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We give a necessary condition for the representation of the space of continuous functions 
by sums of its k closed subalgebras. A sufficient condition for this representation problem 
was first obtained by Sternfeld in 1978. In case of two subalgebras (k = 2), our necessary 
condition turns out to be also sufficient. If k = 1, our result coincides with a version of the 
classical Stone–Weierstrass theorem.
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r é s u m é

Nous donnons une condition nécessaire pour la représentation d’un espace de fonctions 
continues comme la somme d’un nombre fini k de ses sous-algèbres fermées. Une condi-
tion suffisante pour ce problème a été obtenue par Sternfeld en 1978. Dans le cas de deux 
sous-algèbres (k = 2), notre condition nécessaire se trouve être également suffisante. Dans 
le cas d’une seule sous-algèbre (k = 1), notre résultat coïncide avec une version du théo-
rème de Stone–Weierstrass classique.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X be a compact Hausdorff space and C(X) be the space of continuous real-valued functions on X endowed with 
the topology of uniform convergence. Assume we are given a finite number of closed subalgebras A1, ..., Ak of C(X). This 
paper is devoted to the following problem. What conditions imposed on A1, ..., Ak are necessary and/or sufficient for the 
representation A1 +· · · + Ak = C(X)? The history of this problem goes back to 1937 and 1948 papers by M.H. Stone [30,31]. 
A version of the corresponding famous result, known as the Stone–Weierstrass theorem, states that a closed subalgebra 
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A ⊂ C(X), which contains a nonzero constant function, coincides with the whole space C(X) if and only if A separates 
points of X (that is, for any two different points x and y in X , there exists a function g ∈ A with g(x) �= g(y)). Obviously, 
in case of k subalgebras A1, ..., Ak of C(X), the condition of separation of points is necessary also for the representation 
A1 + · · · + Ak = C(X). Indeed, if A1 + · · · + Ak = C(X), then for any different x, y ∈ X there must be a subalgebra Ai , 
i ∈ {1, ..., k}, separating these points; otherwise, we could construct a continuous function f on X with f (x) �= f (y), which 
would not belong to A1 + · · · + Ak . But this condition is far from being sufficient. A trivial example is a compact set 
X ⊂ R

2 with interior and the algebras U = {u(x)}, V = {v(y)} of univariate functions defined on the projections of X into 
the coordinate axes x and y, respectively. Clearly, the tuple (U , V ) separates points of X , but U + V �= C(X). Indeed, there 
exists a square [a, b] × [c, d] ⊂ X and a continuous function h : X → R such that h(a, c) = h(b, d) = 1, h(a, d) = h(b, c) = −1
and −1 < h(x, y) < 1 elsewhere on X . Now, since the functional F ( f ) = f (a, c) + f (b, d) − f (a, d) − f (b, c) annihilates all 
members of the class U + V and F (h) �= 0, we obtain that h /∈ U + V . A little more strong necessary condition, in case 
of k subalgebras, is the separation of disjoint closed sets in X . We say that the k-tuple of algebras (A1, ..., Ak) separates 
disjoint closed sets in X if, for any closed P , Q ⊂ X with P ∩ Q = ∅, there exists an algebra Ai and a function g ∈ Ai such 
that the images of g on P and Q are different. This condition is necessary, since a compact Hausdorff space X is a normal 
topological space and, by Urysohn’s lemma, any two disjoint closed sets P and Q in X can be separated by some function 
f ∈ C(X). Note that this condition is also not sufficient. Below we give a corresponding example, which we also refer to in 
the sequel. This highly nontrivial example belongs to S. Ya. Khavinson (see [13]). Let � ⊂ R

2 consist of a broken line whose 
sides are parallel to the coordinate axis and whose vertices are

(0;0), (1;0), (1;1), (1 + 1

22
;1), (1 + 1

22
;1 + 1

22
), (1 + 1

22
+ 1

32
;1 + 1

22
), ...

