Group theory/Differential geometry

On the irreducible action of $\operatorname{PSL}(2, \mathbb{R})$ on the 3-dimensional Einstein universe ${ }^{2 /}$

Sur l'action irréductible de $\operatorname{PSL}(2, \mathbb{R})$ sur l'univers d'Einstein de dimension 3

Masoud Hassani ${ }^{\text {a,b }}$
a Université d'Avignon, Campus Jean-Henri-Fabre, 301, rue Baruch-de-Spinoza, BP 21239, 84916 Avignon cedex 9, France
${ }^{\text {b }}$ University of Zanjan, Faculty of Science, Department of Mathematics, University blvd, Zanjan, Iran

A R T I CLE I N F O

Article history:

Received 26 June 2017
Accepted after revision 3 October 2017
Available online 19 October 2017
Presented by the Editorial Board

Abstract

In this paper, we study the irreducible representation of $\operatorname{PSL}(2, \mathbb{R})$ in $\operatorname{PSL}(5, \mathbb{R})$. This action preserves a quadratic form with signature $(2,3)$. Thus, it acts conformally on the 3 -dimensional Einstein universe $\mathbb{E i n}^{1,2}$. We describe the orbits induced in $\mathbb{E i n}^{1,2}$ and its complement in $\mathbb{R P}^{4}$. This work completes the study in [2], and is one element of the classification of cohomogeneity one actions on \mathbb{E} in 1,2 [5]. © 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

RÉS U M É

Dans cet article, nous étudions l'action irréductible de $\operatorname{PSL}(2, \mathbb{R})$ dans $\operatorname{PSL}(5, \mathbb{R})$. Cette action préserve une forme quadratique de signature (2,3). Elle sur agit donc conformément sur l'univers d'Einstein $\mathbb{E i n}^{1,2}$ de dimension 3, ainsi que sur son complément dans $\mathbb{R P}^{4}$. Ce travail complète l'étude préliminaire dans [2], et est un élément de la classification des actions sur $\mathbb{E i n}^{1,2}$ de cohomogenéité un [5].
© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. The irreducible representation of $\operatorname{PSL}(2, \mathbb{R})$

Let V denote an n-dimensional vector space. A subgroup of $G L(V)$ is irreducible if it preserves no proper subspace of V.
It is well known that, for every integer n, up to isomorphism, there is only one n-dimensional irreducible representation of $\operatorname{PSL}(2, \mathbb{R})$. For $n=5$, this representation is the natural action of $\operatorname{PSL}(2, \mathbb{R})$ on the vector space $\mathbb{V}=\mathbb{R}_{4}[X, Y]$ of homogeneous polynomials of degree 4 in two variables X and Y. This action induces three types of orbits in the 4 -dimensional

[^0]projective space $\mathbb{R P}^{4}=\mathbb{P}(\mathbb{V})$: an 1-dimensional orbit, three 2-dimensional orbits, and the orbits on which $\operatorname{PSL}(2, \mathbb{R})$ acts freely.

The irreducible action of $\operatorname{PSL}(2, \mathbb{R})$ on \mathbb{V} preserves the following quadratic form

$$
\mathfrak{q}\left(a_{4} X^{4}+a_{3} X^{3} Y+a_{2} X^{2} Y^{2}+a_{1} X Y^{3}+a_{0} Y^{4}\right)=2 a_{4} a_{0}-\frac{1}{2} a_{1} a_{3}+\frac{1}{6} a_{2}^{2}
$$

The quadratic form \mathfrak{q} is non-degenerate and has signature $(2,3)$. This induces an irreducible representation $\operatorname{PSL}(2, \mathbb{R}) \rightarrow$ $O(2,3) \subset \operatorname{PSL}(5, \mathbb{R})[2]$. On the other hand, by [3, Theorem 1], up to conjugacy, $S O_{\circ}(1,2) \simeq \operatorname{PSL}(2, \mathbb{R})$ is the only irreducible connected Lie subgroup of $O(2,3)$.

