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We show that points in specific degree-2 hypersurfaces in the Grassmannian Gr(3, n) cor-
respond to generic arrangements of n hyperplanes in C3 with associated discriminantal 
arrangement having intersections of multiplicity three in codimension two.
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r é s u m é

Nous montrons que les points d’hypersurfaces spécifiques de degré 2 de la grasmannienne 
Gr(3, n) correspondent aux arrrangements génériques de n hyperplans dans C3, dont l’ar-
rangement discriminant possède des intersections de triplets d’hyperplans de codimension 
deux.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In 1989, Manin and Schechtman (cf. [10]) considered a family of arrangements of hyperplanes generalizing classical braid 
arrangements that they called the discriminantal arrangements (cf. [10] p. 209). Such an arrangement B(n, k), n, k ∈ N for 
k ≥ 2 depends on a choice H0

1, ..., H0
n of collections of hyperplanes in general position in Ck . It consists of parallel translates 

of Ht1
1 , ..., Htn

n , (t1, ..., tn) ∈ C
n that fail to form a generic arrangement in Ck . B(n, k) can be viewed as a generalization of the 

pure braid group arrangement (cf. [12]) with which B(n, 1) coincides. These arrangements have several beautiful relations 
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with diverse problems, including combinatorics (cf. [10], [1], [3] and also [4], which is an earlier appearance of discrimi-
nantal arrangements), the Zamolodchikov equation with its relation to higher category theory (cf. Kapranov–Voevodsky [7]), 
and vanishing of cohomology of bundles on toric varieties (cf. [13]). The paper [10] is concerned with arrangements B(n, k)

whose combinatorics is constant on a Zariski open set Z in the space of generic arrangements H0
i , i = 1, ..., n, but does not 

describe the set Z explicitly. In 1994 (see [5]), Falk showed that, contrary to what was frequently stated (see for instance 
[11], sect. 8, [12] or [8]), the combinatorial type of B(n, k) depends on the arrangement A of hyperplanes H0

i , i = 1, ..., n by 
providing an example of A for which the corresponding discriminantal arrangement has combinatorial type distinct from 
the one that occurs when A varies within the Zariski open set Z . In 1997, Bayer and Brandt (cf. [3]) called the arrangements 
A in Z very generic and conjectured the full description of the intersection lattice of B(n, k) if A ∈ Z . In 1999, Athanasiadis 
proved their conjecture (cf. [1]). In particular, for the case of the arrangement A in Rk , endowed with standard metric, he 
introduced a degree m polynomial pT(aij) (section 1 in [1] and subsection 2.3 in this paper) in the indeterminates (aij), 
where αi = (aij) is the normal vector to hyperplane H0

i , i ∈ Lh ∈ T, Lh is a subset of cardinality k + 1 of {1, . . . , n} and T
is a set of cardinality m. Since a null space of this polynomial corresponds to the intersection of hyperplanes in B(n, k), he 
provided, in the case of very generic arrangements, a full description of sets T such that pT(aij) = 0 (cf. Theorem 3.2 in [1]). 
In particular, all codimension-2 intersections of hyperplanes in B(n, k) have multiplicity 2 or k + 2 if A is very generic.

More recently, in 2016 (cf. [9]), Libgober and second author gave a sufficient geometric condition for an arrangement 
A not to be very generic. In particular, they gave a necessary and sufficient condition for multiplicity-3 codimension-2
intersections of hyperplanes in B(n, k) to appear (Theorem 3.8 [9] and Theorem 2.2 in this paper).

The purpose of this short note is double. From one side, it aims at rewriting the result obtained in [9] in terms of the 
polynomial pT(aij) introduced by Athanasiadis and at proving that, in case of non very generic arrangements, if T is a set 
of cardinality 3 such that pT(aij) = 0, then the polynomial pT(aij) has a simpler polynomial expression p̃T(aij).

On the other side, the purpose is to show, by means of a more algebraic point of view, that non very generic arrange-
ments A of cardinality n in C3 are points in a well-defined degree 2 hypersurface in the projective Grassmannian Gr(3, n). 
Indeed, the space of generic arrangements of n lines in (P2)n is a Zariski open set U in the space of all arrangements of 
n lines in (P2)n . On the other hand, in Gr(3, n) there is an open set U ′ consisting of 3-spaces intersecting each coordinate 
hyperplane transversally (i.e. having dimension of intersection equal 2). One has also one set Ũ in Hom(C3, Cn) consist-
ing of embeddings with image transversal to coordinate hyperplanes and Ũ/GL(3) = U ′ and Ũ/(C∗)n = U . Hence, generic 
arrangements can be regarded as points in Gr(3, n).

The content of paper is the following.
In section 2, we recall the definition of the discriminantal arrangement from [10], basic results in [9], the definition of 

pT(aij) in [1] and basic notions on the Grassmannian (cf. [6]). In section 3, we give a full description of the main example 
B(6, 3) of 6 hyperplanes in R3. Section 4 contains the result stating the equivalence of polynomial pT(aij) with its reduced 
form p̃T(aij) (cf. Theorem 4.4). The last section contains the last result of this paper (cf. Theorem 5.4), describing a family 
of hypersurfaces in the projective Grassmannian Gr(3, n) in terms of non very generic arrangements A in C3. Notice that in 
Sections 3 and 4 A is an arrangement in Rk , while in Section 5, A is an arrangement in Ck .

2. Preliminaries

2.1. Discriminantal arrangement

Let H0
i , i = 1, ..., n be a generic arrangement in Ck, k < n i.e. a collection of hyperplanes such that dim

⋂
i∈K ,|K |=k H0

i = 0. 
The space of parallel translates S(H0

1, ..., H0
n) (or simply S when dependence on H0

i is clear or not essential) is the space of 
n-tuples H1, ..., Hn such that either Hi ∩ H0

i = ∅ or Hi = H0
i for any i = 1, ..., n. One can identify S with the n-dimensional 

affine space Cn in such a way that (H0
1, ..., H0

n) corresponds to the origin. In particular, an ordering of hyperplanes in A
determines the coordinate system in S (see [9]).

