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For an oriented 2-dimensional manifold � of genus g with n boundary components, 
the space Cπ1(�)/[Cπ1(�), Cπ1(�)] carries the Goldman–Turaev Lie bialgebra structure 
defined in terms of intersections and self-intersections of curves. Its associated graded Lie 
bialgebra (under the natural filtration) is described by cyclic words in H1(�) and carries 
the structure of a necklace Schedler Lie bialgebra. The isomorphism between these two 
structures in genus zero has been established in [13] using Kontsevich integrals and in [2]
using solutions of the Kashiwara–Vergne problem.
In this note, we give an elementary proof of this isomorphism over C. It uses the Knizhnik–
Zamolodchikov connection on C\{z1, . . . zn}. We show that the isomorphism naturally 
depends on the complex structure on the surface. The proof of the isomorphism for Lie 
brackets is a version of the classical result by Hitchin [9]. Surprisingly, it turns out that a 
similar proof applies to cobrackets.
Furthermore, we show that the formality isomorphism constructed in this note coincides 
with the one defined in [2] if one uses the solution of the Kashiwara–Vergne problem 
corresponding to the Knizhnik–Zamolodchikov associator.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit � une variété orientable de dimension 2, de genre g et avec n composants de bord. 
L’espace Cπ1(�)/[Cπ1(�), Cπ1(�)] a une structure de bigèbre de Lie de Goldman–Turaev 
définie par les intersections et les autointersections des courbes sur �. La bigèbre de Lie 
graduée associée (par rapport à la filtration naturelle) est décrite par l’espace des mots 
cycliques en H1(�). En genre zéro, l’isomorphisme entre ces deux bigèbres de Lie a été 
établi dans [13] en utilisant l’intégrale de Kontsevich, et dans [2] en utilisant les solutions 
du problème de Kashiwara–Vergne.
Dans cette note, nous donnons une démonstration élémentaire de cet isomorphisme sur C. 
Notre démonstration utilise la connexion de Knizhnik–Zamolodchikov sur C\{z1, . . . zn}. 
Nous montrons que cet isomorphisme dépend naturellement de la structure complexe 
sur �. La preuve de l’isomorphisme pour le crochet de Lie est une version d’un résultat 

E-mail addresses: Anton.Alekseev@unige.ch (A. Alekseev), Florian.Naef@unige.ch (F. Naef).
https://doi.org/10.1016/j.crma.2017.10.013
1631-073X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

https://doi.org/10.1016/j.crma.2017.10.013
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:Anton.Alekseev@unige.ch
mailto:Florian.Naef@unige.ch
https://doi.org/10.1016/j.crma.2017.10.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2017.10.013&domain=pdf


A. Alekseev, F. Naef / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 1138–1147 1139
classique de Hitchin [9]. D’une manière surprenante, un argument similaire s’applique 
également au cocrochet.
De plus, nous montrons que l’isomorphisme de formalité construit dans cette note coïncide 
avec l’isomorphisme défini dans [2] si on choisit la solution du problème de Kashiwara–
Vergne, qui correspond à l’associateur de Knizhnik–Zamolodchikov.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Holonomy maps

In this section we recall the definition of the Knizhnik–Zamolodchikov connection and define the holonomy map using 
iterated integrals.

1.1. The Knizhnik–Zamolodchikov connection

For n ∈ Z≥1 let tn+1 be the Drinfeld–Kohno Lie algebra of infinitesimal braids. It has generators ti j = t ji with i �= j for 
i, j = 1, . . . , n + 1 and relations [ti j, tkl] = 0 for all quadruples of distinct labels i, j, k, l and [ti j + tik, t jk] = 0 for all triples 
i, j, k. The Lie subalgebra of tn+1 generated by ai = ti(n+1) for i = 1, . . . , n is a free Lie algebra with n generators.

There is a canonical flat Knizhnik–Zamolodchikov (KZ) connection on the configuration space Confn+1(C) of n + 1 points 
z1, . . . , zn+1 ∈ C with values in tn+1:

d + AKZ = d + 1

2πi

∑
i< j

ti j dlog(zi − z j).

