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A sufficiently regular hypersurface immersed in the (n + 1)-dimensional Euclidean space is 
determined up to a proper isometry of Rn+1 by its first and second fundamental forms. 
As a consequence, a sufficiently regular hypersurface with boundary, whose position and 
positively-oriented unit normal vectors are given on a non-empty portion of its boundary, 
is uniquely determined by its first and second fundamental forms. We establish here 
stronger versions of these uniqueness results by means of inequalities showing that an 
appropriate distance between two immersions from a domain ω of Rn into Rn+1 is 
bounded by the Lp-norm of the difference between matrix fields defined in terms of the 
first and second fundamental forms associated with each immersion.
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r é s u m é

Une hypersuface suffisamment régulière immergée dans l’espace euclidien (n + 1)-dimen-
sionnel est determinée à une isométrie propre de Rn+1 près par ses deux premières formes 
fondamentales. Par conséquent, une hypersuface suffisamment régulière avec frontière, 
dont la position et les vecteurs unitaires normaux et orientés positivement sont donnés sur 
une partie non vide de sa frontière, est déterminée uniquement par ses deux premières 
formes fondamentales. Nous établissons ici des versions plus fortes de ce résultat, en 
établissant des inégalités montrant qu’une distance appropriée entre deux immersions 
d’un domaine ω de Rn dans Rn+1 est majorée par la norme Lp de la difference entre 
des champs de matrices définies en fonction des deux premières formes fondamentales 
associées à chaque immersion.
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1. Introduction

Throughout this article, n denotes an integer > 1, p denotes a real number > 1, Greek indices vary in the set {1, 2, . . . , n}, 
Latin indices vary in the set {1, 2, . . . , n + 1} (save when they are used for indexing sequences), and the summation conven-
tion for repeated indices is used in conjunction with these rules.

E :=R
n+1 and F := R

(n+1)×n respectively denote the (n +1)-dimensional Euclidean space and the space of all (n +1) ×n
real matrices. The set of all of all proper isometries of E is the set

Isom+(E) := {
r : E→ E, r(x) = a + R x for all x ∈ E; a ∈ E, R ∈ O

n+1+
}
,

where On+1+ denotes the set of all (n + 1) × (n + 1) real proper orthogonal matrices.
M

n and Sn respectively denote the space of all n × n real matrices and the space of all symmetric n × n matrices. Mn+1

denotes the space of (n + 1) × (n + 1) real matrices.
Let ω be a domain in Rn; this means that ω is bounded, connected, open, with a Lipschitz-continuous boundary, and 

the set ω is locally on the same side of its boundary (see, e.g., Adams [1] or Nečas [8]). A generic point in ω is denoted 
y = (yα) and partial derivatives with respect to yα are denoted by ∂α := ∂/∂ yα .

The usual Lebesgue and Sobolev spaces of (real-valued) functions defined over ω are respectively denoted by L p(ω) and 
W 1,p(ω). Given any finite-dimensional vector space X, the spaces of X-valued fields with components in L p(ω), resp. in 
W 1,p(ω), defined over ω are denoted by Lp(ω; X), resp. W 1,p(ω; X). Likewise, for each integer k � 0, the notation Ck(ω), 
resp. Ck(ω; X), denotes the space of continuously differentiable functions, resp. X-valued fields, up to order k over ω that 
possess, together with all their partial derivatives up to order k, continuous extensions to ω.

The Euclidean norm of vectors in E and the Frobenius norm of matrices in F, Mn , or Sn , are all denoted by | · |.
Given any n vectors vα ∈ E, the notation [v1 v2 . . . vn], resp. v1 ∧ . . .∧ vn , denotes the matrix in F whose α-th column 

vector is vα , resp. the vector in E whose i-th component is the determinant of the n × n matrix obtained by deleting the 
first column and the i-th row of the (n + 1) × (n + 1)-matrix [ · v1 v2 ... vn].

Let

θ : ω → E

be an immersion of class C1 with a positively-oriented unit normal vector field also of class C1; this means that θ ∈ C1(ω; E), 
the n vectors fields ∂αθ are linearly independent at each point y ∈ ω, and the vector field

ν(θ) := ∂1θ ∧ . . . ∧ ∂nθ

|∂1θ ∧ . . . ∧ ∂nθ | : ω → E

is also in the space C1(ω; E). The covariant components of the first and second fundamental forms associated with the immer-
sion θ are defined at each point y ∈ ω by

aαβ(θ)(y) := ∂αθ(y) · ∂βθ(y) and bαβ(θ)(y) := −∂αν(θ)(y) · ∂βθ(y).