We will use the compactification of Ck viewing it as Pk \ H∞ endowed with a collection of hyperplanes H̄0
i that are 

projective closures of affine hyperplanes H0
i . The condition of genericity is equivalent to 

⋃
i H0

i being a normal crossing 
divisor in Pk .

For a generic arrangement A in Ck formed by hyperplanes Hi, i = 1, ..., n, the trace at infinity (denoted by A∞) is the 
arrangement formed by hyperplanes H∞,i = H̄0

i ∩ H∞ .
The trace A∞ of an arrangement A determines the space of parallel translates S (as a subspace in the space of n-tuples 

of hyperplanes in Pk). For a t-tuple Hi1 , . . . , Hit (t ≥ 1) of hyperplanes in A , recall that the arrangement that is obtained by 
intersections of hyperplanes H ∈ A, H 	= His , s = 1, . . . , t , with Hi1 ∩ · · · ∩ Hit , is called the restriction of A to Hi1 ∩ · · · ∩ Hit .

For a generic arrangement A∞ , consider the closed subset of S formed by those collections that fail to form a generic 
arrangement. This subset is a union of hyperplanes with each hyperplane D L corresponding to a subset L = {i1, . . . , ik+1} ⊂
[n] := {1, . . . , n} and consisting of n-tuples of translates of hyperplanes H0

1, . . . , H0
n in which translates of H0

i1
, . . . , H0

ik+1
fail 

to form a generic arrangement. The arrangement B(n, k, A∞) of hyperplanes D L is called the discriminantal arrangement and 
has been introduced by Manin and Schechtman (see [10]). Notice that since the combinatorics of discriminantal arrangement 
depends on the arrangement A∞ rather than A , we denote it by B(n, k, A∞) following the notation in [9].
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2.2. Good 3s-partitions

Given s ≥ 2 and n ≥ 3s, consider the set T = {L1, L2, L3}, with Li subsets of [n] such that |Li | = 2s, |Li ∩ L j | = s (i 	= j), 
L1 ∩ L2 ∩ L3 = ∅ (in particular | ⋃ Li | = 3s) with a choice L1 = {i1, . . . , i2s}, L2 = {is+1, . . . , i3s}, L3 = {i1, . . . , is, i2s+1, . . . , i3s}. 
We call the set T = {L1, L2, L3} a good 3s-partition.

Given a generic arrangement A in Ck , subsets Li define hyperplanes D Li in the discriminantal arrangement B(n, k, A∞). 
In the rest of the paper, we will always use D L to denote hyperplanes in discriminantal arrangement. With the above 
notations, the following lemma holds.

Lemma 2.1. (Lemma 3.1 [9]) Let s ≥ 2, n = 3s, k = 2s − 1 and A be a generic arrangement of n hyperplanes in Ck. Given a good 
3s-partition T = {L1, L2, L3} of [n] = [3s], consider the triple of codimension-s subspaces H∞,i, j = ⋂

t∈Li∩L j
H∞,t of the hyperplane 

at infinity H∞ . Then H∞,i, j span a proper subspace in H∞ if and only if the codimension of D L1 ∩ D L2 ∩ D L3 is 2.

In [9], the authors define a notion of dependency for a generic arrangement A∞ = {W∞,1, . . . , W∞,3s} in P2s−2, s ≥ 2
based on Lemma 2.1 as follows. If there exists a partition I1, I2 and I3 of [3s] such that Pi = ⋂

t∈Ii
W∞,t span a proper 

subspace in P2s−2, then A∞ is called dependent. Remark that if {L1, L2, L3} is a good 3s-partition and if we set I1 = L1 ∩ L2, 
I2 = L1 ∩ L3, I3 = L2 ∩ L3, then the assumption of Lemma 2.1 is that the trace at infinity A∞ of A is dependent and the 
following theorem holds.

Theorem 2.2. (Theorem 3.8 [9]) Let A be a generic arrangement of n hyperplanes in Ck and A∞ the trace at infinity of A .
1. The arrangement B(n, k, A∞) has 

( n
k+2

)
codimension-2 strata of multiplicity k + 2.

2. There is a one-to-one correspondence between
(a) restriction arrangements of A∞ that are dependent, and
(b) triples of hyperplanes in B(n, k, A∞) for which the codimension of their intersection is equal to 2.
3. There are no codimension-2 strata having multiplicity 4 unless k = 3. All codimension-2 strata of B(n, k, A∞) not mentioned in 

part 1 have multiplicity either 2 or 3.
4. The combinatorial type of B(n, 2, A∞) is independent of A .

2.3. Matrices A(A∞) and AT(A∞)

Let αi = (ai1, . . . , aik) be the normal vectors of hyperplanes H0
i , 1 ≤ i ≤ n, in the generic arrangement A in Ck . Normal 

here is intended with respect to the usual dot product

(a1, . . . ,ak) · (v1, . . . , vk) =
∑

i

ai vi .

Then the normal vectors to hyperplanes D L , L = {s1 < · · · < sk+1} ⊂ [n] in S �C
n are nonzero vectors of the form

αL =
k+1∑
i=1

(−1)i det(αs1 , . . . , α̂si , . . . ,αsk+1)esi , (1)

where {e j}1≤ j≤n is the standard basis of Cn (cf. [1]).
Let Pk+1([n]) = {L ⊂ [n] | |L| = k + 1} be the set of cardinality k + 1 subsets of [n], we denote by

A(A∞) = (αL)L∈Pk+1([n]) (2)

the matrix having in each row the entries of vectors αL normal to hyperplanes D L and by AT(A∞) the submatrix of A(A∞)

with rows αL , L ∈ T, T ⊂ Pk+1([n]) of cardinality m.