The fiber of the forgetful map Confn+1(C) → Confn(C) (by forgetting the point z = zn+1) over (z1, . . . , zn) ∈ Confn(C) is 
given by � =C \ {z1, . . . , zn}. The restriction of the KZ connection to the fiber is of the form:

d + A = d + 1

2πi

n∑
i=1

ai dlog(z − zi). (1)

Note that the 1-forms 1
2πi dlog(z − zi) form a basis in the cohomology H1(�). Then, we can naturally view ai ’s as a basis of 

H1 = H1(�). In fact, this is a natural basis of H1 given by the cycles around the marked points. It is convenient to use the 
notation

A(z) = 1

2πi

n∑
i=1

ai dlog(z − zi) ∈ �1(�) ⊗ H1.

1.2. Free algebras and iterated integrals

The degree completed Hopf algebra T H1 over C is naturally isomorphic to the completed universal enveloping al-
gebra of the free Lie algebra L(a1, . . . , an) with generators a1, . . . , an . Group-like elements in T H1 form a group Gn =
exp(L(a1, . . . , an)) isomorphic to L(a1, . . . , an) equipped with the group law defined by the Baker–Campbell–Hausdorff se-
ries.

For a path γ parametrized by z : [0, 1] → �, we define the holonomy of the connection d + A using iterated integrals:

Holγ = ∑∞
k=0

∫
1≥t1≥···≥tk≥0 A(z(t1)) . . . A(z(tk))

= ∑
i ai1 . . .aik

∫
γ

dz(t1)
z(t1)−zi1

◦ · · · ◦ dz(tk)
z(tk)−zik

∈ Gn,

where i = (i1, . . . , ik). Since the connection d + A is flat, the holonomy Holγ is independent of the homotopy deformations 
of γ with fixed end points. Hence, for small deformations of γ one can view Holγ as a functions of its endpoints. The de 
Rham differential of this function is given by

d Holγ = A(z(1))Holγ − Holγ A(z(0)).

Let γ be a closed path and consider the path γ (s) that starts at z(s), follows γ and ends at z(s). The corresponding 
holonomy is denoted by Holγ (s) = Holγ (s) , and its de Rham differential has the form

d Holγ (s) = A(z(s))Holγ − Holγ A(z(s)). (2)



1140 A. Alekseev, F. Naef / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 1138–1147
For a closed path γ and two points s �= t ∈ S1, we denote by γ (t ← s) the oriented path starting at z(s), following γ and 
ending at z(t). The corresponding holonomy is denoted Holγ (t ← s) = Holγ (t←s) and its de Rham differential is given by

d Holγ (t ← s) = A(z(t))Holγ (t ← s) − Holγ (t ← s) A(z(s)).

Choose a base point p ∈ � and denote by π1 = π1(�, p) the fundamental group of � with base point p. Let γ be a 
closed path based at p. The map

W : γ 
→ Holγ

descends to a group homomorphism π1 → Gn and induces an isomorphism of completed Hopf algebras Cπ1 → T H1.
Denote by

|Cπ1| = Cπ1/[Cπ1,Cπ1]
the space spanned by conjugacy classes in π1 and similarly

|T H1| = T H1/[T H1, T H1]
the space spanned by cyclic words in H1. Note that |Cπ1| is also isomorphic to the vector space spanned by free homotopy 
classes of loops in �. The map W induces a map |W | : |Cπ1| → |T H1|, which is independent of the base point p. In what 
follows, we will study properties of this map.

Remark 1.1. For higher genus surfaces, iterated integrals of the harmonic Magnus connection were studied in [10]. It is not 
known whether the harmonic Magnus expansion gives rise to a Goldman–Turaev formality map.