Let

ϕ : ω → E

be an immersion of class W 1,p with a positively-oriented unit normal vector field also of class W 1,p ; this means that θ ∈
W 1,p(ω; E), the n vectors fields ∂αϕ are linearly independent at almost each point y ∈ ω, and the vector field

ν(ϕ) := ∂1ϕ ∧ . . . ∧ ∂nϕ

|∂1ϕ ∧ . . . ∧ ∂nϕ| : ω → E

is also in the space W 1,p(ω; E). The covariant components of the first and second fundamental forms associated with the 
immersion ϕ are defined at almost each point y ∈ ω by

aαβ(ϕ)(y) := ∂αϕ(y) · ∂βϕ(y) and bαβ(ϕ)(y) := −∂αν(ϕ)(y) · ∂βϕ(y).

Note that

aαβ(ϕ) = aαβ(r ◦ ϕ) and bαβ(ϕ) = bαβ(r ◦ ϕ) a.e. in ω for all r ∈ Isom+(E).

Then one can prove that, if

aαβ(θ) = aαβ(ϕ) and bαβ(θ) = bαβ(ϕ) a.e. in ω,

then there exists a proper isometry r ∈ Isom+(E) such that

θ = r ◦ ϕ in ω

(a proof in the particular case n = 2 and p = 2 can be found in [3, Theorem 3]).
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The first objective of this article is to improve this uniqueness result by showing that the distance in W 1,p(ω; E) between 
the immersion θ and an immersion of the form r ◦ ϕ , r ∈ Isom+(E), is bounded by the distance in Lp(ω) between specific 
functions of the coefficients aαβ(θ), bαβ(θ), aαβ(ϕ) and bαβ(ϕ) (which vanish if aαβ(θ) = aαβ(ϕ) and bαβ(θ) = bαβ(ϕ) a.e. 
in ω); cf. Theorem 1.

The second objective of this article is to prove that the above result holds with r = id, where id denotes the identity 
mapping from E onto E, provided the immersions θ and ϕ satisfy in addition one of the following two boundary conditions 
on a non-empty relatively open subset γ0 of the boundary of ω:

(i) either θ = ϕ and ν(θ) = ν(ϕ) on γ0,
(ii) or θ = ϕ on γ0 and θ(γ0) is not contained in an affine subspace of dimension < n of E;

cf. Theorems 3 and 4.
Note that some of the results of this article generalize, and some are based on, previous results of P. G. Ciarlet and the 

authors [2,4], as will be indicated in the next section. The details of the proofs of these theorems, which are only briefly 
sketched below, will appear in a forthcoming paper [7].

2. Two key lemmas

We begin by stating two lemmas, which are key to the proofs of all the ensuing theorems.
The notations ∇θ and ∇ϕ used below respectively denote the gradients of the mappings θ and ϕ , which are defined as 

the matrix fields

∇θ := [∂1θ ... ∂nθ] : ω → F and ∇ϕ := [∂1ϕ ... ∂nϕ] : ω → F.

The notation C1(θ , ω, p) means that the constant C1 depends on, and only on, θ , ω, and p.
The next lemma is in effect a generalization of a previous result of P. G. Ciarlet and the second author (see [4, Lemma 2]), 

which itself generalizes a “geometric rigidity lemma” due to Friesecke, James, and Müller [6] (for p = 2), and to Conti [5] (for 
1 < p < ∞).

Lemma 1. Let ω, p, θ and ϕ satisfy the assumptions of the Introduction. Then

inf
R ∈On+1+

(
‖∇θ − R ∇ϕ‖L p(ω;F) + ‖∇ν(θ) − R ∇ν(ϕ)‖L p(ω;F) + ‖ν(θ) − R ν(ϕ)‖L p(ω;E)

)

� C1(θ,ω, p)

∥∥∥∥∥ inf
R ∈On+1+

(
|∇θ − R ∇ϕ| + |∇ν(θ) − R ∇ν(ϕ)| + |ν(θ) − R ν(ϕ)|

)∥∥∥∥∥
L p(ω)

,

for some constant C1(θ , ω, p).