1.2. Einstein's universe

Let $\mathbb{R}^{2,3}$ denote a 5 -dimensional real vector space equipped with a non-degenerate symmetric bilinear form \mathfrak{q} with signature $(2,3)$. The null cone of $\mathbb{R}^{2,3}$ is

$$
\mathfrak{N}=\left\{v \in \mathbb{R}^{2,3} \backslash\{0\}: \mathfrak{q}(v)=0\right\}
$$

The 3-dimensional Einstein universe $\mathbb{E i n}^{1,2}$ is the image of the null cone \mathfrak{N} under the projectivization:

$$
\mathbb{P}: \mathbb{R}^{2,3} \backslash\{0\} \longrightarrow \mathbb{R P}^{4}
$$

The degenerate metric on \mathfrak{N} induces a $O(2,3)$-invariant conformal Lorentzian structure on the Einstein universe. The group of conformal transformations on $\mathbb{E i n}^{1,2}$ is $O(2,3)$ [4].

A light-like geodesic in Einstein's universe is a photon. A photon is the projectivization of an isotropic 2-plane in $\mathbb{R}^{2,3}$. The set of photons through a point $p \in \mathbb{E}$ in 1,2 denoted by $L(p)$ is the lightcone at p. The complement of a lightcone $L(p)$ in Einstein's universe is the Minkowski patch at p and we denote it by $\operatorname{Mink}(p)$. A Minkowski patch is conformally equivalent to the 3 -dimensional Minkoski space $\mathbb{E}^{1,2}$ [1].

The complement to the Einstein universe in \mathbb{R}^{4} has two connected components: the 3-dimensional Anti de-Sitter space $A d S^{1,2}$ and the generalized hyperbolic space $\mathbb{H}^{2,2}$: the first (respectively the second) is the projection of the domain $\mathbb{R}^{2,3}$ defined by $\{\mathfrak{q}<0\}$ (respectively $\{\mathfrak{q}>0\}$).

An immersed submanifold S of $\operatorname{AdS}^{1,2}$ or $\mathbb{H}^{2,2}$ is of signature (p, q, r) (respectively $\mathbb{E} i^{1,2}$) if the restriction of the ambient pseudo-Riemannian metric (respectively the conformal Lorentzian metric) is of signature (p, q, r), meaning that the radical has dimension r, and that maximal definite negative and positive subspaces have dimensions p and q, respectively. If S is nondegenerate, we forgot r and simply denote its signature by (p, q).

Theorem 1.1. The irreducible action of $\operatorname{PSL}(2, \mathbb{R})$ on the 3-dimensional Einstein universe $\mathbb{E}^{1 n^{1,2}}$ admits three orbits:

- a 1-dimensional light-like orbit, i.e. of signature ($0,0,1$),
- a 2-dimensional orbit of signature $(0,1,1)$,
- an open orbit (hence of signature $(1,2)$) on which the action is free.

The 1-dimensional orbit is light-like, homeomorphic to $\mathbb{R P}^{1}$, but not a photon. The union of the 1 -dimensional orbit and the 2 -dimensional orbit is an algebraic surface, whose singular locus is precisely the 1 -dimensional orbit. It is the union of all projective lines tangent to the 1-dimensional orbit. Fig. 1 describes a part of the 1 and 2-dimensional orbits in the Minkowski patch $\operatorname{Mink}\left(\left[Y^{4}\right]\right)$.

Fig. 1. Two partial views of the intersection of the 1 and 2-dimensional orbits in Einstein's universe with $\operatorname{Mink}\left(\left[Y^{4}\right]\right)$. Red: Part of the 1-dimensional orbit in Minkowski patch. Green: Part of the 2-dimensional orbit in Minkowski patch.

We will also describe the actions on the Anti de-Sitter space and the generalized hyperbolic space $\mathbb{H}^{2,2}$:
Theorem 1.2. The orbits of $\operatorname{PSL}(2, \mathbb{R})$ in the Anti de-sitter component $\mathrm{AdS}^{1,3}$ are Lorentzian, i.e. of signature (1,2). They are the leaves of a codimension-1 foliation. In addition, $\operatorname{PSL}(2, \mathbb{R})$ induces three types of orbits in $\mathbb{H}^{2,2}$: a 2-dimensional space-like orbit (of signature $(2,0)$) homeomorphic to the hyperbolic plane \mathbb{H}^{2}, a 2-dimensional Lorentzian orbit (i.e. of signature (1, 1)) homeomorphic to the de-Sitter space $\mathrm{dS}^{1,1}$, and four kinds of 3-dimensional orbits where the action is free:

- a one-parameter family of orbits of signature $(2,1)$, consisting of elements with four distinct non-real roots,
- a one-parameter family of Lorentzian (i.e. of signature (1,2)) orbits consisting of elements with four distinct real roots,
- two orbits of signature (1, 1, 1),
- a one-parameter family of Lorentzian (i.e. of signature (1,2)) orbits consisting of elements with two distinct real roots, and two distinct complex conjugate roots so that the cross-ratio of the four roots has an argument strictly between $-\pi / 3$ and $\pi / 3$.

