

#### Contents lists available at ScienceDirect

# C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Group theory/Differential geometry

# On the irreducible action of $PSL(2, \mathbb{R})$ on the 3-dimensional Einstein universe $\stackrel{\text{\tiny{}}}{\approx}$





# Sur l'action irréductible de $PSL(2, \mathbb{R})$ sur l'univers d'Einstein de dimension 3

## Masoud Hassani<sup>a,b</sup>

<sup>a</sup> Université d'Avignon, Campus Jean-Henri-Fabre, 301, rue Baruch-de-Spinoza, BP 21239, 84916 Avignon cedex 9, France <sup>b</sup> University of Zanjan, Faculty of Science, Department of Mathematics, University blvd, Zanjan, Iran

#### ARTICLE INFO

Article history: Received 26 June 2017 Accepted after revision 3 October 2017 Available online 19 October 2017

Presented by the Editorial Board

#### ABSTRACT

In this paper, we study the irreducible representation of PSL(2,  $\mathbb{R}$ ) in PSL(5,  $\mathbb{R}$ ). This action preserves a quadratic form with signature (2, 3). Thus, it acts conformally on the 3-dimensional Einstein universe  $\mathbb{E}in^{1,2}$ . We describe the orbits induced in  $\mathbb{E}in^{1,2}$  and its complement in  $\mathbb{RP}^4$ . This work completes the study in [2], and is one element of the classification of cohomogeneity one actions on  $\mathbb{E}in^{1,2}$  [5].

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

### RÉSUMÉ

Dans cet article, nous étudions l'action irréductible de PSL $(2, \mathbb{R})$  dans PSL $(5, \mathbb{R})$ . Cette action préserve une forme quadratique de signature (2, 3). Elle sur agit donc conformément sur l'univers d'Einstein  $\mathbb{E}in^{1,2}$  de dimension 3, ainsi que sur son complément dans  $\mathbb{RP}^4$ . Ce travail complète l'étude préliminaire dans [2], et est un élément de la classification des actions sur  $\mathbb{E}in^{1,2}$  de cohomogenéité un [5].

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

#### 1. Introduction

1.1. The irreducible representation of  $PSL(2, \mathbb{R})$ 

Let *V* denote an *n*-dimensional vector space. A subgroup of GL(V) is **irreducible** if it preserves no proper subspace of *V*. It is well known that, for every integer *n*, up to isomorphism, there is only one *n*-dimensional irreducible representation of PSL(2,  $\mathbb{R}$ ). For *n* = 5, this representation is the natural action of PSL(2,  $\mathbb{R}$ ) on the vector space  $\mathbb{V} = \mathbb{R}_4[X, Y]$  of homogeneous polynomials of degree 4 in two variables *X* and *Y*. This action induces three types of orbits in the 4-dimensional

https://doi.org/10.1016/j.crma.2017.10.003

<sup>\*</sup> This work is funded by the French Ministry of Foreign Affairs, through Campus France. Grant number 878286E. It is also part of project MATH AMSUD 2017, Project No. 38888QB – GDAR.

E-mail addresses: masoud.hasani@znu.ac.ir, masoud.hassani@alumni.univ-avignon.fr.

<sup>1631-073</sup>X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

projective space  $\mathbb{RP}^4 = \mathbb{P}(\mathbb{V})$ : an 1-dimensional orbit, three 2-dimensional orbits, and the orbits on which  $PSL(2, \mathbb{R})$  acts freely.

The irreducible action of  $PSL(2, \mathbb{R})$  on  $\mathbb{V}$  preserves the following quadratic form

$$\mathfrak{q}(a_4X^4 + a_3X^3Y + a_2X^2Y^2 + a_1XY^3 + a_0Y^4) = 2a_4a_0 - \frac{1}{2}a_1a_3 + \frac{1}{6}a_2^2$$

The quadratic form q is non-degenerate and has signature (2, 3). This induces an irreducible representation  $PSL(2, \mathbb{R}) \rightarrow O(2, 3) \subset PSL(5, \mathbb{R})$  [2]. On the other hand, by [3, Theorem 1], up to conjugacy,  $SO_{\circ}(1, 2) \simeq PSL(2, \mathbb{R})$  is the only irreducible connected Lie subgroup of O(2, 3).

