p-adic L-functions, say 
Lλ,ν , where λ, ν ∈ {α, β}. The two variables correspond to the two primes of K lying above p. A similar decomposition to 
(1) exists, namely,

Lλ,ν = log++
p L++ + λ log−+

p L−+ + ν log+−
p L+− + log−−

p L−−,

where log±±
p are some two-variable plus/minus logarithms, defined by the product of two one-variable plus/minus loga-

rithms, and L±± are some bounded two-variable p-adic L-functions. We shall show that we may deduce from Theorem 1.1
a similar description of the two-variable plus/minus logarithms in terms of some explicit distributions on Z2

p (see Corol-
lary 4.6 below).

2. Definition and properties of Pollack’s plus/minus logarithms

In this section, we recall the definition and some basic properties of Pollack’s plus/minus logarithms from [11]. We begin 
by introducing some notation.

Let �n(T ) = ∑p−1
t=0 T pn−1t be the pn-th cyclotomic polynomial. We shall also write ζk for a primitive pk-th root of unity.

log+
p (T ) := 1

p

∞∏
n=1

�2n(1 + T )

p
,

log−
p (T ) := 1

p

∞∏
n=1

�2n−1(1 + T )

p
.
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Pollack showed that the products above converge and give two power series in Qp �T �. Furthermore, both log±
p converge 

on the open unit disc {x ∈ Cp : |x|p < 1}. In fact, they are related to the usual p-adic logarithm via the formula

log+
p (T ) log−

p (T ) = logp(1 + T )

p2T
,

hence their names. These logarithms satisfy the following interpolation formulae.

Lemma 2.1. Let n ≥ 1 be an integer. Then,

log+
p (ζn − 1) =

{
0 2|n,

p−(n+1)/2 ∏(n−1)/2
j=1 �2 j(ζn) 2 � n,

log−
p (ζn − 1) =

{
p−n/2−1 ∏n/2

j=1 �2 j−1(ζn) 2|n,

0 2 � n.

Proof. This is [11, Lemma 4.7]. �
Remark 2.2. Let k < n be two odd positive integers, then

p−(k+1)/2
(k−1)/2∏

j=1

�2 j(ζk) = p−(n+1)/2
(n−1)/2∏

j=1

�2 j(ζk).

This is because every term with index greater than (k − 1)/2 on the right-hand side equals p. So, it does not change the 
value of the product as it gets cancelled by the extra factors of p in p−(n+1)/2. In other words, we may write

log+
p (ζk − 1) = p−(n+1)/2

(n−1)/2∏
j=1

�2 j(ζk).

Similarly, we have

log−
p (ζk − 1) = p−n/2−1

n/2∏
j=1

�2 j−1(ζk)

if k < n are two even positive integers.

Remark 2.3. It is proved in [11, Lemma 4.5] that both log±
p are o(logp). Hence, they are uniquely determined by the 

interpolation formulae given in Lemma 2.1.

3. Proof of Theorem 1.1

In this section, we give a detailed proof of the main result of this article (Theorem 1.1). We begin by some preliminary 
lemmas.

The original definition of the plus and minus logarithms are given by infinite products of even and odd p-power cyclo-
tomic polynomials, respectively. We shall express the truncated product of these polynomials in the form 

∑
ai xi .

For an integer n ≥ 1, we define

R+
n =

{
n−1∑
l=0

al p
2l+1 : al ∈ {0,1, . . . , p − 1}

}
,

R−
n =

{
n−1∑
l=0

al p
2l : al ∈ {0,1, . . . , p − 1}

}
.

These sets, which are related to the sets S±
n given in the introduction, will play an important role in our proof of Theo-

rem 1.1.

Lemma 3.1. Let n ≥ 1. We have the formula

n∏
j=1

�2 j(x) =
∑
i∈R+

n

xi .
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Proof. We prove this formula by induction on n. For the base case n = 1, the sum on the right-hand side of the formula is 
simply the definition of the cyclotomic polynomial �2(x).

We now suppose that the lemma holds for n and we shall show that it also holds for n + 1. Our inductive hypothesis 
implies that

n+1∏
j=1

�2 j(x) = �2(n+1)(x)
n∏

j=1

�2 j(x)

=
(

xp2n+1(p−1) + · · · + xp2n+1 + 1
) ∑

i∈R+
n

xi

=
p−1∑
j=0

∑
i∈R+

n

xi+ jp2n+1
.

But it is clear from the definition that

R+
n+1 =

{
i + jp2n+1 : i ∈ R+

n ,0 ≤ j ≤ p − 1
}

.