Sketch of proof. Given θ : ω → E satisfying the assumptions of the Introduction, there exists ε = ε(θ , ω) > 0 such that the 
mapping � : � → E, � := ω×] − ε, ε[, defined by �(y, t) := θ(y) + tν(θ)(y) for all (y, t) ∈ �, is an immersion of class C1

over �. Then Lemma 2 in [4] shows that there exists a constant c(�, �, p) = c(θ , ω, p) such that

inf
R ∈On+1+

‖∇�̃ − R ∇�‖L p(�;Mn+1) � c(θ ,ω, p)

∥∥∥∥∥ inf
R ∈On+1+

|∇�̃ − R ∇�|
∥∥∥∥∥

L p(�)

,

for all mappings �̃ ∈ W 1,p(�; E).
Next, given ϕ : ω → E satisfying the assumptions of the Introduction, define the mapping � : � → E by �(y, t) :=

ϕ(y) + t ν(ϕ)(y) for almost all (y, t) ∈ �. Note that � ∈ W 1,p(�; E).
The inequality of the lemma is obtained, after a series of straightforward computations, by letting �̃ = � in the above 

inequality. �
With an immersion θ satisfying the assumptions of the Introduction, we associate the matrix fields

U (θ) := (aαβ(θ))1/2 : ω → S
n and V (θ) := (aαβ(θ))−1/2(bαβ(θ)) : ω →M

n,

where (aαβ(θ))1/2 denotes the field of the square roots of the (positive-definite symmetric) n ×n matrices with components 
aαβ(θ)(y), y ∈ ω, (aαβ(θ))−1/2 denotes the field of the inverse square roots of the same matrices, and (bαβ(θ)) denotes the 
field of matrices with components bαβ(θ)(y), y ∈ ω.

With an immersion ϕ satisfying the assumptions of the Introduction, we likewise associate the matrix fields

U (ϕ) := (aαβ(ϕ))1/2 : ω → S
n and V (ϕ) := (aαβ(ϕ))−1/2(bαβ(ϕ)) : ω →M

n.

Note that these matrix fields satisfy U (θ) ∈ C0(ω; Sn), V (θ) ∈ C0(ω; Mn), U (ϕ) ∈ Lp(ω; Sn), V (ϕ) ∈ Lp(ω; Mn), and

U (r ◦ ϕ) = U (ϕ) and V (r ◦ ϕ) = V (ϕ) a.e. in ω for all r ∈ Isom+(E).

The next lemma establishes an estimate of the right-hand side of Lemma 1 in terms of the matrix fields defined above.
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Lemma 2. Let ω, p, θ and ϕ satisfy the assumptions of the Introduction. Then∥∥∥∥∥ inf
R ∈On+1+

(
|∇θ − R ∇ϕ| + |∇ν(θ) − R ∇ν(ϕ)| + |ν(θ) − R ν(ϕ)|

)∥∥∥∥∥
L p(ω)

� C2(θ,ω, p)
(
‖U (θ) − U (ϕ)‖L p(ω;Sn) + ‖V (θ) − V (ϕ)‖L p(ω;Mn)

)
,

for some constant C2(θ , ω, p).

Sketch of proof. The proof consists in expressing the matrix field ∇θ and vector field ν(θ), resp. ∇ϕ and ν(ϕ), in terms of 
the matrix field U (θ), resp. U (ϕ), by using the polar decomposition theorem applied to the matrix field [∇θ ν(θ)] : ω →
M

n+1, resp. [∇ϕ ν(ϕ)] : ω → M
n+1, and the matrix field ∇ν(θ), resp. ∇ν(ϕ), in terms of the matrices U (θ) and V (θ), resp. 

U (ϕ) and V (ϕ), by using the Weingarten equations

∇ν(θ) = −(∇θ)S(θ), where S(θ) = U (θ)−1 V (θ),

∇ν(ϕ) = −(∇ϕ)S(ϕ), where S(ϕ) = U (ϕ)−1 V (ϕ). �
3. Main results

We are now in a position to achieve our first objective announced in the Introduction, that is, to improve the uniqueness 
result according to which a sufficiently regular hypersurface immersed in E is determined up to a proper isometry of E by 
its first and second fundamental forms.

Theorem 1. Let ω, p, θ and ϕ satisfy the assumptions of the Introduction. Then

inf
r∈Isom+(E)

(
‖θ − r ◦ ϕ‖W 1,p(ω;E) + ‖ν(θ) − ν(r ◦ ϕ)‖W 1,p(ω;E)

)

� C3(θ,ω, p)
(
‖U (θ) − U (ϕ)‖L p(ω;Sn) + ‖V (θ) − V (ϕ)‖L p(ω;Mn)

)
,

for some constant C3(θ , ω, p).

Proof. The proof is a simple consequence of Lemma 1 and Lemma 2 above, combined with the Poincaré–Wirtinger inequal-
ity, which ensures that, for all R ∈ O

n+1+ , there exists a proper isometry r ∈ Isom+(E), such that ∇r = R in ω and

‖θ − r ◦ ϕ‖L p(ω;E) � c(ω, p)‖∇(θ − r ◦ ϕ)‖L p(ω;E) = c(ω, p)‖∇θ − R ∇ϕ‖L p(ω;F),

for some constant c = c(ω, p). �
It is worth mentioning that it is possible to get rid of the infimum in the left-hand side of the inequality of Theorem 1

provided a “lower norm” (than that appearing in the left-hand side) is added to the right-hand side. Note that the theorem 
below generalizes Theorem 2 in [4] (the latter is obtained from the first by letting the last components (i = n +1) of θ = (θ i)

and ϕ = (ϕ i) vanish in ω).