2. Goldman–Turaev formality

The space |Cπ1| carries the canonical Goldman–Turaev Lie bialgebra structure, which depends on the framing of �. 
Moreover, it is canonically filtered by powers of the augmentation ideal of the group algebra Cπ1. The space |T H1| carries 
the necklace Schedler Lie bialgebra structure (see [14]), which depends on the choice of a basis in H1. The main result of 
this note is an elementary proof of the following theorem:

Theorem 2.1. The map |W | : |Cπ1| → |T H1| is an isomorphism of Lie bialgebras for the Goldman–Turaev Lie bialgebra structure on 
(completed) |Cπ1| defined by the blackboard framing and the necklace Schedler Lie bialgebra structure on |T H1| defined by the natural 
basis {a1, . . . , an} ⊂ H1 .

2.1. Kirillov–Kostant–Souriau double bracket

Recall the Kirillov–Kostant–Souriau (KKS) double bracket (in the sense of van den Bergh [16]) on T H1, which is com-
pletely determined by its values on generators:

ai ⊗ a j 
→ {ai,a j} = δi j(1 ⊗ ai − ai ⊗ 1) = δi j (1 ∧ ai).

One of the key observations is the following lemma (reinterpreting [6]).

Lemma 2.2.

{A(z), A(w)} = 1

2πi
(1 ∧ (A(z) − A(w))) dlog(z − w).

Proof. The proof is by the direct computation:

{A(z), A(w)} = 1

(2πi)2
{
∑

i

ai dlog(z − zi),
∑

j

a j dlog(w − z j)}

= 1

(2πi)2

∑
i

(1 ∧ ai)dlog(z − zi)dlog(w − zi)

= 1

(2πi)2

∑
i

(1 ∧ ai)(dlog(z − zi) − dlog(w − zi))dlog(z − w)

= 1

2πi
(1 ∧ (A(z) − A(w)))dlog(z − w). �
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2.2. Variations of the holonomy map

In order to proceed we will need some notation from non-commutative differential geometry. Let ∂i : T H1 → T H1 ⊗ T H1
for i = 1, . . . , n denote double derivations with the property ∂ia j = δi j(1 ⊗1). They induce maps (denoted by the same letter) 
∂i : |T H1| → T H1, and by composition ∂i∂ j : |T H1| → T H1 ⊗ T H1. In what follows we will use the formulas for the first and 
second derivatives of the elements |Wγ | for γ a closed path parametrized by a map z : S1 → �:

∂ j|Wγ | =
∫
S1

Holγ (s) dlog(z(s) − z j),

∂i∂ j|Wγ | =
∫

S1×S1

(
Holγ (t ← s) ⊗ Holγ (s ← t)

)
dlog(z(s) − zi)dlog(z(t) − z j),

(3)

where in the expression for the second derivative the torus S1 × S1 is oriented by the volume form ds dt .

2.3. Necklace Schedler Lie bialgebra

We will also make use of the maps Tr : T H1 ⊗ T H1 → |T H1| given by Tr(a ⊗ b) = |ab| and Tr12 : T H1 ⊗ T H1 → |T H1| ⊗
|T H1| which is the componentwise projection Tr12(a ⊗ b) = |a| ⊗ |b|. In terms of the KKS double bracket, the necklace 
Schedler Lie bialgebra structure looks as follows: for ψ, ψ ′ ∈ |T H1|, we have

[ψ,ψ ′] =
∑

i j

Tr
(
(∂iψ ⊗ ∂ jψ

′){ai,a j})
)
,

δψ =
∑

i j

Tr12 (
(∂i∂ jψ){ai,a j}

)
.

Remark 2.3. The necklace Lie algebra structure corresponding to the KKS double bracket first appeared in [5]. It was then 
generalized to other double brackets and other quivers (a quiver is a part of a general definition of a necklace Lie algebra) 
in [12,7,4]. The first description of the cobracket is in [14]. The formulas above represent the KKS necklace Schedler Lie 
bialgebra structure in a form convenient for our purposes.