2.4. Polynomial pT(aij)

The construction in Subsection 2.3 naturally holds also in the real case, i.e. A arrangement in Rk . In this case, 
Athanasiadis (see [1]) defined the polynomial

pT(aij) =
∑
J⊂[n]
| J |=m

det[AT, J (A∞)]2 (3)

in the variable aij given by the sum of the squares of determinants of the m × m submatrices AT, J of AT(A∞) obtained 
considering the columns j ∈ J . Notice that if A is a generic arrangement in Rk , if T = {L1, L2, L3} is a good 3s-partition, 
then the condition in Lemma 2.1 is equivalent to pT(aij) = 0.
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2.5. Grassmannian Gr(k, n)

Let Gr(k, n) be the Grassmannian of k-dimensional subspaces of Cn and

γ : Gr(k,n) → P(

k∧
C

n)

< v1, . . . , vk > �→ [v1 ∧ · · · ∧ vk],
(4)

the Plücker embedding. Then [x] ∈ P(
∧k

C
n) is in γ (Gr(k, n)) if and only if the map

ϕx : Cn →
k+1∧

C
n

v �→ v ∧ x

(5)

has a kernel of dimension k, i.e. ker ϕx =< v1, . . . , vk >. If e1, . . . , en is a basis of Cn , then eI = ei1 ∧ . . . ∧ eik , I =
{i1, . . . , ik} ⊂ [n], i1 < · · · < ik , is a basis for 

∧k
C

n , and x ∈ ∧k
C

n can be written uniquely as

x =
∑
I⊆[n]
|I|=k

βI eI =
∑

1≤i1<···<ik≤n

βi1...ik (ei1 ∧ · · · ∧ eik ) (6)

where homogeneous coordinates βI are the Plücker coordinates on P(
∧k

C
n) = P

(n
k

)−1 associated with the ordered basis 
e1, . . . , en of Cn . With this choice of basis for Cn , the matrix Mx = (bij) associated with ϕx is the 

( n
k+1

)×n matrix with rows 
indexed by ordered subsets I ⊆ [n], |I| = k, and entries bij = (−1)iβI∪{ j}\{i} if i ∈ I , bij = 0 otherwise. The Plücker relations, 
i.e. conditions for dim(ker ϕx) = k, are vanishing conditions of all (n − k + 1) × (n − k + 1) minors of Mx . It is well known 
(see for instance [6]) that Plücker relations are degree-2 relations and that they can also be written as

k∑
l=0

(−1)lβi1...ik−1 jl β j0... ĵl ... jk
= 0 (7)

for any 2k-tuple (i1, . . . , ik−1, j0, . . . , jk).

Remark 2.3. Notice that vectors αL in equation (1) normal to hyperplanes D L correspond to rows I = L in the Plücker 
matrix Mx , that is

A(A∞) = Mx .

For this reason, in the rest of the paper, we will call A(A∞) Plücker coordinate matrix. Notice that, in particular, 
det(αs1 , . . . , α̂si , . . . , αsk+1 ) is the Plücker coordinate βI , I = {s1, s2, . . . , sk+1}\{si}.

In the following section, we give an example to illustrate the general Theorem in section 4. This example appears also in 
[5], [9] and, in the context of oriented matroids, in [2].

3. Example BBB(6, 3, AAA∞) in a real case

Consider A = {H0
1, H0

2, . . . , H0
6} to be a generic arrangement of hyperplanes in R3 with normal vectors αi = (ai1, ai2, ai3), 

1 ≤ i ≤ 6 and Hti
i to be a hyperplane obtained by translating H0

i along the direction αi , i.e. Hti
i = H0

i + tiαi , ti ∈ R. Let 
T = {L1, L2, L3} be the good 6-partition with L1 = {1, 2, 3, 4}, L2 = {1, 2, 5, 6} and L3 = {3, 4, 5, 6}, then

AT(A∞) =
⎛⎝αL1

αL2

αL3

⎞⎠ =
⎛⎝−β234 β134 −β124 β123 0 0

−β256 β156 0 0 −β126 β125
0 0 −β456 β356 −β346 β345

⎞⎠ , βi jk = det

⎛⎝ai1 a j1 ak1
ai2 a j2 ak2
ai3 a j3 ak3

⎞⎠
is a submatrix of the Plücker coordinate matrix A(A∞).

Let αi × α j be the cross product of αi, α j corresponding to the direction orthogonal to both αi and α j , and denote by 

(αi × αi+1) the matrix 

⎛⎝α1 × α2
α3 × α4
α5 × α6

⎞⎠. Then αi × α j is the direction of the line Hi ∩ H j , since αi and α j are, respectively, 

directions orthogonal to Hi and H j and rank AT(A∞) = 2 if and only rank(αi × αi+1) = 2. Indeed rank(AT(A∞)) = 2 is 
equivalent to codim (D L1 ∩ D L2 ∩ D L3) = 2; hence, by Lemma 2.1, the points 

⋂
H̄ti

i ∩ H∞ = H̄t3
3 ∩ H̄t4

4 ∩ H∞, 
⋂

H̄ti
i ∩
i∈L1∩L2 i∈L1∩L3
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Fig. 1. Picture of case B(6,3,A0∞).