We add to this line the limit point of the vertices ( π2

6 , π
2

6 ). Clearly, � is a compact set. Let U and V be the algebras 
considered above. Then it is not difficult to see that the tuple (U , V ) separates disjoint closed sets of �. Besides, every 
function f on � is of the form s(x) + t(y). Indeed, we can put s(0) = a, where a is any real number, and define s and t
uniquely from the equation f (x, y) = s(x) + t(y). Now construct a function f0 on � as follows. On the link joining (0; 0) to 
(1; 0), f0 continuously increases from 0 to 1; on the link from (1; 0) to (1; 1) it continuously decreases from 1 to 0; on the 
link from (1; 1) to (1 + 1

22 ; 1) it increases from 0 to 1
2 ; on the link from (1 + 1

22 ; 1) to (1 + 1
22 ; 1 + 1

22 ) it decreases from 
1
2 to 0; on the next link it increases from 0 to 1

3 , etc. At the point ( π2

6 , π
2

6 ) set the value of f0 equal to 0. Obviously, f0
is a continuous function on �. In addition, by the above argument, f0(x, y) = s(x) + t(y). But s and t cannot be chosen as 
continuous functions, since they get unbounded as x and y tend to π2

6 .
The above simple separation conditions were pointed out and generalized by Y. Sternfeld in a number of papers. He 

obtained necessary and sufficient separation conditions for the representation of the classes of bounded and continuous 
functions. For the problem of representation A1 + · · · + Ak = C(X), he proved that the representation holds if and only if 
(A1, ..., Ak) separates regular Borel measures on X . In order to formulate his condition, we continue with the definition of 
some notions associated with the algebras Ai , i = 1, ..., k. First define the equivalence relation Ri , i = 1, ..., k, for elements 
in X by setting

a
Ri∼ b if f (a) = f (b) for all f ∈ Ai . (1.1)

Obviously, for each i = 1, ..., k, the quotient space Xi = X/Ri with respect to the relation Ri , equipped with the quotient 
space topology, is compact. In addition, the natural projections si : X → Xi are continuous. Note that the quotient spaces Xi
are not only compact but also Hausdorff (see, e.g., [14, p. 54]).

In view of the Stone–Weierstrass theorem, we can write that

Ai = { f (si(x)) : f ∈ C(Xi)}, i = 1, ...,k. (1.2)

Let C∗(X) denote the class of regular Borel measures on X (that is, measures defined on the smallest σ -algebra that 
contains the open sets of X) and S = {s} be a family of mappings defined on X . We say that S uniformly separates 
measures of C∗(X) if there exists a number 0 < λ ≤ 1 such that, for each μ ∈ C∗(X), the equality ‖μ ◦ s−1‖ ≥ λ‖μ‖ holds 
for some s ∈ S . Sternfeld proved that A1 +· · · + Ak = C(X) if and only if the family {s1, . . . , sk} uniformly separates measures 
of the class C(X)∗ (see [29]).

Although the above separation condition of Sternfeld is both necessary and sufficient for the representation, it is hardly 
practical. Sproston and Straus [27] gave a practically convenient sufficient condition for the sum A1 + · · · + Ak to be the 
whole of C(X). To describe the condition, define the set functions

τi(Z) = {x ∈ Z : |s−1
i (si(x))

⋂
Z | ≥ 2}, Z ⊂ X, i = 1, . . . ,k,

where |Y | denotes the cardinality of a considered set Y . Define τ (Z) to be 
⋂k

i=1 τi(Z) and define τ 2(Z) = τ (τ (Z)), τ 3(Z) =
τ (τ 2(Z)) and so on inductively. The result of [27] says that A1 + · · · + Ak = C(X) provided that τn(X) = ∅ for some positive 
integer n. In fact, this condition first appeared in the work of Sternfeld [28], where the author proved that τn(X) = ∅ (for 
some n) guarantees that the family {s1, . . . , sk} uniformly separates regular Borel measures if X is a compact metric space. 
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Sproston and Straus proved the last statement for X being a compact Hausdorff space. For k = 2, the condition is also 
necessary for the representation, but not in general if k > 2 (see the counterexample in [27]).