2. Proofs of the theorems

Let f be an element in \mathbb{V}. We consider it as a polynomial function from \mathbb{C}^{2} into \mathbb{C}. Actually, by specifying $Y=1$, we consider f as a polynomial of degree at most 4 . Such a polynomial is determined, up to a scalar, by its roots $z_{1}, z_{2}, z_{3}, z_{4}$ in $\mathbb{C P}^{1}$ (some of these roots can be ∞ if f can be divided by Y). It provides a natural identification between $\mathbb{P}(\mathbb{V})$ and the set $\widehat{\mathbb{C P}}_{4}^{1}$ made of 4 -tuples (up to permutation) $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ of $\mathbb{C P}^{1}$ such that if some z_{i} is not in $\mathbb{R} \mathbb{P}^{1}$, then its conjugate \bar{z}_{i} is one of the z_{j} 's. This identification is $\operatorname{PSL}(2, \mathbb{R})$-equivariant, where the action of $\operatorname{PSL}(2, \mathbb{R})$ on $\widehat{\mathbb{C P}}_{4}^{1}$ is simply the one induced by the diagonal action on $\left(\mathbb{C P}^{1}\right)^{4}$.

Actually, the complement of $\mathbb{R} \mathbb{P}^{1}$ in $\mathbb{C P}^{1}$ is the union of the upper half-plane model \mathbb{H}^{2} of the hyperbolic plane, and the lower half-plane. We can represent every element of $\widehat{\mathbb{C P}}_{4}^{1}$ by a 4 -tuple (up to permutation) ($z_{1}, z_{2}, z_{3}, z_{4}$) such that:

- either every z_{i} lies in $\mathbb{R P}^{1}$,
- or z_{1}, z_{2} lies in $\mathbb{R P}^{1}, z_{3}$ lies in \mathbb{H}^{2} and $z_{4}=\bar{z}_{3}$,
- or z_{1}, z_{2} lies in \mathbb{H}^{2} and $z_{3}=\bar{z}_{1}, z_{4}=\bar{z}_{2}$.

Theorems 1.1 and 1.2 will follow from the proposition below.
Proposition 2.1. Let $[f]$ be an element of $\mathbb{P}(\mathbb{V})$. Then:

- it lies in $\mathbb{E i n}^{1,2}$ if and only if it has a root of multiplicity at least 3 , or two distinct real roots z_{1}, z_{2}, and two complex roots z_{3}, $z_{4}=\bar{z}_{3}$, with z_{3} in \mathbb{H}^{2} and such that the argument of the cross-ratio of $z_{1}, z_{2}, z_{3}, z_{4}$ is $\pm \pi / 3$;
- it lies in $\mathrm{AdS}^{1,3}$ if and only it has two distinct real roots z_{1}, z_{2}, and two complex roots $z_{3}, z_{4}=\bar{z}_{3}$, with z_{3} in \mathbb{H}^{2} and such that the argument of the cross-ratio of $z_{1}, z_{2}, z_{3}, z_{4}$ has absolute value $>\pi / 3$;
- it lies in $\mathbb{H}^{2,2}$ if and only if it has no real roots, or four distinct real roots, or a root of multiplicity exactly 2 , or it has two distinct real roots z_{1}, z_{2}, and two complex roots $z_{3}, z_{4}=\bar{z}_{3}$, with z_{3} in \mathbb{H}^{2} and such that the argument of the cross-ratio of $z_{1}, z_{2}, z_{3}, z_{4}$ has absolute value $<\pi / 3$.