2.4. Proof of Theorem 2.1

We are now ready to give a proof of Theorem 2.1:

Proof of the Lie homomorphism. Let γ and γ ′ be two closed loops in � with a finite number of transverse intersections 
parametrized by z, w : [0, 1] → �. Denote by (si, ti) pairs of parameters corresponding to intersection points, pi = z(si) =
w(ti) and by Di(ε) ⊂ S1 × S1 small discs of radius ε around (si, ti) with boundaries small circles Si(ε) positively oriented 
under the orientation defined by the volume form ds dt on the torus S1 × S1. Let εi = +1 if the orientation induced by the 
form ds dt on T pi � coincides with the blackboard orientation and εi = −1 otherwise.

We compute the necklace Lie bracket of the elements |Wγ | and |Wγ ′ |:
[|Wγ |, |Wγ ′ |] = Tr

(
(∂i|Wγ | ⊗ ∂ j|Wγ ′ |) {ai,a j}

)
=

∫
S1×S1

Tr
(
(Holγ (s) ⊗ Holγ ′(t)){A(z(s)), A(w(t))})

= 1

2πi

∫
S1×S1

Tr
((

Holγ (s) ⊗ Holγ ′(t)
)(

1 ∧ (A(z(s)) − A(w(t))
))

dlog(z − w)

= lim
ε→0

1

2πi

∫
S1×S1\∪i Di(ε)

d|Holγ (s)Holγ ′(t)|dlog(z − w)

= −
∑

i

|Holγ (si)Holγ ′(ti)| lim
ε→0

1

2πi

∫
Si(ε)

dlog(z − w)

=
∑

i

|Holγ (si)Holγ ′(ti)|εi .
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Here, in the first line, we use the definition of the necklace Schedler Lie bracket, in the second line, the expression (3)
for the first derivative of |Wγ | and the definition of A(z), in the third line, Lemma 2.2, in the fourth line, formula (2) for 
the differential of the holonomy map, in the fifth line, the Stokes formula, and in the sixth line the residue formula. Note 
that the result of the calculation is exactly the expression for the image under the map W of the Goldman bracket [8] of 
the loops γ and γ ′ . �
Proof of the cobracket homomorphism. Next, consider a closed path γ parametrized by z : S1 → �. Assume that γ is an 
immersion with finitely many transverse self-intersections pi = z(si) = z(ti) (it is convenient to have each point appear 
twice in the count with s j = ti and t j = si). Denote α±(ε) the circles on S1 × S1 corresponding to the parameters t = s ± ε
and by β the strip between them. Similar to the proof above, let Di(ε) be small discs of radius ε around the self-intersection 
points, Si(ε) their positively oriented boundaries and εi signs of self-intersections defined as above. Note that ε j = −εi for 
i and j representing the same self-intersection point.

We compute the necklace cobracket of the element |Wγ |:
δ|Wγ | = Tr12 (

∂i∂ j|Wγ | {ai,a j}
)

=
∫

S1×S1

Tr12(Holγ (t ← s) ⊗ Holγ (s ← t)){A(z(s)), A(z(t))})

= lim
ε→0

1

2πi

∫
S1×S1\β(ε)∪(∪i Di(ε))

d(Tr12(Holγ (t ← s) ⊗ Holγ (s ← t))dlog(z(s) − z(t))

= − lim
ε→0

1

2πi

∫
∪i Si(ε)∪α+(ε)∪α−(ε)

(|Hol(t ← s)| ⊗ |Hol(s ← t)|)dlog(z(s) − z(t))

=
∑

i

|Hol(ti ← si)| ⊗ |Hol(si ← ti)|εi + (1 ∧ |Wγ |) 1

2πi

∫
γ

dlog(ż(t))

=
∑

i

|Hol(ti ← si)| ⊗ |Hol(si ← ti)|εi + (|Wγ | ∧ |1|) rot(γ ).

Here, in the first line, we use the definition of the necklace Schedler cobracket, in the second line, the expression (3) for the 
second derivative of |Wγ |, in the third line, Lemma 2.2 and the expression (2) for the de Rham differential of the holonomy 
map, in the fourth line, the Stokes formula, and, in the fifth line, the definition of the rotation number rot(γ ). The resulting 
expression is exactly the Turaev cobracket of the path γ with respect to the blackboard framing, which defines the rotation 
number. �
Remark 2.4. In the proof above, the calculation of the Goldman bracket of the holonomies follows the standard scheme, see 
[9], [3]. The calculation of the Turaev cobracket uses the same techniques, but it seems to be new.