This completes the induction. �
We have the following analogous result for the product of odd p-power cyclotomic polynomials.

Lemma 3.2. Let n ≥ 1 be an integer. Then,

n∏
j=1

�2 j−1(x) =
∑
i∈R−

n

xi .

Proof. The proof is analogous to that of Lemma 3.1. �
We now recall the definition of the Amice transform.

Definition 3.3. The Amice transform of a distribution μ on Zp is defined to be

Aμ(T ) =
∫
Zp

(1 + T )xμ(x).

Definition 3.4. Let μ+ be the distribution associated with log+
p and let μ− be that associated with log−

p .

If z ∈Cp satisfies |z|p < 1, it is immediate from the definition of μ± that 
∫
Zp

zxμ±(x) = log±
p (z − 1).

Proposition 3.5. Let n ≥ 1 be an integer and fix a ∈ Zp . The distribution μ+ satisfies

μ+(a + pnZp) = 1

p�(3n+2)/2�
∑

ζ∈μpn

ζ−a
�n/2�∏

j=1

�2 j(ζ )

and the distribution μ− satisfies

μ−(a + pnZp) = 1

p�(3n+1)/2�+1

∑
ζ∈μpn

ζ−a
�(n+1)/2�∏

j=1

�2 j−1(ζ ).

Proof. We shall only give the proof for μ+ since that for μ− is similar. Let us write χa+pnZp for the characteristic function 
of a + pnZp . It can be decomposed as

χa+pnZp (x) = 1

pn

∑
ζ∈μ n

ζ x−a.
p
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By linearity, we have

μ+(a + pnZp) =
∫
Zp

χa+pnZp (x)μ+(x)

=
∑

ζ∈μpn

∫
Zp

ζ x−aμ+(x)

pn

= 1

pn

∑
ζ∈μpn

ζ−a
∫
Zp

ζ xμ+

= 1

pn

∑
ζ∈μpn

ζ−a log+
p (ζ − 1)

Suppose that n is odd. Lemma 2.1 together with Remark 2.2 allows us to rewrite this sum as

μ+(a + pnZp) = 1

pn

∑
ζ∈μpn

ζ−a p−(n+1)/2
(n−1)/2∏

j=1

�2 j(ζ )

= 1

p(3n+1)/2

∑
ζ∈μpn

ζ−a
(n−1)/2∏

j=1

�2 j(ζ ).

When n is even, n + 1 is odd and every ζ in the sum above is a pn+1-st root of unity. On applying Lemma 2.1 and 
Remark 2.2 with n replaced by n + 1, we deduce that

μ+(a + pnZp) = 1

pn

∑
ζ∈μpn

ζ−a p−(n+2)/2
n/2∏
j=1

�2 j(ζ )

= 1

p(3n+2)/2

∑
ζ∈μpn

ζ−a
n/2∏
j=1

�2 j(ζ ).

This finishes the proof. �
Corollary 3.6. Let a and n be as given in Proposition 3.5. Then,

μ+(a + pnZp) = 1

p�(3n+2)/2�
∑

i∈R+
�n/2�

∑
ζ∈μpn

ζ i−a,

μ−(a + pnZp) = 1

p�(3n+1)/2�+1

∑
i∈R−

�(n+1)/2�

∑
ζ∈μpn

ζ i−a.

Proof. This follows from combining Proposition 3.5 with Lemmas 3.1 and 3.2. �
Let us now recast the sets S±

n given in the introduction as follows:

S+
n = {a ∈ Zp : ∃b ∈ R+

�n/2�,a ≡ b mod pn},
S−

n = {a ∈ Zp : ∃b ∈ R−
�(n+1)/2�,a ≡ b mod pn}.

Corollary 3.7. Let a and n be as given in Proposition 3.5. The values of μ±(a + pnZp) are given by

μ+(a + pnZp) =
{

p−�(n+2)/2� if a ∈ S+
n ,

0 otherwise,

μ−(a + pnZp) =
{

p−�(n+3)/2� if a ∈ S−
n ,

0 otherwise.
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Proof. As before, we only prove this for μ+(a + pnZp). Let i be any integer. We have

∑
ζ∈μpn

ζ i−a =
{

pn i ≡ a mod pn,

0 otherwise.

Therefore, if a ∈ S+
n , the sum in Corollary 3.6 simplifies to

1

p�(3n+2)/2� × pn.

Otherwise, it is 0. Hence the result. �
Remark 3.8. Since log±

p are both o(logp), the distributions μ± are uniquely determined by the values given in Corollary 3.7.