Note that the above condition τn(X) = ∅ is more geometric than measure theoretic. It holds if points of X are of a 
certain geometrical structure. This is easily seen in the case of two subalgebras. For k = 2, the condition τn(X) = ∅ can 
be expressed in terms of sets of points in X that are geometrically explicit. In the special case of the algebras U and V
considered above, these points were introduced in the literature under different names such as “permissible lines” [4] “bolts 
of lightning” [1,6,7,13,14,21,22], “trips” [20], “paths” [5,8,10,18,19], “links” [3,15], etc. The term bolt of lightning is the most 
common one and is due to Arnold [1]. It first appeared in his solution to Hilbert’s thirteenth problem. Note that a bolt of 
lightning is a finite ordered subset L = {p1, p2, · · · pn} in R2 such that pi �= pi+1, each line segment pi pi+1 (unit of the bolt) 
is parallel to the coordinate axis x or y, and two adjacent units pi pi+1 and pi+1 pi+2 are perpendicular. A bolt of lightning L
is said to be closed if pn p1⊥p1 p2 (in this case, n is an even number). For a compact set X ⊂ R

2 and the algebras U = {u(x)}, 
V = {v(y)}, it is not difficult to prove that τn(X) = ∅ if and only if there are no closed bolts in X and the lengths (number 
of points) of all bolts are uniformly bounded (see [14]).

The purpose of this paper is to obtain a necessary condition of the type “τn(X) = ∅” for the representation A1 +· · · + Ak =
C(X). For this purpose, we introduce in the next section new objects called “cycles” and “semicycles” with respect to finitely 
many subalgebras of C(X).

2. Cycles and semicycles with respect to a family of algebras

We begin this section with the definition of two objects, which are essential for the further analysis of the considered 
representation problem. Assume, as above, X is a compact Hausdorff space, C(X) is the space of continuous real-valued 
functions on X and Ai , i = 1, ..., k, are closed subalgebras of C(X) that contain the constants. As it is shown above these 
algebras can be written in the form (1.2).

Cycles with respect to the algebras Ai , i = 1, ..., k, are defined as follows.

Definition 2.1. A set of points l = (x1, . . . , xn) ⊂ X is called a cycle with respect to the algebras Ai , i = 1, ..., k, if there exists 
a vector λ = (λ1, . . . , λn) ∈ Z

n with the nonzero integer coordinates λ j such that
n∑

j=1

λ jδsi(x j) = 0, for all i = 1, . . . ,k.

Here, δa is a characteristic function of the unit set {a}.
For example, the set l = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} is a cycle in I3, I = [0, 1], with respect to the 

algebras Ai = {p(zi): p ∈ C[0, 1]}, i = 1, 2, 3. The vector λ in Definition 2.1 can be taken as (−2, 1, 1, 1, −1).
The idea of cycles with respect to k directions in Rd was first implemented by Braess and Pinkus [2] in a work devoted 

to ridge function interpolation. Klopotowski, Nadkarni, Rao [16] defined cycles of minimal lengths with respect to canonical 
projections and called them loops. In Ismailov [11], these objects (under the name of closed paths) have been generalized 
to those having association with k arbitrary functions. It was proven in [2] that the nonexistence of cycles with respect to 
k directions is necessary and sufficient for interpolation by ridge functions. It was proven in [16] that the nonexistence of 
cycles with respect to canonical projections in Rk is necessary and sufficient for representation of multivariate functions by 
sums of univariate functions. It was proven in [11] that the nonexistence of cycles with respect to k arbitrary functions is 
necessary and sufficient for representation by linear superpositions.