#### 1.2. Einstein's universe

Let  $\mathbb{R}^{2,3}$  denote a 5-dimensional real vector space equipped with a non-degenerate symmetric bilinear form q with signature (2, 3). The null cone of  $\mathbb{R}^{2,3}$  is

$$\mathfrak{N} = \{ v \in \mathbb{R}^{2,3} \setminus \{0\} : \mathfrak{q}(v) = 0 \}.$$

. .

The 3-dimensional **Einstein universe**  $\mathbb{E}in^{1,2}$  is the image of the null cone  $\mathfrak{N}$  under the projectivization:

$$\mathbb{P}:\mathbb{R}^{2,3}\setminus\{0\}\longrightarrow\mathbb{RP}^4.$$

The degenerate metric on  $\mathfrak{N}$  induces a O(2, 3)-invariant conformal Lorentzian structure on the Einstein universe. The group of conformal transformations on  $\mathbb{E}in^{1,2}$  is O(2,3) [4].

A light-like geodesic in Einstein's universe is a **photon**. A photon is the projectivization of an isotropic 2-plane in  $\mathbb{R}^{2,3}$ . The set of photons through a point  $p \in \mathbb{E}in^{1,2}$  denoted by L(p) is the **lightcone** at p. The complement of a lightcone L(p) in Einstein's universe is the **Minkowski patch** at p and we denote it by Mink(p). A Minkowski patch is conformally equivalent to the 3-dimensional Minkoski space  $\mathbb{E}^{1,2}$  [1].

The complement to the Einstein universe in  $\mathbb{RP}^4$  has two connected components: the 3-dimensional Anti de-Sitter space  $\mathrm{AdS}^{1,2}$  and the generalized hyperbolic space  $\mathbb{H}^{2,2}$ : the first (respectively the second) is the projection of the domain  $\mathbb{R}^{2,3}$  defined by {q < 0} (respectively {q > 0}).

An immersed submanifold *S* of AdS<sup>1,2</sup> or  $\mathbb{H}^{2,2}$  is of **signature** (p, q, r) (respectively  $\mathbb{E}in^{1,2}$ ) if the restriction of the ambient pseudo-Riemannian metric (respectively the conformal Lorentzian metric) is of signature (p, q, r), meaning that the radical has dimension *r*, and that maximal definite negative and positive subspaces have dimensions *p* and *q*, respectively. If *S* is nondegenerate, we forgot *r* and simply denote its signature by (p, q).

**Theorem 1.1.** The irreducible action of  $PSL(2, \mathbb{R})$  on the 3-dimensional Einstein universe  $\mathbb{E}in^{1,2}$  admits three orbits:

- a 1-dimensional light-like orbit, i.e. of signature (0, 0, 1),
- a 2-dimensional orbit of signature (0, 1, 1),
- an open orbit (hence of signature (1, 2)) on which the action is free.

The 1-dimensional orbit is light-like, homeomorphic to  $\mathbb{RP}^1$ , but not a photon. The union of the 1-dimensional orbit and the 2-dimensional orbit is an algebraic surface, whose singular locus is precisely the 1-dimensional orbit. It is the union of all projective lines tangent to the 1-dimensional orbit. Fig. 1 describes a part of the 1 and 2-dimensional orbits in the Minkowski patch Mink([ $Y^4$ ]).



**Fig. 1.** Two partial views of the intersection of the 1 and 2-dimensional orbits in Einstein's universe with Mink([Y<sup>4</sup>]). **Red:** Part of the 1-dimensional orbit in Minkowski patch.