Proof of Proposition 2.1. Assume that f has no real root. Hence we are in the situation where z_{1}, z_{2} lie in \mathbb{H}^{2} and $z_{3}=\bar{z}_{1}$, $z_{4}=\bar{z}_{2}$. By applying a suitable element of $\operatorname{PSL}(2, \mathbb{R})$, we can assume $z_{1}=i$, and $z_{2}=r i$ for some $r>0$. In other words, f is in the $\operatorname{PSL}(2, \mathbb{R})$-orbit of $\left(X^{2}+Y^{2}\right)\left(X^{2}+r^{2} Y^{2}\right)$. The value of \mathfrak{q} on this polynomial is $2 \times 1 \times r^{2}+\frac{1}{6}\left(1+r^{2}\right)^{2}>0$, hence [f] lies in $\mathbb{H}^{2,2}$.

Hence, we can assume that f admits at least one root in $\mathbb{R P}^{1}$, and by applying a suitable element of $\operatorname{PSL}(2, \mathbb{R})$, one can assume that this root is ∞, i.e. that f is a multiple of Y.

We first consider the case where this real root has multiplicity at least 2:

$$
f=Y^{2}\left(a X^{2}+b X Y+c Y^{2}\right)
$$

Then, $\mathfrak{q}(f)=\frac{1}{6} a^{2}$: it follows that if f has a root of multiplicity at least 3 , it lies in $\mathbb{E} \mathrm{in}^{1,2}$, and if it has a real root of mulitplicity 2 , it lies in $\mathbb{H}^{2,2}$.

We assume from now on that the real roots of f have multiplicity 1 . Assume that all roots are real. Up to $\operatorname{PSL}(2, \mathbb{R})$, one can assume that these roots are $0,1, r$ and ∞ with $0<r<1$.

$$
f(X, Y)=X Y(X-Y)(X-r Y)=X^{3} Y-(r+1) X^{2} Y^{2}+r X Y^{3}
$$

Then, $\mathfrak{q}(f)=-\frac{1}{2} r+\frac{1}{6}(r+1)^{2}=\frac{1}{6}\left(r^{2}-r+1\right)>0$. Therefore, f lies in $\mathbb{H}^{2,2}$ once more.
The only remaining case is the case where f has two distinct real roots, and two complex conjugate roots z, \bar{z} with $z \in \mathbb{H}^{2}$. Up to $\operatorname{PSL}(2, \mathbb{R})$, one can assume that the real roots are 0 , ∞, hence:

$$
f(X, Y)=X Y(X-z Y)(X-\bar{z} Y)=X Y\left(X^{2}-2|z| \cos \theta X Y+|z|^{2} Y^{2}\right)
$$

where $z=|z| \mathrm{e}^{\mathrm{i} \theta}$. Then:

$$
\mathfrak{q}(f)=\frac{2|z|^{2}}{3}\left(\cos ^{2} \theta-\frac{3}{4}\right)
$$

Hence f lies in $\mathbb{E} \mathrm{in}^{1,2}$ if and only if $\theta=\pi / 6$ or $5 \pi / 6$. The proposition follows easily.
Remark 1. F. Fillastre indicated to us that our description of the open orbit in $\mathbb{E}{ }^{1}{ }^{1,2}$ appearing in the first item of Proposition 2.1 has an alternative and more elegant description: this orbit corresponds to polynomials whose roots in $\mathbb{C P}^{1}$ are ideal vertices of a regular ideal tetraedra in \mathbb{H}^{3}.

Remark 2. In order to determine the signature of the orbits induced by $\operatorname{PSL}(2, \mathbb{R})$ in $\mathbb{P}(\mathbb{V})$, we consider the tangent vectors induced by the action of 1-parameter subgroups of $\operatorname{PSL}(2, \mathbb{R})$. We denote by E, P, and H, the 1-parameter elliptic, parabolic and hyperbolic subgroups stabilizing i, ∞ and $\{0, \infty\}$, respectively.