Note that results of the above-mentioned works [2,11,16] are topology-free. The above example of Khavinson shows that 
consideration of only cycles is not enough for investigating the problems of representation when the topology of continuity 
is involved (see also [12]). The set � does not contain closed bolts (that is, cycles with respect to the algebras U and V ), 
but at the same time U + V �= C(�). This tells us that to approach the problem of the representation A1 + · · · + Ak = C(X), 
we need more general objects than cycles.

Definition 2.2. A set of points l = (x1, . . . , xn) ⊂ X is called a semicycle with respect to the algebras Ai , i = 1, ..., k, if there 
exists a vector λ = (λ1, . . . , λn) ∈ Z

n with the nonzero integer coordinates λ j such that for any i = 1, ..., k,
n∑

j=1

λ jδsi(x j) =
ri∑

t=1

λit δsi(xit )
, where ri ≤ k. (2.1)

Note that for i = 1, . . . , k, the set {λit , t = 1, ..., ri} is a subset of the set {λ j, j = 1, ..., n}. This means that, for each i, we 
have at most k terms in the sum 

∑n
j=1 λ jδsi(x j) . Further note that in (2.1) the sum 

∑ri
t=1 λit δsi(xit )

is allowed over an empty 
subset of the set λ = (λ1, . . . , λn) with value zero. Thus we see that every cycle is also a semicycle.

Assume, for example, that we are given two algebras A1 and A2 with quotient mappings s1 and s2, respectively. Assume 
l = {x1, x2, ..., xn} is an ordered set with the property

s1(x1) = s1(x2), s2(x2) = s2(x3), s1(x3) = s1(x4), ..., s2(xn−1) = s2(xn).
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It is not difficult to see that, for a vector λ = (λ1, . . . , λn) with the components λi = (−1)i ,

n∑

j=1

λ jδs1(x j) = λnδs1(xn),

n∑

j=1

λ jδs2(x j) = λ1δs2(x1).

Thus, by Definition 2.2, the set l = {x1, . . . , xn} forms a semicycle with respect to the algebras A1 and A2.
Note that in Marshall and O’Farrell [21], a finite sequence (x1, ..., xn) with xi �= xi+1 satisfying either s1(x1) = s1(x2), 

s2(x2) = s2(x3), s1(x3) = s1(x4), ..., or s2(x1) = s2(x2), s1(x2) = s1(x3), s2(x3) = s2(x4), ..., is called a bolt with respect to 
(A1, A2). If (x1, ..., xn, x1) is a bolt and n is an even number, then the bolt (x1, ..., xn) is called closed. These objects are 
straightforward generalization of classical bolts (see Introduction) and appeared in several results concerning the density of 
A1 + A2 in C(X). Bolts with respect to (A1, A2) are essential for the description of regular Borel measures orthogonal to 
A1 + A2 (see [21]).

A cycle (or semicycle) l is called a q-cycle (q-semicycle) if the vector λ associated with l can be chosen so that |λi | ≤ q, 
i = 1, ..., n, and q is the minimal number with this property.

The semicycle considered above is a 1-semicycle. If, in that example, s2(xn−1) = s2(x1), then the set {x1, x2, ..., xn−1} is 
a 1-cycle. Let us give a simple example of a 2-cycle with respect to the algebras U = {u(x)}, V = {v(y)} considered above. 
Consider the union

{0,1}2 ∪ {0,2}2 = {(0,0), (1,1), (2,2), (0,1), (1,0), (0,2), (2,0)}.
Clearly, this set is a 2-cycle with the associated vector (2, 1, 1, −1, −1, −1, −1). Similarly, one can construct a q-cycle or 

q-semicycle for any positive integer q.
Each semicycle l = (x1, . . . , xn) and an associated vector λ = (λ1, . . . , λn) generate the following functional

Fl,λ( f ) =
n∑

j=1

λ j f (x j), f ∈ C(X). (2.2)