We will also describe the actions on the Anti de-Sitter space and the generalized hyperbolic space  $\mathbb{H}^{2,2}$ :

**Theorem 1.2.** The orbits of  $PSL(2, \mathbb{R})$  in the Anti de-sitter component  $AdS^{1,3}$  are Lorentzian, i.e. of signature (1, 2). They are the leaves of a codimension-1 foliation. In addition, PSL(2,  $\mathbb{R}$ ) induces three types of orbits in  $\mathbb{H}^{2,2}$ : a 2-dimensional space-like orbit (of signature (2.0)) homeomorphic to the hyperbolic plane  $\mathbb{H}^2$ , a 2-dimensional Lorentzian orbit (i.e. of signature (1, 1)) homeomorphic to the de-Sitter space dS<sup>1,1</sup>, and four kinds of 3-dimensional orbits where the action is free:

- a one-parameter family of orbits of signature (2, 1), consisting of elements with four distinct non-real roots,
- a one-parameter family of Lorentzian (i.e. of signature (1, 2)) orbits consisting of elements with four distinct real roots,
- two orbits of signature (1, 1, 1).
- a one-parameter family of Lorentzian (i.e. of signature (1, 2)) orbits consisting of elements with two distinct real roots, and two distinct complex conjugate roots so that the cross-ratio of the four roots has an argument strictly between  $-\pi/3$  and  $\pi/3$ .

#### 2. Proofs of the theorems

Let f be an element in  $\mathbb{V}$ . We consider it as a polynomial function from  $\mathbb{C}^2$  into  $\mathbb{C}$ . Actually, by specifying Y = 1, we consider f as a polynomial of degree at most 4. Such a polynomial is determined, up to a scalar, by its roots  $z_1$ ,  $z_2$ ,  $z_3$ ,  $z_4$ in  $\mathbb{CP}^1$  (some of these roots can be  $\infty$  if f can be divided by Y). It provides a natural identification between  $\mathbb{P}(\mathbb{V})$  and the set  $\widehat{\mathbb{CP}}_4^1$  made of 4-tuples (up to permutation)  $(z_1, z_2, z_3, z_4)$  of  $\mathbb{CP}^1$  such that if some  $z_i$  is not in  $\mathbb{RP}^1$ , then its conjugate  $\overline{z}_i$  is one of the  $z_i$ 's. This identification is PSL(2,  $\mathbb{R}$ )-equivariant, where the action of PSL(2,  $\mathbb{R}$ ) on  $\widehat{\mathbb{CP}}_4^1$  is simply the one induced by the diagonal action on  $(\mathbb{CP}^1)^4$ .

Actually, the complement of  $\mathbb{RP}^1$  in  $\mathbb{CP}^1$  is the union of the upper half-plane model  $\mathbb{H}^2$  of the hyperbolic plane, and the lower half-plane. We can represent every element of  $\widehat{\mathbb{CP}}_{4}^{1}$  by a 4-tuple (up to permutation) ( $z_1, z_2, z_3, z_4$ ) such that:

– either every  $z_i$  lies in  $\mathbb{RP}^1$ ,

- or  $z_1$ ,  $z_2$  lies in  $\mathbb{RP}^1$ ,  $z_3$  lies in  $\mathbb{H}^2$  and  $z_4 = \overline{z}_3$ , or  $z_1$ ,  $z_2$  lies in  $\mathbb{H}^2$  and  $z_3 = \overline{z}_1$ ,  $z_4 = \overline{z}_2$ .

Theorems 1.1 and 1.2 will follow from the proposition below.