Remark 2.5. In [15], the cobracket is defined on the space |Cπ1|/C|1|, where |1| is the homotopy class of the trivial loop 
on �. If one fixes a framing on �, this definition can be lifted to |Cπ1| by the formula above (for details, see [11]).

3. The z-dependence of the holonomy map

In this section, we study the dependence of the holonomy map |W | : |Cπ1| → |T H1| on the positions of the poles 
z1, . . . , zn in the connection (1). We will use the notation |W (z)| to make this z-dependence more explicit.

3.1. The bundle Gn

Consider the natural fibration Confn+1 → Confn and assign to a point of the base (z1, . . . .zn) the Goldman–Turaev Lie 
algebra of the fiber |Cπ1(�)| for � =C\{z1, . . . , zn}. This defines a bundle of Lie bialgebras Gn over Confn .

In a neighborhood of a point z = (z1, . . . , zn) ∈ Confn the bundle Gn can be trivialized as follows. Choose small open 
disks Di centered at zi such that Di ∩ D j = ∅ for all i �= j and define a local chart U (z) around z that consists of points 
w = (w1, . . . , wn) ∈ Confn such that wi ∈ Di . Note that the surface with boundary �̃ = C\ ∪i Di is homotopically equivalent 
to �(w) = C\{w1, . . . , wn} for all w ∈ U (z) via the inclusion �̃ ⊂ �(w) . The canonical isomorphism |Cπ1(�̃)| ∼= |Cπ1(�

(w))|
defines a trivialization of Gn in this chart.

The bundle Gn carries a canonical flat connection defined by the following family of local flat sections. Let γ : S1 → C

be a closed curve. Then, the homotopy class [γ ] defines a flat section over the complement of the subset of Confn where 
zi ∈ γ (S1) for some i. Moreover, it is easy to see that there is a unique local flat section passing through each point of Gn .
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The canonical flat connection is compatible with the Goldman–Turaev Lie bialgebra structure on the fibers. Indeed, on 
flat sections over U (z) defined by closed curves in �̃, the Goldman bracket and Turaev cobracket take the same value 
independent of w (sufficiently close to z).

The flat bundle Gn admits the following description: the fundamental group of Confn is the pure braid group PBn . The 
bundle Gn is induced by the natural representation of PBn on the free group π1(�).

3.2. The bundle Hn

The natural action of PBn on the homology H1(�) is trivial. This trivial action lifts to |T H1| and gives rise to the trivial 
vector bundle Hn → Confn with fiber |T H1|.

The bundle Hn carries a canonical flat connection. Recall that the Drinfeld–Kohno Lie algebra tn acts on the free Lie 
algebra L(a1, . . . , an) via the identification ai = ti(n+1) ∈ tn+1. Since this action is induced by the adjoint action of tn+1 on 
itself, we will use the notation ad. For instance, ad(t12)a1 = [t12, t1(n+1)] = −[t2(n+1), t1(n+1)] = −[a2, a1]. In particular, the 
central element of tn

c =
∑
i< j

ti j

acts by the inner derivation ad(c)a = [a, a1 + · · · + an].
The canonical connection on Hn is (a version of) the KZ connection:

∇n = d + 1

2πi

∑
i< j

ad(ti j)dlog(zi − z j). (4)

It is flat because the original KZ connection is flat and because the map ad is a Lie algebra homomorphism.

Remark 3.1. The image of the Lie algebra tn under the map ad is contained in the Kashiwara–Vergne Lie algebra krvn acting 
on |T H1| by derivations of the necklace Schedler Lie bialgebra structure [2]. Hence, the flat connection (4) is compatible 
with the Lie bialgebra structure on the fibers of Hn .