Obviously, Fl,λ is a bounded linear functional with norm 
∑n

j=1 |λ j|.
From Definition 2.2, it follows that, for each function gi ∈ Ai , i = 1, . . . , k,

Fl,λ(gi) =
n∑

j=1

λ j gi(x j) =
ri∑

t=1

λit gi(xit ), (2.3)

where ri ≤ k. That is, for each algebra Ai , Fl,λ is a linear combination of point evaluation functionals, where not more than 
k points of the semicycle l are used. Note that if l is a cycle, then automatically Fl,λ(gi) = 0 for all gi ∈ Ai , i = 1, . . . , k. 
Hence, Fl,λ(g) = 0, for any g ∈ A1 + · · · + Ak .

Remark 1. Assume f ∈ C(X) and for i = 1, ..., k, Ai is a subalgebra of C(X) generated by one element wi ∈ Ai . Following 
Khavinson, we say that an algebra A ⊂ C(X) is generated by an element w ∈ A if A = {h(w(x) : h ∈ C(R)} (see [14, p. 33]). 
Note that a 

Ri∼ b if and only if wi(a) = wi(b); thus any cycle with respect to the algebras Ai is a cycle with respect to the 
real-valued functions wi and vice versa. The latter is defined similarly provided that in Definition 2.1 we replace si with wi . 
If Fl,λ( f ) = 0, for any cycle l ⊂ X , then f = ∑k

i=1 hi ◦ wi , where hi : R → R are some functions (not necessarily continuous) 
depending on f (see [11]). It follows that f is decomposed into the sum 

∑k
i=1 f i ◦ si , where si : X → Xi , i = 1, ..., k, are 

the natural projections defined above and f i : Xi → R. But this does not mean that we can always choose f i continuous 
on Xi (see Khavinson’s example in Introduction). We conclude that, in general, f may not belong to A1 + · · · + Ak even if 
Fl,λ( f ) = 0 for all cycles l in X .

The following theorem is valid.

Theorem 2.1. Let A1 + · · · + Ak = C(X). Then

(Z1) there are no cycles in X;
(Z2) for each q ∈N, the lengths (number of points) of all q-semicycles in X are uniformly bounded.

Proof. The part (Z1) is obvious. Indeed, let l = (x1, . . . , xn) be a cycle in X and λ = (λ1, . . . , λn) be a vector associated with 
it. As it is shown above, Fl,λ(g) = 0 for all functions g ∈ A1 + · · · + Ak . Let g0 be a continuous function such that g0(x j) = 1
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if λ j > 0 and g0(x j) = −1 if λ j < 0, j = 1, . . . , n. Since Fl,λ(g0) �= 0, the function g0 cannot be in A1 + · · · + Ak . Therefore, 
A1 + · · · + Ak �= C(X). But this contradicts the hypothesis of the theorem.

Let us prove (Z2)-part of the theorem. Consider the linear space

A =
k∏

i=1

Ai = {(g1, . . . , gk) : gi ∈ Ai, i = 1, . . . ,k}

endowed with the norm

‖(g1, . . . , gk)‖ = ‖g1‖ + · · · + ‖gk‖.
By A∗ we denote the dual of the space A. Obviously, each functional G ∈ A∗ can be written as the sum

G = G1 + · · · + Gk,

where the functionals Gi ∈ A∗
i and

Gi(gi) = G[(0, . . . , gi, . . . ,0)], i = 1, . . . ,k.

Thus, the functional G determines the collection (G1, . . . , Gk), and, vice versa, every collection (G1, . . . , Gk) of continuous 
linear functionals Gi ∈ A∗

i , i = 1, . . . , k, determines the functional G1 + · · · + Gk on A. Considering this, in what follows, the 
elements of A∗ will be denoted by (G1, . . . , Gk).