**Proposition 2.1.** *Let* [f] *be an element of*  $\mathbb{P}(\mathbb{V})$ *. Then:* 

- it lies in  $\mathbb{E}in^{1,2}$  if and only if it has a root of multiplicity at least 3, or two distinct real roots  $z_1$ ,  $z_2$ , and two complex roots  $z_3$ ,  $z_4 = \bar{z}_3$ , with  $z_3$  in  $\mathbb{H}^2$  and such that the argument of the cross-ratio of  $z_1, z_2, z_3, z_4$  is  $\pm \pi/3$ ;
- it lies in AdS<sup>1,3</sup> if and only it has two distinct real roots  $z_1$ ,  $z_2$ , and two complex roots  $z_3$ ,  $z_4 = \bar{z}_3$ , with  $z_3$  in  $\mathbb{H}^2$  and such that the argument of the cross-ratio of  $z_1$ ,  $z_2$ ,  $z_3$ ,  $z_4$  has absolute value >  $\pi/3$ ;
- it lies in  $\mathbb{H}^{2,2}$  if and only if it has no real roots, or four distinct real roots, or a root of multiplicity exactly 2, or it has two distinct real roots  $z_1$ ,  $z_2$ , and two complex roots  $z_3$ ,  $z_4 = \bar{z}_3$ , with  $z_3$  in  $\mathbb{H}^2$  and such that the argument of the cross-ratio of  $z_1$ ,  $z_2$ ,  $z_3$ ,  $z_4$ has absolute value  $< \pi/3$ .

**Proof of Proposition 2.1.** Assume that *f* has no real root. Hence we are in the situation where  $z_1$ ,  $z_2$  lie in  $\mathbb{H}^2$  and  $z_3 = \overline{z}_1$ ,  $z_4 = \bar{z}_2$ . By applying a suitable element of PSL(2,  $\mathbb{R}$ ), we can assume  $z_1 = i$ , and  $z_2 = ri$  for some r > 0. In other words, f is in the PSL(2,  $\mathbb{R}$ )-orbit of  $(X^2 + Y^2)(X^2 + r^2Y^2)$ . The value of q on this polynomial is  $2 \times 1 \times r^2 + \frac{1}{6}(1 + r^2)^2 > 0$ , hence [f] lies in  $\mathbb{H}^{2,2}$ .

Hence, we can assume that f admits at least one root in  $\mathbb{RP}^1$ , and by applying a suitable element of PSL(2,  $\mathbb{R}$ ), one can assume that this root is  $\infty$ , i.e. that f is a multiple of Y.

We first consider the case where this real root has multiplicity at least 2:

$$f = Y^2(aX^2 + bXY + cY^2)$$

Then,  $q(f) = \frac{1}{6}a^2$ : it follows that if f has a root of multiplicity at least 3, it lies in  $\mathbb{E}in^{1,2}$ , and if it has a real root of mulitplicity 2, it lies in  $\mathbb{H}^{2,2}$ .

We assume from now on that the real roots of f have multiplicity 1. Assume that all roots are real. Up to PSL(2,  $\mathbb{R}$ ), one can assume that these roots are 0, 1, *r* and  $\infty$  with 0 < r < 1.

$$f(X, Y) = XY(X - Y)(X - rY) = X^{3}Y - (r + 1)X^{2}Y^{2} + rXY^{3}.$$

Then,  $q(f) = -\frac{1}{2}r + \frac{1}{6}(r+1)^2 = \frac{1}{6}(r^2 - r + 1) > 0$ . Therefore, f lies in  $\mathbb{H}^{2,2}$  once more. The only remaining case is the case where f has two distinct real roots, and two complex conjugate roots z,  $\overline{z}$  with  $z \in \mathbb{H}^2$ . Up to PSL(2,  $\mathbb{R}$ ), one can assume that the real roots are 0,  $\infty$ , hence:

$$f(X, Y) = XY(X - zY)(X - \bar{z}Y) = XY(X^2 - 2|z|\cos\theta XY + |z|^2Y^2)$$

where  $z = |z| e^{i\theta}$ . Then:

$$q(f) = \frac{2|z|^2}{3}(\cos^2\theta - \frac{3}{4}).$$

Hence *f* lies in  $\mathbb{E}in^{1,2}$  if and only if  $\theta = \pi/6$  or  $5\pi/6$ . The proposition follows easily.

**Remark 1.** F. Fillastre indicated to us that our description of the open orbit in  $\mathbb{E}in^{1,2}$  appearing in the first item of Proposition 2.1 has an alternative and more elegant description: this orbit corresponds to polynomials whose roots in  $\mathbb{CP}^1$  are ideal vertices of a regular ideal tetraedra in  $\mathbb{H}^3$ .