H∞ = H̄t1
1 ∩ H̄t2

2 ∩ H∞ , and 
⋂

i∈L2∩L3

H̄ti
i ∩ H∞ = H̄t5

5 ∩ H̄t6
6 ∩ H∞ are collinear, which means that the directions of Hti

i ∩ H
ti+1
i+1

are dependent, and hence that rank(αi × αi+1) = 2 (see Fig. 1).
The rank of AT(A∞) is equal to 2 if and only if βi jk are solutions to the system:

(I)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−β456(β134β256 − β234β156) = 0

β356(β134β256 − β234β156) = 0

−β346(β134β256 − β234β156) = 0

β345(β134β256 − β234β156) = 0

−β256(β124β356 − β123β456) = 0

β156(β124β356 − β123β456) = 0

−β126(β124β356 − β123β456) = 0

β125(β124β356 − β123β456) = 0

−β234(β125β346 − β126β345) = 0

β134(β125β346 − β126β345) = 0

−β124(β125β346 − β126β345) = 0

β123(β125β346 − β126β345) = 0

and (I I)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β234β126β456 + β124β256β346 = 0

−(β234β125β456 + β124β256β345) = 0

−(β234β126β356 + β123β256β346) = 0

β234β125β356 + β123β256β345 = 0

−(β134β126β456 + β124β156β346) = 0

β134β125β456 + β124β156β345 = 0

β134β126β356 + β123β156β346 = 0

−(β134β125β356 + β123β156β345) = 0

(8)

and the polynomial pT(aij) is

pT(aij) =
∑
J⊂[6]
| J |=3

det(AT, J )
2 = (β134β256 − β234β156)

2(
∑

I1⊂{3,4,5,6}
|I1|=3

β2
I1

) + (β124β356 − β123β456)
2(

∑
I2⊂{1,2,5,6}

|I2|=3

β2
I2

)

+ (β125β346 − β126β345)
2(

∑
I3⊂{1,2,3,4}

|I3|=3

β2
I3

) +
∑

i=5,6
j=3,4

(β234β12iβ j56 + β12 jβ256β34i)
2

+
∑

i=5,6
j=3,4

(β134β12iβ j56 + β12 jβ156β34i)
2.

On the other hand, the condition rank(αi × αi+1) = 2 is simply det(αi × αi+1) = 0, and if we define

p̃T(aij) = [det(αi × αi+1)]2 = {(a12a23 − a13a22)�11 + (a11a23 − a13a21)�12 + (a11a22 − a12a2)�13}2, (9)

�1l cofactors of (αi × αi+1), then pT(aij) = 0 if and only if p̃T(aij) = 0. That is polynomial p̃T(aij) is a polynomial of, in 
general, lower degree than pT(aij) with the same set of zeros.

4. Polynomial p̃TTT(ai j) in BBB(n, k, AAA∞) in a real case

4.1. Case B(n, 3, A∞)

It is straightforward to generalize the example in section 3 to the case of n hyperplanes in R3. Denote by (αi j × αi j+1)

the matrix 

⎛⎝αi1 × αi2

αi3 × αi4

α × α

⎞⎠, the following Theorem holds.

i5 i6
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Theorem 4.1. Let A be a generic arrangement of n hyperplanes in R3 with normal vectors αi = (ai1, ai2, ai3). Let T = {L1, L2, L3} be 
a good 6-partition with a choice L1 = {i1, i2, i3, i4}, L2 = {i3, i4, i5, i6} and L3 = {i1, i2, i5, i6} and AT(A∞) be the matrix with rows 
αL1 , αL2 , αL3 . Then the following statements are equivalent:

(1) rank AT(A∞) = 2;
(2) pT(aij) = 0;
(3) rank(αi j × αi j+1 ) = 2;

(4) p̃T(aij) = [det(αi j × αi j+1)]2 = 0.

Proof. The equivalences (1) ⇔ (2) and (3) ⇔ (4) are obvious from the definitions of pT(aij) and p̃T(aij). The proof that 
(1) ⇔ (3) can be obtained from the remarks in Section 3, relabeling indices 1, . . . , 6 with i1, . . . , i6. �
Remark 4.2. Notice that, since p̃T(aij) = [det(αi j × αi j+1 )]2, then p̃T(aij) = 0 if and only if det(αi j × αi j+1 ) = 0, the equiva-

lence of conditions (1), (3) and (4) in Theorem 4.1 holds also for generic arrangements in C3.

4.2. Generalization to B(n, k, A∞)

Let A = {H1, . . . , Hn} be a generic arrangement of hyperplanes in Rk and T = {L1, L2, L3} be a good 3s-partition of 
indices in [n]. If ατ are normal vectors to Hτ ∈ A , τ = 1, . . . , n, T = { j1, · · · , jt} a subset of [n] that has empty intersection 
with L1 ∪ L2 ∪ L3, define vector spaces

U⊥
i, j = {v ∈ R

k | v · ατ = 0, τ ∈ Li ∩ L j},
where v · ατ is the scalar product of v and ατ , and

W T =
{
R

k (T = ∅)

{v ∈ R
k | v · ατ = 0, τ ∈ T } (T 	= ∅) .

(10)

Then W T is the vector space associated with 
⋂
τ∈T

Hτ and U⊥
i, j ∩ W T = {v ∈R

k | v ·ατ = 0, τ ∈ (Li ∩ L j) ∪ T } is a vector space 

of dimension k − (s + t), where s and t are, respectively, cardinalities of Li ∩ L j and T . With the above notations, define the 
polynomial

p̃T,T (aij) =
∑

U∈UT,T

[det U ]2,

where UT,T is the set of all k × k submatrices of the 3(k − s − t) × k matrix having as rows the vector spanning U⊥
i, j ∩ W T .

