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This article gives an affirmative solution to the problem whether the ergodic Cesáro 
averages generated by a positive Dunford–Schwartz operator in a noncommutative space 
Lp(M, τ ), 1 ≤ p < ∞, converge almost uniformly (in Egorov’s sense). This problem goes 
back to the original paper of Yeadon [21], published in 1977, where bilaterally almost 
uniform convergence of these averages was established for p = 1.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Cette Note donne une réponse positive à la question suivante : les moyennes de Cesáro 
ergodiques engendrées par un opérateur de Dunford–Schwartz dans un espace non 
commutatif Lp(M, τ ), 1 ≤ p < ∞, convergent-elles presque uniformément (au sens 
d’Egorov) ? Ce problème remonte au texte original de Yeadon [21], publié en 1977, dans 
lequel la convergence presque uniforme bilatérale de ces moyennes est établie pour p = 1.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Almost uniform (a.u.) convergence in Egorov’s sense in a von Neumann algebra M was considered by Lance [9], where a 
breakthrough noncommutative individual ergodic theorem was established for a positive state preserving the automorphism 
of M. Later, Lance’s result was generalized, while the proofs were simplified; see [8,4,6].

For a semifinite von Neumann algebra M with a faithful normal semifinite trace τ , Yeadon [21] introduced the so-called 
bilaterally almost uniform (b.a.u.) convergence in Egorov’s sense to prove a noncommutative individual ergodic theorem for 
a positive Dunford–Schwartz operator in the space L1(M, τ ) of τ -integrable operators affiliated with M.
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Since b.a.u. convergence is generally weaker than a.u. convergence, serious attempts have been made to show that there 
is a.u. convergence in Yeadon’s seminal result. But the problem persisted, and a significant number of noncommutative 
individual ergodic theorems concerning the b.a.u. convergence of ergodic averages have been established; see, for example, 
[15,5,3,11,7,18,12,2].

It was derived in [7] that if 1 < p < 2 (2 ≤ p < ∞), then for a positive Dunford–Schwartz operator in a noncommutative 
space Lp(M, τ ), the corresponding ergodic Cesáro averages converge b.a.u. (respectively, a.u.). Later, in [10] (see also [2]), it 
was shown that this result can be obtained directly from Yeadon’s maximal inequality for L1(M, τ ) established in [21]. In 
particular, it was shown that a.u. convergence for p ≥ 2 follows easily due to Kadison’s inequality. But the case 1 ≤ p < 2
still remained open.

The aim of this article is to prove that there is a.u. convergence for all 1 ≤ p < ∞, which is given in Theorem 2.3. Note 
that this result was not known even for a finite trace. The main finding of the article is Proposition 3.2, where the matrix 
{ek,n} of projections in M is constructed. Also, the notion of (bilaterally) uniform equicontinuity in measure at zero of a 
family of maps from a normed space into the space of τ -measurable operators (see [1,10]) plays an important role.

2. Preliminaries

Let M be a semifinite von Neumann algebra equipped with a faithful normal semifinite trace τ . Let P(M) stand for 
the set of projections in M. If 1 is the identity of M and e ∈ P(M), we write e⊥ = 1 − e. Denote by L0 = L0(M, τ ) the 
∗-algebra of τ -measurable operators affiliated with M. Let ‖ · ‖∞ be the uniform norm in M. Equipped with the measure 
topology given by the system

V (ε, δ) = {x ∈ L0 : ‖xe‖∞ ≤ δ for some e ∈ P(M) with τ (e⊥) ≤ ε},
ε > 0, δ > 0, L0 is a complete metrizable topological ∗-algebra [14].

Let Lp = Lp(M, τ ), 1 ≤ p ≤ ∞, (L∞(M, τ ) =M) be the noncommutative Lp -space associated with (M, τ ).
For detailed accounts on the spaces Lp(M, τ ), p ∈ {0} ∪ [1, ∞), see [17,20,16].
Denote by ‖ · ‖p the standard norm in the space Lp , 1 ≤ p ≤ ∞. A linear operator T : L1 + M → L1 + M is called a 

Dunford–Schwartz operator if

‖T (x)‖1 ≤ ‖x‖1 ∀ x ∈ L1 and ‖T (x)‖∞ ≤ ‖x‖∞ ∀ x ∈ M.