**Remark 2.** In order to determine the signature of the orbits induced by  $PSL(2, \mathbb{R})$  in  $\mathbb{P}(\mathbb{V})$ , we consider the tangent vectors induced by the action of 1-parameter subgroups of  $PSL(2, \mathbb{R})$ . We denote by *E*, *P*, and *H*, the 1-parameter elliptic, parabolic and hyperbolic subgroups stabilizing *i*,  $\infty$  and  $\{0, \infty\}$ , respectively.

**Proof of Theorem 1.1.** It follows from Proposition 2.1 that there are precisely three  $PSL(2, \mathbb{R})$ -orbits in  $\mathbb{E}in^{1,2}$ :

- one orbit  $\mathcal{N}$  comprising polynomials with a root of multiplicity 4, i.e. of the form  $[(sY tX)^4]$  with  $s, t \in \mathbb{R}$ . It is clearly 1-dimensional, and equivariantly homeomorphic to  $\mathbb{RP}^1$  with the usual projective action of PSL(2,  $\mathbb{R}$ ). Since  $\frac{d}{dt}|_{t=0}(Y tX)^4 = -4XY^3$  is a q-null vector, this orbit is light-like (but cannot be a photon since the action is irreducible);
- one orbit  $\mathcal{L}$  comprising polynomials with a real root of multiplicity 3, and another real root. These are the polynomials of the form  $[(sY tX)^3(s'Y t'X)]$  with  $s, t, s', t' \in \mathbb{R}$ . It is 2-dimensional, and it is easy to see that it is the union of the projective lines tangent to  $\mathcal{N}$ . The vectors tangent to  $\mathcal{L}$  induced by the 1-parameter subgroups P and E at  $[XY^3] \in \mathcal{L}$  are  $v_P = -Y^4$  and  $v_E = 3X^2Y^2 + Y^4$ . Obviously,  $v_P$  is orthogonal to  $v_E$  and  $v_E + v_P$  is space-like. Hence  $\mathcal{L}$  is of signature (0, 1, 1);
- one open orbit comprising polynomials admitting two distinct real roots and a root in  $\mathbb{H}^2$  such that the argument of the cross-ratio of the four roots is  $\pi/3$ . The stabilizers of points in this orbit are trivial, since an isometry of  $\mathbb{H}^2$  preserving a point in  $\mathbb{H}^2$  and one point in  $\partial \mathbb{H}^2$  is necessarily the identity.  $\Box$

**Proof of Theorem 1.2.** According to Proposition 2.1, the polynomials in  $AdS^{1,3}$  have two distinct real roots, and a complex root  $\mathbb{H}^2$  (and its conjugate) such that the argument of the cross-ratio of the four roots has absolute value  $> \pi/3$ . It follows that the action in  $AdS^{1,3}$  is free, and that the orbits are the level sets of the function  $\theta$ . Suppose that M is a  $PSL(2, \mathbb{R})$ -orbit in  $AdS^{1,3}$ . There exists  $r \in \mathbb{R}$  such that  $[f] = [Y(X^2 + Y^2)(X - rY)] \in M$ . The orbit induced by the 1-parameter subgroup E at [f] is:

$$\gamma(t) = \left[ (X^2 + Y^2) \left( (\sin t \cos t - r \sin^2 t) X^2 - (\sin t \cos t + r \cos^2 t) Y^2 + (\cos^2 t - \sin^2 t + 2r \sin t \cos t) XY \right) \right].$$

Then  $q(\frac{d\gamma}{dt}|_{t=0}) = -2 - 2r^2 < 0$ . This implies, as for any submanifold of a Lorentzian manifold admitting a time-like vector, that *M* is Lorentzian, i.e., of signature (1, 2).

The case of  $\mathbb{H}^{2,2}$  is the richest one. According to Proposition 2.1, there are four cases to consider.