3.3. The holonomy is an isomorphism of flat bundles with connection

For each z = (z1, . . . , zn) ∈ Confn the holonomy map |W (z)| maps the fiber |Cπ1(�
(z))| of Gn to the fiber |T H1| of Hn . 

This collection of maps for z ∈ Confn defines a smooth bundle map |W | : Gn →Hn .

Theorem 3.2. The bundle map |W | intertwines the canonical flat connection on Gn and the connection ∇n on Hn.

Proof. It is sufficient to compare the canonical connections and ∇n on local charts. In more detail, let γ : S1 → �̃ = σ\ ∪i Di

be a closed curve. Then, [γ ] defines a flat section of Gn over U (z) . It is then sufficient to show that |W (w)
γ | is a ∇n-flat section 

of Hn for w ∈ U (z) .
Let w : (−1, 1) → Confn(C) be a smooth path in U (z) with w(0) = z and the first derivative w ′(0) = u = (u1, . . . , un). 

Choose a starting point on the curve γ and denote the corresponding map by γ̂ : [0, 1] → �̃.
Consider the KZ connection on Confn+1(C) and define the map μ = w × γ̂ : (−1, 1) × S1 → Confn+1(C). The pull-back of 

the KZ connection under μ is flat. For a given s ∈ (−1, 1) the holonomy of the induced connection along {s} × γ̂ , denoted 
by Holγ (s), takes values in T H1 and its projection to |T H1| coincides with |W (w(s))| (under the identification ti(n+1) = ai ).

Since the pull-back connection is flat, the holonomies for different values of s can be compared using the following 
formula:

Holγ (s) = Holw(s ← 0)Holγ (0)Holw(0 ← s),

where Holw(0 ← s) = Holw(s ← 0)−1 is the holonomy of the KZ connection for n + 1 points along the part of the path w
between 0 and s. Differentiating this formula in s at s = 0, we obtain

Hol′γ (0) = 1

2πi

∑
1≤i< j≤n+1

ui − u j

zi − z j
ad(ti j)Holγ (0),

where un+1 = 0 and zn+1 = γ̂ (0). Projecting this equation to |T H1| yields

(∂s|W (w(s))|)s=0 = 1

2πi

∑
1≤i< j≤n

ui − u j

zi − z j
ad(ti j)|W (w(0))|.

Here we have used the fact that operators ad(ti(n+1)) are inner derivations of T H1 and they act by zero on |T H1|. The 
formula above shows that |W (w(s))

γ | is a flat section over (−1, 1). Since w(s) was an arbitrary path, this shows that |W (w)
γ |

is a flat section for ∇n . �



1144 A. Alekseev, F. Naef / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 1138–1147
Remark 3.3. The KZ connection on Hn is induced by the flat connection on the trivial bundle Ln = Confn × L(a1, . . . , an)

defined by the same formula (4).
Let g be a Lie algebra (possibly L(a1, . . . , an) itself) and consider the bundle of fiberwise Lie algebra homomorphisms of 

Ln into g. This is the trivial bundle Confn × gn , where we identify a Lie algebra homomorphism x : L(a1, . . . , an) → g with 
the n-tuple (x1, . . . , xn) = (x(a1), . . . , x(an)). The KZ connection induces a connection on this bundle, which is computed as 
follows:

((d + AKZ)x)(ak) = dxk + 1

2πi

∑
i< j

(ti j.x)(ak)dlog(zi − z j)

= dxk + 1

2πi

∑
i< j

x(−[ti j,ak])dlog(zi − z j)

= dxk + 1

2πi

∑
i

x([ai,ak])dlog(zi − zk)

= dxk + 1

2πi

∑
i

[xi, xk]dlog(zi − zk).