If k = 2s − 1 and n = 3s, s ≥ 2, we have T = ∅, and hence U⊥
i, j ∩ W T = U⊥

i, j is a space of dimension dim U⊥
i, j = s − 1. UT,∅

is the set of all (2s − 1) × (2s − 1) submatrices of the 3(s − 1) × (2s − 1) matrix having as rows the vectors spanning U⊥
i, j

and the following lemma, equivalent to Lemma 2.1 holds.

Lemma 4.3. Let s ≥ 2, n = 3s, k = 2s −1, i.e. T = ∅, and A be a generic arrangement of n hyperplanes in Rk. Given a good 3s-partition 
T = {L1, L2, L3} of [3s] = [n], U⊥

i, j span a proper subspace of Rk if and only if the rank of AT(A∞) is 2, that is, ̃pT,∅(aij) = 0 if and 
only if pT(aij) = 0.

Proof. Since T is a good 3s-partition and AT(A∞) = (αL)L∈T is a 3 ×n matrix, the rank of the matrix AT(A∞) is equal to 2 
if and only if αL, L ∈ T, are linearly dependent, that is, the intersection D L1 ∩ D L2 ∩ D L3 of hyperplanes in B(n, k, A∞) is a 
space of codimension 2. Then, by Lemma 2.1, this corresponds to H∞,i, j = ⋂

τ∈Li∩L j
H̄τ ∩ H∞ ⊂ H∞ span a proper subspace 

in H∞ . Let Vτ be the vector spaces associated with the hyperplanes Hτ , hence V i, j = ⋂
τ∈Li∩L j

Vτ are the vector spaces 
associated with Hi, j = ⋂

τ∈Li∩L j
Hτ and V i, j = U⊥

i, j since v ∈ V i, j if and only if v · ατ = 0 for any τ ∈ Li ∩ L j . It follows that 
H∞,i, j span a proper subspace of H∞ if and only if U⊥

i, j span a proper subspace of Rk . That is, det U = 0 for any U ∈ UT,∅
or, equivalently, p̃T,∅(aij) = 0. �

Notice that if s = 2, i.e. the case B(6, 3, A∞), p̃T,∅(aij) coincides with p̃T(aij), defined in Section 3. In this case, 
1-dimensional subspaces U⊥

1,2, U⊥
1,3 and U⊥

2,3 are spanned, respectively, by α1 × α2, α3 × α4 and α5 × α6, that is, they 
are the lines drawn in Fig. 1.

Analogously to [9], we call a generic arrangement A = {W1, · · · , W3s} in R2s−1, s ≥ 2, dependent if there exists a good 
3s-partition such that U⊥

i, j span a proper subspace of R2s−1. With this notation, by Lemma 2.1 and Theorem 2.2, the 
following theorem holds.
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Theorem 4.4. Let A be a generic arrangement of n hyperplanes in Rk, T a good 3s-partition, 3s ≤ n, and T = [n] \ ∪L∈TL. If W T is 
the vector space defined in equation (10), then the rank of AT(A∞) is equal to 2 if and only if the restriction arrangement

AW T = {H ∩
⋂
τ∈T

Hτ | H ∈ A\{Hi}i∈T }

is dependent. With this choice of T and T, we get that pT(aij) = 0 if and only if ̃pT,T (aij) = 0.

Remark 4.5. For a fixed good 3s-partition T, equation pT(aij) = 0 corresponds to 
( n

3s

) (3s
s

)
nonlinear relations on Plücker 

coordinates βI , (2s − 1) × (2s − 1) minors of the matrix A = (aij).
On the other hand, p̃T,T (aij) = 0 is equivalent to vanishing of (2s − 1) × (2s − 1) minors of the matrix with rows given 

by solutions to the system AI · x = 0, AI = (aij)i∈I , i.e. the 
( n

3s

) (3s−3
2s−1

)
equations on aij . That is p̃T,T (aij) = 0 is a reduced 

form of pT(aij) = 0.

5. Hypersurfaces in complex Grassmannian Gr(3, n)

Let now A be a generic arrangement of six hyperplanes in C3 (i.e. the example in Section 3 in C3 instead of R3) and

A =
⎛⎜⎝a11 a12 a13

...
...

...

a61 a62 a63

⎞⎟⎠ (11)

be the matrix having in each row normal vectors αi to hyperplanes H0
i ∈ A . Since A is generic, the columns of A are 

independent vectors in C6 and they span a subspace of dimension 3 in C6, i.e. an element in the Grassmannian Gr(3, 6). 
The non-null 3 × 3 minors of A are Plücker coordinates βi jk , and the matrix A(A∞) is the matrix of the map

ϕx : C6 →
4∧
C

6

v �→ v ∧ x,

where x = ∑
1≤i< j<k≤n βi jk(ei ∧ e j ∧ ek). If A∞ is dependent, then βi jk have to satisfy both, classical Plücker relations and 

relations in equation (8). Notice that since the relations in equation (8) come directly from condition rank AT(A∞) = 2, we 
get exactly same relations in the real and complex cases. The latter can be simplified as:

(I) :

⎧⎪⎨⎪⎩
(a) : β134β256 − β234β156 = 0

(b) : β124β356 − β123β456 = 0

(c) : β125β346 − β126β345 = 0

and (I I) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(d) : β234β126β456 + β124β256β346 = 0

(e) : β234β125β456 + β124β256β345 = 0

( f ) : β234β126β356 + β123β256β346 = 0

(g) : β234β125β356 + β123β256β345 = 0

(h) : β134β126β456 + β124β156β346 = 0

(i) : β134β125β456 + β124β156β345 = 0

( j) : β134β126β356 + β123β156β346 = 0

(k) : β134β125β356 + β123β156β345 = 0 .