- *No real roots.* Then *f* has two complex roots  $z_1$ ,  $z_2$  in  $\mathbb{H}^2$  (and their conjugates). It corresponds to two orbits: one orbit corresponding to the case  $z_1 = z_2$ : it is space-like and has dimension 2. It is the only maximal PSL(2,  $\mathbb{R}$ )-invariant surface in  $\mathbb{H}^{2,2}$  described in [2, Section 5.3]. The case  $z_1 \neq z_2$  provides a one-parameter family of 3-dimensional orbits on which the action is free (the parameter being the hyperbolic distance between  $z_1$  and  $z_2$ ). One may assume that  $z_1 = i$  and  $z_2 = ri$  for some r > 0. Denote by *M* the orbit induced by PSL(2,  $\mathbb{R}$ ) at  $[f] = [(X^2 + Y^2)(X^2 + r^2Y^2)]$ . The vectors tangent to *M* at [f] induced by the 1-parameter subgroups *H*, *P* and *E* are:

$$v_H = -4X^4 + 4r^2Y^4, \quad v_P = -4X^3Y - 2(r^2 + 1)XY^3, \quad v_E = 2(r^2 - 1)X^3Y + 2(r^2 - 1)XY^3,$$

respectively. The time-like vector  $v_H$  is orthogonal to both  $v_P$  and  $v_E$ . It is easy to see that the 2-plane generated by  $\{v_P, v_E\}$  is of signature (1, 1). Therefore, the tangent space  $T_{[f]}M$  is of signature (2, 1).

- Four distinct real roots. This case provides a one-parameter family of 3-dimensional orbits on which the action is free – the parameter being the cross-ratio between the roots in  $\mathbb{RP}^1$ . Denote by *M* the PSL(2,  $\mathbb{R}$ )-orbit at [f] = [XY(X - Y)(X - rY)] (here as explained in the proof of Proposition 2.1, we can restrict ourselves to the case 0 < r < 1). The vectors tangent to *M* at [f] induced by the 1-parameter subgroups *H*, *P*, and *E* are:

$$v_H = -rY^4 + 2(r+1)XY^3 - 3X^2Y^2, \quad v_P = -2X^3Y + 2rXY^3,$$
  
$$v_E = X^4 - rY^4 + 3(r-1)X^2Y^2 + 2(r+1)XY^3 - 2(r+1)X^3Y,$$

1136

respectively. A vector  $x = av_H + bv_P + cv_E$  is orthogonal to  $v_P$  if and only if  $2ra + b(r+1) + c(r+1)^2 = 0$ . Set  $a = (b(r+1) + c(r+1)^2) / -2r$  in

$$\mathfrak{q}(x) = 2ra^2 + \frac{3}{2}b^2 + \left(\frac{7}{2}(r^2+1) - r\right)c^2 + 2(r+1)ab + 2(r+1)^2 + ac(2r^2 - r + 5).$$

Consider q(x) = 0 as a quadratic polynomial F in b. Since 0 < r < 1, the discriminant of F is non-negative and it is positive when  $c \neq 0$ . Thus, the intersection of the orthogonal complement of the space-like vector  $v_P$  with the tangent space  $T_{[f]}M$  is a 2-plane of signature (1, 1). This implies that M is Lorentzian, i.e. of signature (1, 2).

- A root of multiplicity 2. Observe that if there is a non-real root of multiplicity 2, when we are in the first "no real root" case. Hence we consider here only the case where the root of multiplicity 2 lies in  $\mathbb{RP}^1$ . Then, we have three subcases to consider:
- two distinct real roots of multiplicity 2: The orbit induced at  $X^2Y^2$  is the image of the PSL(2,  $\mathbb{R}$ )-equivariant map

$$\mathrm{dS}^{1,1} \subset \mathbb{P}(\mathbb{R}_2[X,Y]) \longrightarrow \mathbb{H}^{2,2}, \quad [L] \mapsto [L^2],$$

where  $\mathbb{R}_2[X, Y]$  is the vector space of homogeneous polynomials of degree 2 in two variables *X* and *Y*, endowed with discriminant as a PSL(2,  $\mathbb{R}$ )-invariant bilinear form of signature (1, 2) [2, Section 5.3]. (Here, *L* is the projective class of a Lorentzian bilinear form on  $\mathbb{R}^2$ .) The vectors tangent to the orbit at  $X^2Y^2$  induced by the 1-parameter subgroups *P* and *E* are  $v_P = -2XY^3$  and  $v_E = 2X^3Y - 2XY^3$ , respectively. It is easy to see that the 2-plane generated by  $\{v_p, v_E\}$  is of signature (1, 1). Hence, the orbit induced at  $X^2Y^2$  is Lorentzian.