Flat sections of this connection are solutions of the Schlesinger equations for isomonodromic deformations:

∂xk

∂zi
= 1

2πi

[xk, xi]
zk − zi

,
∂xk

∂zk
= − 1

2πi

∑
i �=k

[xk, xl]
zk − zl

. (5)

For g = L(a1, . . . , an), let xk = xk(a1, . . . , an, z1, . . . , zn) = xk(z) be local solutions to (5), such that they generate L(a1, . . . , an)

in each fiber. We call (x1, . . . , xn) isomonodromic coordinates.
Let γ ⊂ �(z) be a closed curve. It defines a local flat section [γ ] of Gn and by Theorem 3.2 it gives rise to a local flat 

section |Wγ | of Hn . By the considerations above, |Wγ | is represented by a constant (independent of z1, . . . , zn) function of 
the isomonodromic coordinates (x1, . . . , xn).

3.4. The moduli space of curves

Recall that the moduli space of genus zero curves with n + 1 marked points M0,n+1 can be defined as the quotient of 
the configuration space of n + 1 points on CP 1 modulo the natural PSL2-action by Möbius transformations:

M0,n+1 = Confn+1(CP 1)/PSL2.

Equivalently, one can fix one of the points to be at infinity of CP 1 and consider:

M0,n+1 ∼= Confn(C)/,

where  is the group of translations and dilations

 = {z 
→ az + b;a ∈C
∗,b ∈C}.

The action of the group  lifts to the bundles Gn and Hn as follows. The bundle Hn = Confn × |T H1| is trivial and one 
extends the action of  on Confn by the trivial action on the fibers. For the bundle Gn , the group  acts by diffeomorphisms 
�(z) → �(az+b) , where (az +b) = (az1 +b, . . . , azn +b). The action of  on Gn is the induced action on the homotopy classes 
of curves

[γ (s)] 
→ [γa,b(s) = aγ (s) + b].
In conclusion, Gn and Hn become equivariant vector bundles under the action of  and they give rise to vector bundles 

over M0,n+1 (that we again denote by Gn and Hn).
The canonical flat connection on Gn descends from Confn to M0,n+1 because the action of  maps flat sections to flat 

sections. It turns out that the KZ connection on Hn also descends to the moduli space.

Proposition 3.4. The flat connection

∇n = d + 1

2πi

∑
i< j

ad(ti j)dlog(zi − z j)

descends to a flat connection on M0,n+1.
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Fig. 1. Definition of γ0 and γ1.

Proof. It is obvious that the connection 1-form is basic under the action of the group of translations z 
→ z +b and invariant 
under the action of dilations z 
→ λz. In order to see that it is horizontal under the action of dilations, define the Euler vector 
field v = ∑n

i=1 zi∂i . Contracting it with the connection 1-form yields

ι(v)
∑
i< j

ad(ti j)dlog(zi − z j) =
∑
i< j

ad(ti j) = ad(c) = 0,

where we have used the fact that c acts by zero on |T H1|. �
Finally, the holonomy map descends to a bundle map over the moduli space as well.

Proposition 3.5. The holonomy map |W | descends to M0,n+1 .

Proof. The group  acts on the complex plane by diffeomorphisms and the connection

A(z1,...,zn) = 1

2πi

n∑
i=1

ai dlog(z − zi)

is mapped to A(az+b) . Hence, the holonomy map W (z) evaluated on a curve γ : [0, 1] → �(z) coincides with the holon-
omy map W (az+b) evaluated on the curve γa,b : [0, 1] → �(az+b) . Applying projection T H1 → |T H1|, we conclude that |W |
intertwines the actions of  on Gn and Hn . �

We can summarize the statements above as follows:

Theorem 3.6. The flat bundles with connections Gn and Hn and the bundle map |W | over the configuration space Confn descend to 
the moduli space of genus zero curves M0,n+1.

Remark 3.7. By Remark 3.1, the pure braid group PBn (the fundamental group of the configuration space Confn) acts on 
|T H1| by automorphisms of the necklace Schedler Lie bialgebra structure. Theorem 3.6 shows that this action only depends 
on the complex structure on the surface (that is, on the point of M0,n+1).

4. Relation to the KZ associator and the Kashiwara–Vergne problem

In this section we establish the relation between the map |W | : |Cπ1| → T H1 and the solution of the Kashiwara–Vergne 
problem defined by the KZ associator.