Where equation (I)(a) is obtained dividing the first four equations in system (I) in (8) respectively by −β456, β356, −β346,

β345 	= 0 and, similarly, equations (I)(b) and (c) are obtained dividing, respectively, equations (5) to (8) and equations (9)
to (12) in system (I) in (8) by, respectively, −β256, β156, −β126, β125 	= 0 and −β234, β134, −β124, β123 	= 0, while equations 
in (I I) (8) are left unchanged, except for a change of sign. Remark that this is only possible since A is a generic arrangement, 
which implies that all βi jk 	= 0 and hence we can divide equations in (8) (I) opportunely by them. In the following, we refer 
to the equations in (I) and (I I) by using the corresponding letters, for example (a) will refer to equation β134β256 −β234β156. 
The Plücker relations in equation (7) for k = 3 become:

βi1i2k0βk1k2k3 − βi1i2k1βk0k2k3 + βi1i2k2βk0k1k3 − βi1i2k3βk0k1k2 = 0.

Fixing i1 = 1, i2 = 2, k0 = 4, k1 = 3, k2 = 5, k3 = 6, we obtain

β124β356 − β123β456 + β125β436 − β126β435 = 0,

that is, (b) = (c), and fixing i1 = 5, i2 = 6, k0 = 2, k1 = 1, k2 = 3, k3 = 4, we get (a) = (b). This means that the relations in (I) 
are equivalent.

Next, we focus on type-(II) relations and on the vanishing of all 4 × 4 minors of the Plücker matrix. We fix a good 
6-partition T = {L1, L2, L3}, for any subset L4 ⊂ [6] of cardinality 4 such that L4 /∈ T, and we define the submatrix
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PlT(D L4) = (αLi )1≤i≤4 (12)

of A(A∞). The matrix PlT(D L4 ) is obtained by adding one row to the matrix AT(A∞). Hence, since the relations in equa-
tion (8) correspond to the vanishing of 3 × 3 minors of AT(A∞), T = {{1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}}, then zero of 4 × 4
minors of matrix PlT(D L4 ) for same fixed T naturally give rise to relations among the relations in (8). For example (d) = 0
and (e) = 0 correspond to vanishing of minors obtained considering, respectively, 1st, 3rd and 5th columns and 1st, 3rd and 
6th columns of AT(A∞). Adding to AT(A∞) the normal vector to the hyperplane D{2,4,5,6} as 4th row, we get

PlT(D{2,4,5,6}) =

⎛⎜⎜⎝
−β234 β134 −β124 β123 0 0
−β256 β156 0 0 −β126 β125

0 0 −β456 β356 −β346 β345
0 −β456 0 β256 −β246 β245

⎞⎟⎟⎠
and calculating the determinant of the submatrix obtained by the 1st, 3rd, 5th, and 6th columns, we get the relation among 
(e) and (d):

β246 · (e) − β245 · (d) = 0 . (13)

Analogously, the vanishing of minor obtained by 1st, 4th, 5th and 6th columns gives:

β256β234 · (c) − β246 · (g) + β245 · ( f ) = 0 . (14)

Applying similar considerations to opportunely chosen L4 /∈ T we get the following additional syzygies.
The vanishing of minors obtained considering 1st, 4th, 5th and 6th columns and 1st, 3rd, 5th and 6th columns of

PlT(D{2,3,5,6}) =

⎛⎜⎜⎝
−β234 β134 −β124 β123 0 0
−β256 β156 0 0 −β126 β125

0 0 −β456 β356 −β346 β345
0 −β356 β256 0 −β236 β235

⎞⎟⎟⎠
leads, respectively, to relations β236 · (g) − β235 · ( f ) = 0 and β256β234 · (c) + β236 · (e) − β235 · (d) = 0. Those relations, jointly 
with the one in equations (13) and (14), state dependency of (d), (e), ( f ) and (g) from (c) which, in turn, is equivalent 
to (a), i.e. they are all zero if and only if (a) is zero.

By vanishing of the minors given by the 2nd, 3rd, 5th and 6th columns and 2nd, 4th, 5th and 6th columns of the 
submatrix

PlT(D{1,4,5,6}) =

⎛⎜⎜⎝
−β234 β134 −β124 β123 0 0
−β256 β156 0 0 −β126 β125

0 0 −β456 β356 −β346 β345
−β456 0 0 β156 −β146 β145

⎞⎟⎟⎠
we get, respectively, β146 · (i) − β145 · (h) = 0 and β156β134 · (c) − β146 · (k) + β145 · ( j) = 0.

Finally, by vanishing of minors given by 2nd, 4th, 5th and 6th columns and 2nd, 3rd, 5th and 6th columns of

PlT(D{1,3,5,6}) =

⎛⎜⎜⎝
−β234 β134 −β124 β123 0 0
−β256 β156 0 0 −β126 β125

0 0 −β456 β356 −β346 β345
−β356 0 β156 0 −β136 β135

⎞⎟⎟⎠
give relations β136 · (k) − β135 · ( j) = 0 and −β156β134 · (c) − β136 · (i) + β135 · (h) = 0.

That is, the relations in equation (8) are all equivalent, and we are left with only one independent relation

(a) = 0 : β134β256 − β234β156 = 0. (15)

This degree-2 homogeneous polynomial defines a degree-2 hypersurface on the projective variety Gr(3, 6).
The above computations are a direct consequence of the following more general Lemma.

Lemma 5.1. Let A(A∞) be the Plücker matrix associated with a generic arrangement A of n hyperplanes in C3 and T a good 6-partition 
of indices i1, . . . , i6 ∈ [n]. If the entries βI of the matrix A(A∞) satisfy the Plücker relations, then rank AT(A∞) = 2 if and only if one 
of its 3 × 3 minors vanishes.