Proof of Theorem 1.1. It follows from Proposition 2.1 that there are precisely three $\operatorname{PSL}(2, \mathbb{R})$-orbits in \mathbb{E} in 1,2 :

- one orbit \mathcal{N} comprising polynomials with a root of multiplicity 4 , i.e. of the form $\left[(s Y-t X)^{4}\right]$ with $s, t \in \mathbb{R}$. It is clearly 1 -dimensional, and equivariantly homeomorphic to $\mathbb{R} \mathbb{P}^{1}$ with the usual projective action of $\operatorname{PSL}(2, \mathbb{R})$. Since $\left.\frac{\mathrm{d}}{\mathrm{d} t}\right|_{t=0}(Y-$ $t X)^{4}=-4 X Y^{3}$ is a \mathfrak{q}-null vector, this orbit is light-like (but cannot be a photon since the action is irreducible);
- one orbit \mathcal{L} comprising polynomials with a real root of multiplicity 3 , and another real root. These are the polynomials of the form $\left[(s Y-t X)^{3}\left(s^{\prime} Y-t^{\prime} X\right)\right]$ with $s, t, s^{\prime}, t^{\prime} \in \mathbb{R}$. It is 2 -dimensional, and it is easy to see that it is the union of the projective lines tangent to \mathcal{N}. The vectors tangent to \mathcal{L} induced by the 1-parameter subgroups P and E at $\left[X Y^{3}\right] \in \mathcal{L}$ are $v_{P}=-Y^{4}$ and $v_{E}=3 X^{2} Y^{2}+Y^{4}$. Obviously, v_{P} is orthogonal to v_{E} and $v_{E}+v_{P}$ is space-like. Hence \mathcal{L} is of signature $(0,1,1)$;
- one open orbit comprising polynomials admitting two distinct real roots and a root in \mathbb{H}^{2} such that the argument of the cross-ratio of the four roots is $\pi / 3$. The stabilizers of points in this orbit are trivial, since an isometry of \mathbb{H}^{2} preserving a point in \mathbb{H}^{2} and one point in $\partial \mathbb{H}^{2}$ is necessarily the identity.

Proof of Theorem 1.2. According to Proposition 2.1, the polynomials in AdS ${ }^{1,3}$ have two distinct real roots, and a complex root \mathbb{H}^{2} (and its conjugate) such that the argument of the cross-ratio of the four roots has absolute value $>\pi / 3$. It follows that the action in AdS ${ }^{1,3}$ is free, and that the orbits are the level sets of the function θ. Suppose that M is a $\operatorname{PSL}(2, \mathbb{R})$-orbit in AdS ${ }^{1,3}$. There exists $r \in \mathbb{R}$ such that $[f]=\left[Y\left(X^{2}+Y^{2}\right)(X-r Y)\right] \in M$. The orbit induced by the 1-parameter subgroup E at $[f]$ is:

$$
\gamma(t)=\left[\left(X^{2}+Y^{2}\right)\left(\left(\sin t \cos t-r \sin ^{2} t\right) X^{2}-\left(\sin t \cos t+r \cos ^{2} t\right) Y^{2}+\left(\cos ^{2} t-\sin ^{2} t+2 r \sin t \cos t\right) X Y\right)\right]
$$

Then $\mathfrak{q}\left(\left.\frac{d \gamma}{d t}\right|_{t=0}\right)=-2-2 r^{2}<0$. This implies, as for any submanifold of a Lorentzian manifold admitting a time-like vector, that M is Lorentzian, i.e., of signature $(1,2)$.

The case of $\mathbb{H}^{2,2}$ is the richest one. According to Proposition 2.1, there are four cases to consider.

- No real roots. Then f has two complex roots z_{1}, z_{2} in \mathbb{H}^{2} (and their conjugates). It corresponds to two orbits: one orbit corresponding to the case $z_{1}=z_{2}$: it is space-like and has dimension 2 . It is the only maximal $\operatorname{PSL}(2, \mathbb{R})$-invariant surface in $\mathbb{H}^{2,2}$ described in [2, Section 5.3]. The case $z_{1} \neq z_{2}$ provides a one-parameter family of 3 -dimensional orbits on which the action is free (the parameter being the hyperbolic distance between z_{1} and z_{2}). One may assume that $z_{1}=i$ and $z_{2}=r i$ for some $r>0$. Denote by M the orbit induced by $\operatorname{PSL}(2, \mathbb{R})$ at $[f]=\left[\left(X^{2}+Y^{2}\right)\left(X^{2}+r^{2} Y^{2}\right)\right]$. The vectors tangent to M at $[f]$ induced by the 1-parameter subgroups H, P and E are:

$$
v_{H}=-4 X^{4}+4 r^{2} Y^{4}, \quad v_{P}=-4 X^{3} Y-2\left(r^{2}+1\right) X Y^{3}, \quad v_{E}=2\left(r^{2}-1\right) X^{3} Y+2\left(r^{2}-1\right) X Y^{3}
$$

respectively. The time-like vector v_{H} is orthogonal to both v_{P} and v_{E}. It is easy to see that the 2-plane generated by $\left\{v_{P}, v_{E}\right\}$ is of signature (1,1). Therefore, the tangent space $T_{[f]} M$ is of signature $(2,1)$.