Recall the following statements.

Theorem 4.1 (Theorem 5 in [1]). For every Drinfeld associator �(x, y), the automorphism F� of the free Lie algebra L(x, y) defined 
by formulas

x 
→ �(x,−x − y) x�(x,−x − y)−1,

y 
→ e−(x+y)/2 �(y,−x − y) y �(y,−x − y)−1 e(x+y)/2,

is a solution of the Kashiwara–Vergne problem.

For the second statement, we need the following notation: let � = C\{0, 1}, choose a base point p ∈ [0, 1] and two 
generators γ0, γ1 ∈ π1, as shown in Fig. 1.

Theorem 4.2 (Theorem 7.6 in [2]). Let F be an automorphism of the free Lie algebra L(x, y) that solves the Kashiwara–Vergne problem. 
Then, the map ρF :Cπ1 → T H1 defined on generators by

ρF (γ0) = exp(F (x)), ρF (γ1) = exp(F (y))

induces an isomorphism of Lie bialgebras |Cπ1| → |T H1|.
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We will now prove the following proposition.

Proposition 4.3. For � = C\{0, 1} the Lie bialgebra isomorphism |W | coincides with the one induced by the solution of the 
Kashiwara–Vergne problem corresponding to the KZ associator �KZ(x, y).

Let n = 2 and z1 = 0, z2 = 1. Denote x = a1, y = a2. The connection d + A acquires the form:

d + A = d + 1

2πi
(x dlog(z) + y dlog(z − 1)) .

Following Drinfeld [5], define fundamental solutions of the equation (d + A)� = 0 with asymptotics

�0(z) = (1 + O (z))z
x

2πi , �1(z) = (1 + O (z))(z − 1)
y

2πi .

Choose the base point p ∈ [0, 1] and a basis in π1 represented by the curves γ0 which surrounds 0 and γ1 which sur-
rounds 1. Define the representation ρKZ : π1 → G2 as follows:

ρKZ(γ0) = ex, ρKZ(γ1) = �KZ(x, y)−1ey�KZ(x, y),

where �KZ is the KZ associator.

Lemma 4.4. The representations ρKZ and W are equivalent under conjugation by �0(p). The corresponding maps |Cπ1| → T H1
coincide.

Proof. By definition of the holonomy,

�0(γ0 · p) = Holγ0�0(p), �1(γ1 · p) = Holγ1�1(p).

In combination with

�0(γ0 · p) = �0(p)ex, �1(γ1 · p) = �1(p)ey, �1(p) = �0(p)�KZ(x, y)

we obtain

ρKZ(γ0) = ex = �0(p)−1�0(γ0 · p) = �0(p)−1Holγ0�0(p)

and

ρKZ(γ1) = �−1
KZ ey�KZ = �−1

KZ �1(p)−1�1(γ1 · p)�KZ

= (�1(p)�KZ)
−1Holγ1(�1(p)�KZ) = �0(p)−1Holγ1�0(p),

as required.
Since the two representations of π1 are equivalent, they descend to the same map on |Cπ1|. �

Proof of Proposition. To complete the proof of Proposition, we remark that the representation ρKZ is equivalent to the 
representation

ρ(γ0) = �(x,−x − y)ex �(x,−x − y)−1,

ρ(γ1) = e−(x+y)/2 �(y,−x − y)ey �(y,−x − y)−1e(x+y)/2.

The equivalence is given by conjugation with ex/2 �(−x − y, x), which corresponds to moving the base point from the 
neighborhood of 0 to the neighborhood of ∞.

The map |Cπ1| → |T H1| induced by ρ coincides with the one induced by the solution of the Kashiwara–Vergne problem 
corresponding to the KZ associator �KZ(x, y). �
Remark 4.5. G. Massuyeau explained to us that, for n = 2, the Lie bialgebra isomorphism |Cπ1| → |T H1| constructed in [13]
using the Kontsevich integral coincides with the map described above if one chooses the associator � = �KZ.
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