It is not difficult to verify that

‖(G1, . . . , Gk)‖ = max{‖G1‖, . . . ,‖Gk‖}. (2.4)

Consider the operator

T : A → C(X), T [(g1, . . . , gk)] = g1 + · · · + gk.

Clearly, T is a linear continuous operator with norm ‖T ‖ = 1. In addition, since A1 + · · · + Ak = C(X), T is a surjection. Let 
us consider also the conjugate operator

T ∗ : C(X)∗ → A∗, T ∗[H] = (G1, . . . , Gk),

where Gi(gi) = H(gi), for any gi ∈ Ai , i = 1, . . . , k. Let H be an arbitrary functional Fl,λ of the form (2.2), where l =
(x1, . . . , xn) is a q-semicycle. Set T ∗[Fl,λ] = (F1, . . . , Fk). From (2.3) we obtain that

|Fi(gi)| = |Fl,λ(gi)| ≤ ‖gi‖
ri∑

t=1

|λit | ≤ riq‖gi‖ ≤ kq‖gi‖, i = 1, . . . ,k.

Hence,

‖Fi‖ ≤ kq, i = 1, . . . ,k.

From (2.4), it follows that

‖T ∗[Fl,λ]‖ = ‖(F1, . . . , Fk)‖ ≤ kq. (2.5)

Since T is a surjection, there exists a number ε > 0 such that

‖T ∗[H]‖ ≥ ε‖H‖
for any functional H ∈ C(X)∗ (see Rudin [26]). Considering the equality ‖Fl,λ‖ = ∑n

j=1 |λ j|, for the functional H = Fl,λ we 
can write that

‖T ∗[Fl,λ]‖ ≥ ε

n∑

j=1

|λ j|. (2.6)

We obtain from (2.5) and (2.6) that

ε ≤ kq∑n
j=1 |λ j| .

Since ε > 0, it follows from the last inequality that n cannot be arbitrarily large. Thus we conclude that the lengths of all 
q-semicycles in X must be uniformly bounded. �
Corollary 2.1. If k = 2, then the conditions (Z1) and (Z2) together are both necessary and sufficient for the representation A1 + · · · +
Ak = C(X). Moreover, in (Z2), the consideration of only 1-semicycles suffices.
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Proof. Necessity is obvious (it follows directly from Theorem 2.1). To prove the sufficiency, note that a bolt with different 
points is a 1-semicycle and if X does not contain closed bolts, then it does not contain bolts with overlapping points. This is 
because a bolt with overlapping points always contains a closed bolt. Thus, it immediately follows that X does not contain 
closed bolts and that the lengths of all bolts with different points are uniformly bounded by some positive integer N .

For i = 1, 2, let Xi be the quotient space of X induced by the equivalence relation (1.1) and si be the corresponding 
quotient mappings. Note that the relation x ∼ y when x and y belong to some bolt in X defines an equivalence relation. 
Following Marshall and O’Farrell [20], let us call equivalence classes orbits. For a point x ∈ X set Y1 = s−1

1 (s1[x]), Y2 =
s−1

2 (s2[Y1]), Y3 = s−1
1 (s1[Y2]) , . . . . By O (x) denote the orbit of X containing x. Since the lengths of all bolts in X are not 

greater than N , we conclude that O (x) = Y N . Since X is compact, the sets Y1, Y2, ..., Y N , hence O (x), are topologically closed 
sets. In [20], Marshall and O’Farrell proved the following result (see Proposition 2 in [20]): let X be a compact Hausdorff 
space. Let A1 and A2 be closed subalgebras of C(X) that contain the constants. Suppose all orbits are closed. Then A1 + A2
is uniformly dense in C(X) if and only if X contains no closed bolt with respect to (A1, A2).