- Four distinct real roots. This case provides a one-parameter family of 3-dimensional orbits on which the action is free the parameter being the cross-ratio between the roots in $\mathbb{R P}^{1}$. Denote by M the $\operatorname{PSL}(2, \mathbb{R})$-orbit at $[f]=[X Y(X-$ $Y)(X-r Y)$] (here as explained in the proof of Proposition 2.1, we can restrict ourselves to the case $0<r<1$). The vectors tangent to M at $[f]$ induced by the 1-parameter subgroups H, P, and E are:

$$
\begin{gathered}
v_{H}=-r Y^{4}+2(r+1) X Y^{3}-3 X^{2} Y^{2}, \quad v_{P}=-2 X^{3} Y+2 r X Y^{3} \\
v_{E}=X^{4}-r Y^{4}+3(r-1) X^{2} Y^{2}+2(r+1) X Y^{3}-2(r+1) X^{3} Y
\end{gathered}
$$

respectively. A vector $x=a v_{H}+b v_{P}+c v_{E}$ is orthogonal to v_{P} if and only if $2 r a+b(r+1)+c(r+1)^{2}=0$. Set $a=$ $\left(b(r+1)+c(r+1)^{2}\right) /-2 r$ in

$$
\mathfrak{q}(x)=2 r a^{2}+\frac{3}{2} b^{2}+\left(\frac{7}{2}\left(r^{2}+1\right)-r\right) c^{2}+2(r+1) a b+2(r+1)^{2}+a c\left(2 r^{2}-r+5\right)
$$

Consider $\mathfrak{q}(x)=0$ as a quadratic polynomial F in b. Since $0<r<1$, the discriminant of F is non-negative and it is positive when $c \neq 0$. Thus, the intersection of the orthogonal complement of the space-like vector v_{P} with the tangent space $T_{[f]} M$ is a 2-plane of signature (1, 1). This implies that M is Lorentzian, i.e. of signature (1,2).

- A root of multiplicity 2 . Observe that if there is a non-real root of multiplicity 2 , when we are in the first "no real root" case. Hence we consider here only the case where the root of multiplicity 2 lies in $\mathbb{R} \mathbb{P}^{1}$. Then, we have three subcases to consider:
- two distinct real roots of multiplicity 2: The orbit induced at $X^{2} Y^{2}$ is the image of the $\operatorname{PSL}(2, \mathbb{R})$-equivariant map

$$
\mathrm{d} \mathrm{~S}^{1,1} \subset \mathbb{P}\left(\mathbb{R}_{2}[X, Y]\right) \longrightarrow \mathbb{H}^{2,2}, \quad[L] \mapsto\left[L^{2}\right]
$$

where $\mathbb{R}_{2}[X, Y]$ is the vector space of homogeneous polynomials of degree 2 in two variables X and Y, endowed with discriminant as a $\operatorname{PSL}(2, \mathbb{R})$-invariant bilinear form of signature (1,2) [2, Section 5.3]. (Here, L is the projective class of a Lorentzian bilinear form on \mathbb{R}^{2}.) The vectors tangent to the orbit at $X^{2} Y^{2}$ induced by the 1-parameter subgroups P and E are $v_{P}=-2 X Y^{3}$ and $v_{E}=2 X^{3} Y-2 X Y^{3}$, respectively. It is easy to see that the 2-plane generated by $\left\{v_{p}, v_{E}\right\}$ is of signature $(1,1)$. Hence, the orbit induced at $X^{2} Y^{2}$ is Lorentzian.