Proof. ⇒) Since rank AT(A∞) = 2 if and only if all 3 × 3 minors of AT(A∞) vanish, it is obvious.
⇐) Entries βI of A(A∞) satisfy the Plücker relations if and only if any 4 ×4 minor in A(A∞) vanishes. For any 4 columns 

s1 < s2 < s3 < s4 ∈ {i1, . . . , i6} of matrix A(A∞) let Mi and M j be the two 3 × 3 minors in AT(A∞) obtained considering, 
respectively, the columns {s1, s2, s3, s4}\{si} and {s1, s2, s3, s4}\{s j}. If we add to the submatrix AT(A∞) the row of A(A∞)
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corresponding to the vector αL , L = {si, s j, s5, s6}, with {s5, s6} = {i1, . . . , i6}\{s1, s2, s3, s4}, then the 4 × 4 minor of the 

matrix 
(

AT(A∞)

αL

)
obtained considering the columns {s1, s2, s3, s4} vanishes, that is,

βL\{si}Mi ± βL\{s j}M j = 0 (16)

where βL\{st } is the entry of the row αL in the column st , t = i, j. Dividing by βL\{si} 	= 0 (entries of A(A∞) are all not zero 
by A generic), we get

Mi = ±M j · βL\{s j}
βL\{si}

(17)

that is, Mi = 0 if and only if M j = 0. Applying the above considerations to any subset {s1 < s2 < s3 < s4} ⊂ {i1, . . . , i6} and 
transitivity of equality, we get that if a 3 × 3 minor of AT(A∞) vanishes, then all minors vanish. �
Remark 5.2. Recall that if A is an arrangement of n hyperplanes in C3, then the matrix A(A∞) is an 

(n
4

)×n matrix such that, 
for any L = {s1 < s2 < s3 < s4}, the entries (x1, . . . , xn) of the row vector αL are all zeros, except xi j = (−1) jβI j , I j = L \ {s j}, 
j = 1, . . . , 4. Hence, for any fixed six indices s1 < . . . < s6 ∈ [n], we get a 

(6
4

) × 6 submatrix of A(A∞) obtained considering 
all rows αL , L ⊂ {s1, . . . , s6}, | L |= 4 and columns {s1, . . . , s6} (all columns j /∈ {s1, . . . , s6} of the matrix (αL)L⊂{s1,...,s6},|L|=4
are zero). It follows that the general case of n hyperplanes in C3 essentially reduce to the case n = 6.

On the other hand, one can easily remark that, if s1 < . . . < s6 ∈ [n] are six fixed indices and if T = {{s1, s2, s3, s4}, 
{s1, s2, s5, s6}, {s3, s4, s5, s6}} (which is analogous to a good 6-partition {{1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}} of indices 
{1, . . . 6}), then any other good 6-partition on indices {s1, . . . , s6} is of the form

σ .T = {{i1, i2, i3, i4}, {i1, i2, i5, i6}, {i3, i4, i5, i6}} (18)

where i j = σ(s j), σ ∈ S6 , S6 being the group of all permutations of indices {s1, . . . , s6}. Note that in general i j are not 
ordered, and that we can have i j > i j+1.

The following Lemma holds.

Lemma 5.3. Let A be an arrangement of n hyperplanes in C3 and σ .T = {{i1, i2, i3, i4}, {i1, i2, i5, i6}, {i3, i4, i5, i6}}, a good 
6-partition of indices s1 < . . . < s6 ∈ [n] such that rank Aσ .T(A∞) = 2, then A is a point in the hypersurface

βi1i3i4βi2i5i6 − βi2i3 i4βi1i5i6 = 0 . (19)

Proof. Let σ .T = {L′
1 = {i1, i2, i3, i4}, L′

2 = {i1, i2, i5, i6}, L′
3 = {i3, i4, i5, i6}} be a good 6-partition of indices s1 < . . . < s6 ∈ [n]

and denote by (L′
1) = (i1, i2, i3, i4), (L′

2) = (i1, i2, i5, i6) and (L′
3) = (i3, i4, i5, i6) the ordered 4-tuples of indices. Then, there 

exist unique permutations τi , i = 1, 2, 3 of indices s1 < . . . < s6 such that τi fixes indices outside L′
i and, if L′

i = {s j1 <

s j2 < s j3 < s j4 }, then (L′
i) = τi .L′

i = (τi(s j1 ), τi(s j2 ), τi(s j3 ), τi(s j4 )), i = 1, 2, 3. By the determinant rule on permutations of 
columns, we have that

4∑
j=1

(−1) j det(ατ(1), . . . , ˆατ( j), . . . ,ατ(4))eτ ( j) =

∣∣∣∣∣∣∣∣
aτ (1)1 aτ (2)1 aτ (3)1 aτ (4)1
aτ (1)2 aτ (2)2 aτ (3)2 aτ (4)2
aτ (1)3 aτ (2)3 aτ (3)3 aτ (4)3
eτ (1) eτ (2) eτ (3) eτ (4)

∣∣∣∣∣∣∣∣
= sign(τ )

∣∣∣∣∣∣∣∣
a11 a21 a31 a41
a12 a22 a32 a42
a13 a23 a33 a43
e1 e2 e3 e4

∣∣∣∣∣∣∣∣
= sign(τ )

4∑
j=1

(−1) j det(α1, . . . , α̂ j, . . . ,α4)e j .