If a Dunford–Schwartz operator T is positive, that is, T (x) ≥ 0 whenever x ≥ 0, we will write T ∈ D S+ .
Note that, by [7, Lemma 1.1], any T ∈ D S+ can be uniquely extended to a positive linear contraction (also denoted by T ) 

in Lp , 1 ≤ p < ∞.
Given T ∈ D S+ and x ∈ L1 +M, denote

An(x) = 1

n

n−1∑
k=0

T k(x), n = 1,2, . . . , (1)

the corresponding Cesáro ergodic averages of the operator x.

Definition 2.1. A sequence {xn} ⊂ L0 is said to converge almost uniformly (a.u.) (bilaterally almost uniformly (b.a.u.)) to ̂x ∈ L0

if, for any given ε > 0, there is a projection e ∈ P(M) such that τ (e⊥) ≤ ε and ‖(̂x − xn)e‖∞ → 0 (respectively, ‖e(̂x −
xn)e‖∞ → 0).

Remark 2.1. A.u. convergence clearly implies b.a.u. convergence. Moreover, unless M is of type I, a.u. convergence is strictly 
stronger than b.a.u. convergence; see [13, Theorems 3.3.7, 3.3.17].

The following groundbreaking result was established in [21] as a corollary of a noncommutative maximal ergodic in-
equality given there in Theorem 1.

Theorem 2.1. Let T ∈ D S+ and x ∈ L1 . Then the averages (1) converge b.a.u. to some ̂x ∈ L1 .

Remark 2.2. As it was noticed in [2, Remark 1.2] (see also [7, Lemma 1.1]), the class of iterating operators α that was 
considered in [21] coincides, modulo unique extensions, with the class of positive Dunford–Schwartz operators T that was 
dealt with in [7].

In [7, Corollary 6.4], Theorem 2.1 was extended to the noncommutative Lp -spaces, 1 < p < ∞, as follows (see also [10, 
Theorems 4.3, 4.4] and [2, proof of Theorem 1.5]).

Theorem 2.2. Let T ∈ D S+ and x ∈ Lp , 1 ≤ p < ∞. Then the averages (1) converge to some ̂x ∈ Lp b.a.u. for 1 < p < 2 and a.u. for 
2 ≤ p < ∞.
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Our goal is to prove that the averages (1) converge almost uniformly for all 1 ≤ p < ∞:

Theorem 2.3. Let T ∈ D S+ and 1 ≤ p < ∞. Given x ∈ Lp , the averages (1) converge a.u. to some ̂x ∈ Lp .

3. Proof of Theorem 2.3

Let {ei}i∈I ⊂ P(M). Denote by 
∨
i∈I

ei the projection on the subspace 
∑
i∈I

eiH, and let 
∧
i∈I

ei stand for the projection on 

the subspace 
⋂
i∈I

eiH. P(M) is a complete lattice since l.u.b. {ei}i∈I = ∨
i∈I

ei ∈ P(M) whenever {ei}i∈I ⊂ P(M). Besides, a 

normal trace τ on M is countably subadditive, that is, given {en}∞n=1 ⊂P(M), we have τ
( ∞∨

n=1
en

)
≤

∞∑
n=1

τ (en).

Definition 3.1. A sequence of maps Mn : Lp → L0 is called bilaterally uniformly equicontinuous in measure (b.u.e.m.) at zero if for 
every ε > 0 and δ > 0 there exists γ > 0 such that, given x ∈ Lp with ‖x‖p < γ , there is a projection e ∈ P(M) satisfying 
conditions

τ (e⊥) ≤ ε and sup
n

‖eMn(x)e‖∞ ≤ δ.

Remark 3.1. It is easy to see [10, Proposition 1.1] that, in the commutative case, bilaterally uniform equicontinuity in measure 
at zero of a sequence Mn : X → L0 is equivalent to the continuity in measure at zero of the maximal operator

M∗( f ) = sup
n

|Mn( f )|, f ∈ X .

The next property was noticed in [10, Corollary 2.1, Proposition 4.2].