- three distinct real roots, one of them being of multiplicity 2 ; denote by M the orbit induced by $\operatorname{PSL}(2, \mathbb{R})$ at $[f]=$ $\left[X Y^{2}(X-Y)\right]$. The vectors tangent to M at $[f]$ induced by the 1-parameter subgroups H, P and E are:

$$
v_{H}=-2 X Y^{3}, \quad v_{P}=Y^{4}-2 X Y^{3}, \quad v_{E}=Y^{4}-X^{4}-2 X^{2} Y^{2}+X^{3} Y-X Y^{3}
$$

respectively. Obviously, the light-like vector $v_{H}+v_{P}$ is orthogonal to $T_{[f]} M$. Therefore, the restriction of the metric on $T_{[f]} M$ is degenerate. It is easy to see that the quotient of $T_{[f]} M$ by the action of the isotropic line $\mathbb{R}\left(v_{H}+v_{P}\right)$ is of signature (1,1). Thus, M is of signature ($1,1,1$).

- one real root of multiplicity 2 , and one root in \mathbb{H}^{2} : Denote by M the orbit induced by $\operatorname{PSL}(2, \mathbb{R})$ at $[f]=\left[Y^{2}\left(X^{2}+\right.\right.$ $\left.\left.Y^{2}\right)\right]$. The vectors tangent to M at $[f]$ induced by the 1-parameter subgroups H, P and E are $v_{H}=4 Y^{4}, v_{P}=-2 X Y^{3}$, and $v_{E}=2 X^{3} Y+2 X Y^{3}$, respectively. Obviously, the light-like vector v_{H} is orthogonal $T_{[f]} M$. Therefore, the restriction of the metric on $T_{[f]} M$ is degenerate. It is easy to see that the quotient of $T_{[f]} M$ by the action of the isotropic line $\mathbb{R}\left(v_{H}\right)$ is of signature (1,1). Thus M is of signature ($1,1,1$).
- Two distinct real roots, and a complex root in \mathbb{H}^{2} (and its conjugate) such that the argument of the cross-ratio of the four roots has absolute value $<\pi / 3$. Denote by M the orbit induced by $\operatorname{PSL}(2, \mathbb{R})$ at $[f]=\left[Y\left(X^{2}+Y^{2}\right)(X-r Y)\right]$. The vectors tangent to M at $[f]$ induced by the 1-parameter subgroups H, P and E are:

$$
v_{H}=-4 r Y^{4}-2 X^{3} Y+2 X Y^{3}, \quad v_{P}=-3 X^{2} Y^{2}+2 r X Y^{3}-Y^{4}, \quad v_{E}=X^{4}-Y^{4}-2 r X^{3} Y-2 r X Y^{3}
$$

respectively. The following set of vectors is an orthogonal basis for $T_{[f]} M$ where the first vector is time-like and the two others are space-like.

$$
\left\{\left(7 r+3 r^{3}\right) v_{H}+\left(6-2 r^{2}\right) v_{P}+\left(5+r^{2}\right) v_{E}, 4 v_{P}+v_{E}, v_{H}\right\}
$$

Therefore, M is Lorentzian, i.e. of signature (1,2).

References

[1] T. Barbot, V. Charette, T. Drumm, W.M. Goldman, K. Melnick, A primer on the ($2+1$) Einstein universe, in: D.V. Alekseevsky, H. Baum (Eds.), Recent Developments in Pseudo-Riemannian Geometry, in: ESI Lectures in Mathematics and Physics, 2008, pp. 179-229.
[2] B. Collier, N. Tholozan, J. Toulisse, The geometry of maximal representations of surface groups into SO (2, n), https://arxiv.org/abs/1702.08799.
[3] A.J. Di Scala, T. Leistner, Connected subgroups of $S O(2, n)$ acting irreducibly on $\mathbb{R}^{2, n}$, Isr. J. Math. 182 (2011) 103-122.
[4] C. Frances, Géometrie et dynamique lorentziennes conformes, PhD thesis, ENS Lyon, France, 2002.
[5] M. Hassani, Cohomogeneity one actions on the three-dimensional Einstein universe, in preparation.

[^0]: th This work is funded by the French Ministry of Foreign Affairs, through Campus France. Grant number 878286E. It is also part of project MATH AMSUD 2017, Project No. 38888QB - GDAR.

 E-mail addresses: masoud.hasani@znu.ac.ir, masoud.hassani@alumni.univ-avignon.fr.