Hence, if we define the matrix σ .AT as the matrix having in its rows respectively the coefficients of the three vectors

τ1.αL′
1
=

4∑
j=1

(−1) j det(αi1 , . . . , α̂i j , . . . ,αi4)ei j ,

τ2.αL′
2
=

∑
(−1) j det(αi1 , . . . , α̂i j , . . . ,αi6)ei j ,
j∈{1,2,5,6}
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τ3.αL′
3
=

6∑
j=3

(−1) j det(αi3 , . . . , α̂i j , . . . ,αi6)ei j

with respect to the ordered basis {ei1 , . . . , ei6 }, then the i-th row of σ .AT is obtained from the i-th row of Aσ .T(A∞) by a 
σ column permutation and multiplication by sign(τi) (notice that σ|L′

i
= τi ). That is, rankσ .AT = rank Aσ .T(A∞) and, more 

in details, the 3 × 3 minor given by columns {i, j, k} in Aσ .T(A∞) vanishes if and only if the 3 × 3 minor of columns 
{σ(i), σ( j), σ(k)} in σ .AT vanishes. Hence, by Lemma 5.1 rank Aσ .T(A∞) = rankσ .AT = 2 if and only if one minor vanishes. 
In particular, the first three columns {i1, i2, i3} in σ .AT are of the form⎛⎝−βi2 i3i4−βi2 i5i6

0

⎞⎠ ⎛⎝βi1i3i4

βi1i5i6

0

⎞⎠ ⎛⎝−βi1i2i4

0
−βi4i5i6

⎞⎠
from which we get that the 3 × 3 minor corresponding to them vanishes if and only if

βi1i3i4βi2i5i6 − βi2i3i4βi1i5 i6 = 0

(recall that all entries βI in the matrix A(A∞) verify βI 	= 0). �
By Remark 5.2 and Lemma 5.3, the following main Theorem follows.

Theorem 5.4. The set of generic arrangements A of n hyperplanes in C3 that contains a dependent sub-arrangement is the set of points 
in an hypersurface in the Grassmannian Gr(3, n) such that each component is the intersection of the Grassmannian with a quadric.

Acknowledgements

The authors want to thank A. Libgober and an anonymous referee for very useful comments.

References

[1] C.A. Athanasiadis, The largest intersection lattice of a discriminantal arrangement, Beitr. Algebra Geom. 40 (2) (1999) 283–289.
[2] A. Bachemand, W. Kern, Adjoints of oriented matroids, Combinatorica 6 (1986) 299–308.
[3] M. Bayer, K. Brandt, Discriminantal arrangements, fiber polytopes and formality, J. Algebraic Comb. 6 (1997) 229–246.
[4] H. Crapo, Concurrence geometries, Adv. Math. 54 (3) (1984) 278–301.
[5] M. Falk, A note on discriminantal arrangements, Proc. Amer. Math. Soc. 122 (4) (1994) 1221–1227.
[6] J. Harris, Algebraic Geometry: A First Course, Springer-Verlag, 1992.
[7] M. Kapranov, V. Voevodsky, Braided monoidal 2-categories and Manin–Schechtman higher braid groups, J. Pure Appl. Algebra 92 (3) (1994) 241–267.
[8] R.J. Lawrence, A presentation for Manin and Schechtman’s higher braid groups, MSRI pre-print, http://www.ma.huji.ac.il/~ruthel/papers/premsh.html, 

1991.
[9] A. Libgober, S. Settepanella, Strata of discriminantal arrangements, arXiv:1601.06475.

[10] Yu.I. Manin, V.V. Schechtman, Arrangements of hyperplanes, higher braid groups and higher Bruhat orders, in: Algebraic Number Theory in Honor 
K. Iwasawa, in: Advanced Studies in Pure Mathematics, vol. 17, 1989, pp. 289–308.

[11] P. Orlik, Introduction to Arrangements, CBMS Reg. Conf. Ser. Math., vol. 72, American Mathematical Society, Providence, RI, USA, 1989.
[12] P. Orlik, H. Terao, Arrangements of Hyperplanes, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 

vol. 300, Springer-Verlag, Berlin, 1992.
[13] M. Perling, Divisorial cohomology vanishing on toric varieties, Doc. Math. 16 (2011) 209–251.

http://refhub.elsevier.com/S1631-073X(17)30271-6/bib617468616E61s1
http://refhub.elsevier.com/S1631-073X(17)30271-6/bib42614B65s1
http://refhub.elsevier.com/S1631-073X(17)30271-6/bib4242s1
http://refhub.elsevier.com/S1631-073X(17)30271-6/bib437261706Fs1
http://refhub.elsevier.com/S1631-073X(17)30271-6/bib66616C6Bs1
http://refhub.elsevier.com/S1631-073X(17)30271-6/bib686172726973s1
http://refhub.elsevier.com/S1631-073X(17)30271-6/bib4B6170s1
http://www.ma.huji.ac.il/~ruthel/papers/premsh.html
http://refhub.elsevier.com/S1631-073X(17)30271-6/bib7365747465s1
http://refhub.elsevier.com/S1631-073X(17)30271-6/bib6D616Es1
http://refhub.elsevier.com/S1631-073X(17)30271-6/bib6D616Es1
http://refhub.elsevier.com/S1631-073X(17)30271-6/bib4F72s1
http://refhub.elsevier.com/S1631-073X(17)30271-6/bib4F54s1
http://refhub.elsevier.com/S1631-073X(17)30271-6/bib4F54s1
http://refhub.elsevier.com/S1631-073X(17)30271-6/bib5065726C696E67s1

	Discriminantal arrangement, 3x3 minors of Plücker matrix and hypersurfaces in Grassmannian Gr(3,n)
	1 Introduction
	2 Preliminaries
	2.1 Discriminantal arrangement
	2.2 Good 3s-partitions
	2.3 Matrices A(A∞) and A T(A∞)
	2.4 Polynomial pT(aij)
	2.5 Grassmannian Gr(k,n)

	3 Example B(6, 3, A∞) in a real case
	4 Polynomial p̃T(aij) in B(n,k, A∞) in a real case
	4.1 Case B(n, 3, A∞)
	4.2 Generalization to B(n,k, A ∞)

	5 Hypersurfaces in complex Grassmannian Gr(3,n)
	Acknowledgements
	References