- three distinct real roots, one of them being of multiplicity 2; denote by *M* the orbit induced by  $PSL(2, \mathbb{R})$  at  $[f] = [XY^2(X - Y)]$ . The vectors tangent to *M* at [f] induced by the 1-parameter subgroups *H*, *P* and *E* are:

$$v_H = -2XY^3$$
,  $v_P = Y^4 - 2XY^3$ ,  $v_E = Y^4 - X^4 - 2X^2Y^2 + X^3Y - XY^3$ ,

respectively. Obviously, the light-like vector  $v_H + v_P$  is orthogonal to  $T_{[f]}M$ . Therefore, the restriction of the metric on  $T_{[f]}M$  is degenerate. It is easy to see that the quotient of  $T_{[f]}M$  by the action of the isotropic line  $\mathbb{R}(v_H + v_P)$  is of signature (1, 1). Thus, M is of signature (1, 1, 1).

- one real root of multiplicity 2, and one root in  $\mathbb{H}^2$ : Denote by M the orbit induced by PSL(2,  $\mathbb{R}$ ) at  $[f] = [Y^2(X^2 + Y^2)]$ . The vectors tangent to M at [f] induced by the 1-parameter subgroups H, P and E are  $v_H = 4Y^4$ ,  $v_P = -2XY^3$ , and  $v_E = 2X^3Y + 2XY^3$ , respectively. Obviously, the light-like vector  $v_H$  is orthogonal  $T_{[f]}M$ . Therefore, the restriction of the metric on  $T_{[f]}M$  is degenerate. It is easy to see that the quotient of  $T_{[f]}M$  by the action of the isotropic line  $\mathbb{R}(v_H)$  is of signature (1, 1). Thus M is of signature (1, 1, 1).
- Two distinct real roots, and a complex root in  $\mathbb{H}^2$  (and its conjugate) such that the argument of the cross-ratio of the four roots has absolute value  $< \pi/3$ . Denote by M the orbit induced by PSL(2,  $\mathbb{R}$ ) at  $[f] = [Y(X^2 + Y^2)(X rY)]$ . The vectors tangent to M at [f] induced by the 1-parameter subgroups H, P and E are:

$$v_H = -4rY^4 - 2X^3Y + 2XY^3, \quad v_P = -3X^2Y^2 + 2rXY^3 - Y^4, \quad v_E = X^4 - Y^4 - 2rX^3Y - 2rXY^3,$$

respectively. The following set of vectors is an orthogonal basis for  $T_{[f]}M$  where the first vector is time-like and the two others are space-like.

$$\{(7r+3r^3)v_H+(6-2r^2)v_P+(5+r^2)v_E, 4v_P+v_E, v_H\}.$$

Therefore, *M* is Lorentzian, i.e. of signature (1, 2).  $\Box$ 

#### References

- [2] B. Collier, N. Tholozan, J. Toulisse, The geometry of maximal representations of surface groups into SO(2, n), https://arxiv.org/abs/1702.08799.
- [3] A.J. Di Scala, T. Leistner, Connected subgroups of SO(2, n) acting irreducibly on  $\mathbb{R}^{2,n}$ , Isr. J. Math. 182 (2011) 103–122.
- [4] C. Frances, Géometrie et dynamique lorentziennes conformes, PhD thesis, ENS Lyon, France, 2002.
- [5] M. Hassani, Cohomogeneity one actions on the three-dimensional Einstein universe, in preparation.

T. Barbot, V. Charette, T. Drumm, W.M. Goldman, K. Melnick, A primer on the (2 + 1) Einstein universe, in: D.V. Alekseevsky, H. Baum (Eds.), Recent Developments in Pseudo-Riemannian Geometry, in: ESI Lectures in Mathematics and Physics, 2008, pp. 179–229.