Proposition 3.1. The sequence {An} given by (1) is b.u.e.m. at zero on Lp for every 1 ≤ p < ∞.

Remark 3.2. Proposition 3.1 can be easily seen from the maximal inequalities given in [21, Theorem 1] (for p = 1) and [2, 
Remark 2.2] (note [10, Lemma 4.1]) (for 1 < p < ∞).

A proof of the following technical lemma can be found in [1, Lemma 1.6].

Lemma 3.1. Let (X, +) be a semigroup, and let Mn : X → L0 be a sequence of additive maps. Assume that x ∈ X is such that, for every 
ε > 0, there exist a sequence {xk} ⊂ X and a projection e ∈P(M) satisfying conditions

(i) {Mn(x + xk)} converges a.u. as n → ∞ for each k;
(ii) τ (e⊥) ≤ ε;
(iii) supn ‖Mn(xk)e‖∞ → 0 as k → ∞.

Then the sequence {Mn(x)} converges a.u.

Proposition 3.2. Let 1 ≤ p < ∞, and let {An} be given by (1). Then the set

C = {x ∈ Lp : {An(x)} converges a.u.}
is closed in Lp .

Proof. Let a sequence {zm} ⊂ C and x ∈ X be such that ‖zm − x‖p → 0. Denote ym = zm − x and fix ε > 0.
Show first that for any positive integers n and k, there are projections en,k ∈P(M) and a sequence {xk} ⊂ {ym} such that

τ (e⊥
n,k) ≤ ε

2n+k
and ‖An(xk)en,k‖∞ ≤ 1

k
for all n,k.

Fix n and k. Since ‖ym‖p → 0 and {An}, by Proposition 3.1, is b.u.e.m. at zero in Lp , there exist xk ∈ {ym} and gn,k ∈ P(M)

such that

τ (g⊥
n,k) ≤ ε

2n+k+1
and sup

m
‖gn,k Am(xk)gn,k‖∞ ≤ 1

k
.

Let l(y) (r(y)) be the left (respectively, right) support of an operator y ∈ L0. Set qn,k = 1 − r(g⊥
n,k An(xk)). Since for any y ∈ L0

the projections l(y) ∈P(M) and r(y) ∈P(M) are equivalent [19, 9.29], it follows that
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τ (q⊥
n,k) = τ (r(g⊥

n,k An(xk))) = τ (l(g⊥
n,k An(xk))) ≤ τ (g⊥

n,k) ≤ ε

2n+k+1
.

Also,

An(xk)qn,k = gn,k An(xk)qn,k + g⊥
n,k An(xk)qn,k = gn,k An(xk)qn,k.

Therefore, letting en,k = gn,k ∧ qn,k , we obtain τ (e⊥
n,k) ≤ ε

2n+k and

An(xk)en,k = An(xk)qn,ken,k = gn,k An(xk)qn,ken,k = gn,k An(xk)gn,ken,k,

implying

‖An(xk)en,k‖∞ ≤ ‖gn,k An(xk)gn,k‖∞ ≤ 1

k

for all positive integers n, k.
If we put ek = ∧

n
en,k , then we have

τ (e⊥
k ) ≤ ε

2k
and sup

n
‖An(xk)ek‖∞ ≤ 1

k
for all k.

Since x + xk ∈ C , it follows that the sequence {An(x + xk)} converges a.u. for each k. In addition, if e = ∧
k

ek , then τ (e⊥) ≤ ε

and sup
n

‖An(xk)e‖∞ ≤ 1
k → 0. This, by Lemma 3.1, implies that x ∈ C , and we conclude that C is closed in Lp . �

Now we can finish proof of Theorem 2.3.

Proof. It is well known (see, for example, [2, Proof of Theorem 1.5]) that the sequence {An(x)} converges a.u. whenever 
x ∈ L2. Therefore, since the set Lp ∩ L2 is dense in Lp , Proposition 3.2 guarantees that the averages An(x) converge a.u. for 
each x ∈ Lp (to some ̂x ∈ L0), hence we also have An(x) → x̂ in measure. As each An is a contraction in Lp the unit ball of 
which is closed in measure topology, we conclude that ̂x ∈ Lp . �
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