4. Generalization for two-variable logarithms

In this section, we apply our result on the one-variable plus and minus logarithms to their two-variable counterparts 
defined by Loeffler in [9].

Definition 4.1. For ∗, ◦ ∈ {+, −}, we define four two-variable logarithms by using log+
p and log−

p :

log∗◦
p (T1, T2) := log∗

p(T1) · log◦
p(T2).

For a = (a, b) and n = (n, m), we shall write a + pnZp for the open set (a + pnZp, b + pmZp) in Z2
p . Furthermore, we 

denote the characteristic function of a + pnZp on Z2
p by χa+pnZp .

Proposition 4.2. Let a = (a, b) and n = (n, m). The characteristic function χa+pnZp is given by

χa+pnZp (x, y) = 1

pn+m

⎛
⎝ ∑

ζ∈μpn

ζ x−a

⎞
⎠

⎛
⎝ ∑

ζ∈μpm

ζ y−b

⎞
⎠ .

Proof. This is a straightforward generalization of the analogous result in the 1-dimensional case. �
Definition 4.3. For μ ∈D(Z2

p, Qp), the two-dimensional Amice transform is defined by the formula

Aμ(T1, T2) =
∫
Z

2
p

(1 + T1)
x(1 + T2)

yμ(x, y).

Remark 4.4. In the notation of [9], the two-variable plus/minus logarithms are in fact contained D(1/2,1/2)(Z2
p, Qp) under 

the canonical quasi-factorisation of Z2
p . Consequently, they are uniquely determined by their values evaluated on open sets 

of the form a + pnZp (see Definition 5 and Theorem 3 of [9]).

It is immediate from the definition that log∗◦
p (z − 1, w − 1) = ∫

Z
2
p

zx w yμ∗◦(x, y) if z and w are elements of Cp with 
|z|p, |w|p < 1.

Proposition 4.5. Let a = (a, b) and n = (n, m), then

μ∗◦(a + pnZp) = μ∗(a + pnZp) · μ◦(b + pmZp).

Proof. We follow the same argument as in the one-dimensional case. Proposition 4.2 gives

μ∗◦(a + pnZp) = 1

pn+m

∫
Z

2
p

⎛
⎝ ∑

ζ∈μpn

ζ x−a

⎞
⎠

⎛
⎝ ∑

ζ∈μpm

ζ y−b

⎞
⎠μ∗◦(x, y).

Choose ζn and ζm to be some generators of μpn and μpm respectively. Then,
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μ∗◦(a + pnZp) = 1

pn+m

∫
Z

2
p

∑
0≤i<pn

0≤ j<pm

(ζ i
n)

x−a(ζ
j

m)y−bμ∗◦(x, y)

= 1

pn+m

∑
0≤i<pn

0≤ j<pm

ζ−ai
n ζ

−bj
m

∫
Z

2
p

(ζ i
n)

x(ζ
j

m)yμ∗◦(x, y)

= 1

pn+m

∑
0≤i<pn

0≤ j<pm

ζ−ai
n ζ

−bj
m log∗◦

p (ζ i
n − 1, ζ

j
m − 1)

= 1

pn+m

∑
0≤i<pn

0≤ j<pm

ζ−ai
n log∗

p(ζ i
n − 1)ζ

−bj
m log◦

p(ζ
j

m − 1)

= 1

pm+n

⎛
⎝ ∑

ζ∈μpn

ζ−a log∗
p(ζ − 1)

⎞
⎠

⎛
⎝ ∑

ζ∈μpm

ζ−b log◦
p(ζ − 1)

⎞
⎠ .

Then, as in the middle of the proof of Proposition 3.5, we may rewrite this as

μ∗◦(a + pnZp) = pn pm

pm+n
μ∗(a + pnZp) · μ◦(b + pmZp)

= μ∗(a + pnZp) · μ◦(b + pmZp),

as required. �
Corollary 4.6. The values of μ∗◦ are given by

μ++(a + pnZp) =
{

p−�(n+2)/2�−�(m+2)/2� if a ∈ S+
n and b ∈ S+

m,

0 otherwise,

μ+−(a + pnZp) =
{

p−�(n+2)/2�−�(m+3)/2� if a ∈ S+
n and b ∈ S−

m,

0 otherwise,

μ−+(a + pnZp) =
{

p−�(n+3)/2�−�(m+2)/2� if a ∈ S−
n and b ∈ S+

m,

0 otherwise,

μ−−(a + pnZp) =
{

p�(n+3)/2�−�(m+3)/2� if a ∈ S−
n and b ∈ S−

m,

0 otherwise.

Proof. This follows directly from combining Proposition 4.5 with Corollary 3.7. �
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