It follows from this proposition that A1 + A2 = C (X). Note that under the hypothesis of the corollary, A1 + A2 is closed 
in C (X). The closedness follows from the result of Medvedev (see Theorem 1 in [22]): the sum A1 + A2 is closed in C (X)

if and only if there exists a positive integer N such that the lengths of bolts in X are bounded by N . Thus we obtain that 
A1 + A2 is both dense and closed in C(X). Hence A1 + A2 = C(X). The sufficiency is proved. �
Remark 2. Assume A is a closed subalgebra of C(X) that contains the constants. A version of the Stone–Weierstrass theorem 
states that A coincides with the whole space C(X) if and only if A separates points of X (that is, for any two different points 
x and y in X , there exists a function g ∈ A such that g(x) �= g(y)). Note that any bolt with respect to (A, A) consisting of 
two points x1 and x2 is automatically closed. Indeed, in this case, if (x1, x2) is a bolt, then (x1, x2, x1) is also a bolt. On the 
other hand, (x1, x2) is a bolt with respect to (A, A) if and only if f (x1) = f (x2) for all f ∈ A. Thus, we conclude that the 
above version of the Stone–Weierstrass theorem is equivalent to Corollary 2.1, provided that A1 = A2.

Remark 3. For the case of a compact set X ⊂ R
2 and the algebras U = {u(x)}, V = {v(y)} of univariate functions defined on 

the projections of X into the coordinate axes x and y, respectively, Corollary 2.1 was first obtained by Khavinson (see [14]). 
Implementing the separation theory of Sternfeld [28], Khavinson [14] extended his result also to the case of linear superpo-
sitions. Using ideas of Khavinson and Marshall O’Farrell’s lightning bolt principle (see [20,21]), one of the authors [9] proved 
Corollary 2.1 for ridge functions and linear superpositions.

Remark 4. We see that the conditions (Z1) and (Z2) of Theorem 2.1 are sufficient for the equality A1 + A2 = C(X). This 
means that in the case k = 2, these conditions are equivalent to the condition “τn(X) = ∅” of Sternfeld. Note that for 
k > 2, they are not equivalent, since the condition of Sternfeld is not necessary for the representation A1 + · · · + Ak = C(X)

(see [27]). One may ask if, for k > 2, the conditions (Z1) and (Z2) are sufficient for the representation A1 + · · · + Ak = C(X). 
This question, unfortunately, has a negative answer. To see this, let M(X) denote the space of bounded functions on X . 
Consider the spaces

Bi = { f (si(x)) : f ∈ M(Xi)}, i = 1, ...,k,

and also the space B1 + · · · + Bk . Clearly, B1 + · · · + Bk ⊂ M(X). It can be proven by the same way that the conditions 
(Z1) and (Z2) are necessary for the equality B1 + · · · + Bk = M(X). If the conditions (Z1) and (Z2) had been sufficient for 
A1 +· · · + Ak = C(X), they would have been also sufficient for B1 +· · · + Bk = M(X), since the representation A1 +· · · + Ak =
C(X) implies the representation B1 + · · · + Bk = M(X) (see [28]). Then we would obtain that the conditions (Z1) and (Z2) 
are necessary and sufficient for both the equalities A1 + · · · + Ak = C(X) and B1 + · · · + Bk = M(X). But it was shown in 
Sternfeld [29] that for k > 2, these two equalities are not equivalent.

Remark 5. If C(X) = A1 +· · · + Ak , then the map ϕ : x → (s1(x), ..., sk(x)) is a continuous one-to-one map from the compact 
space X into the compact space X1 × · · · × Xk , hence a homeomorphism of X onto φ(X) ⊂ X1 × · · · × Xk . Thus one can 
identify X with φ(X) and si with the projection of φ(X) onto Xi . In the light of this, some relevant results were obtained 
in [17,23–25]. In particular, the survey paper of Nadkarni [23] formulates definitions of “path” and “geodesic” (a path of 
shortest length) for k ≥ 2, which agrees with the known definitions for k = 2. It further discusses sufficient conditions for 
C(X) = A1 + · · · + Ak , in terms of uniform boundedness of lengths of geodesics.
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