Theorem 2. Let ω, p, θ and ϕ satisfy the assumptions of the Introduction. Then

‖θ − ϕ‖W 1,p(ω;E) + ‖ν(θ) − ν(ϕ)‖W 1,p(ω;E) � C4(θ ,ω, p)
(
‖θ − ϕ‖L p(ω;E) + ‖ν(θ) − ν(ϕ)‖L p(ω;E)

+ ‖U (θ) − U (ϕ)‖L p(ω;Sn) + ‖V (θ) − V (ϕ)‖L p(ω;Mn)

)
,

for some constant C4(θ , ω, p).

Sketch of proof. The above inequality is a consequence of the inequality of Theorem 1 combined with the following esti-
mate, whose proof is based on a contradiction argument, of its left-hand side:

‖θ − ϕ‖W 1,p(ω;E) � c(θ ,ω, p)
(
‖θ − ϕ‖L p(ω;E) + inf

R ∈On+1+
‖∇θ − R ∇ϕ‖L p(ω;F)

)
,

for some constant c(θ , ω, p). �
We are now in a position to achieve our second objective announced in the Introduction, that is, to improve the unique-

ness result according to which a sufficiently regular hypersurface with boundary, whose position and positively-oriented 
unit normal vectors are given on a non-empty portion of its boundary, is uniquely determined by its first and second 
fundamental forms.
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Theorem 3. Let ω, p, θ and ϕ satisfy the assumptions of the Introduction and let γ0 be a non-empty relatively open subset of the 
boundary of ω. Assume in addition that θ = ϕ and ν(θ) = ν(ϕ) on γ0 . Then

‖θ − ϕ‖W 1,p(ω;E) + ‖ν(θ) − ν(ϕ)‖W 1,p(ω;E)

� C5(θ,ω, p, γ0)
(
‖U (θ) − U (ϕ)‖L p(ω;Sn) + ‖V (θ) − V (ϕ)‖L p(ω;Mn)

)
,

for some constant C5(θ , ω, p, γ0).

Sketch of proof. The proof is a consequence of Lemma 1 and Lemma 2, combined with the following estimate of the 
left-hand side of the inequality of Lemma 1:

‖θ − ϕ‖W 1,p(ω;E) + ‖ν(θ) − ν(ϕ)‖W 1,p(ω;E) � c1(θ,ω, p, γ0) inf
R ∈On+1+

(
‖∇θ − R ∇ϕ‖L p(ω;F)

+ ‖∇ν(θ) − R ∇ν(ϕ)‖L p(ω;F) + ‖ν(θ) − R ν(ϕ)‖L p(ω;E)

)
,

for some constant c1(θ , ω, p, γ0). The proof of the above estimate, which is long and somewhat technical, is based on a 
contradiction argument. �

We conclude this section by showing that, in many cases (e.g., when γ0 is large enough) the assumption “ν(θ) = ν(ϕ)

on γ0” can be dropped in the previous theorem. More specifically, the following theorem holds.

Theorem 4. Let ω, p, θ and ϕ satisfy the assumptions of the Introduction and let γ0 be a non-empty relatively open subset of the 
boundary of ω such that θ(γ0) is not contained in any affine subspace of E of dimension < n. Assume in addition that θ = ϕ on γ0 . 
Then

‖θ − ϕ‖W 1,p(ω;E) + ‖ν(θ) − ν(ϕ)‖W 1,p(ω;E)

� C6(θ,ω, p, γ0)
(
‖U (θ) − U (ϕ)‖L p(ω;Sn) + ‖V (θ) − V (ϕ)‖L p(ω;Mn)

)
,

for some constant C6(θ , ω, p, γ0).

Sketch of proof. The proof consists in showing that the inequality mentioned in the proof of the previous theorem also 
holds, possibly with a different constant c1(θ , ω, p, γ0), under the assumptions of the present theorem. This is done with 
the help of a new inequality (which could be seen as a “nonlinear Poincaré inequality”) showing that, if the mappings θ
and ϕ satisfy the assumptions of the theorem, then

‖θ − ϕ‖W 1,p(ω;E) � c2(θ ,ω, p, γ0) inf
R ∈On+1+

‖∇θ − R ∇ϕ‖Lp(ω;F),

for some constant c2(θ , ω, p, γ0). The proof of the above inequality is also based on a contradiction argument. �
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[8] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967.

http://refhub.elsevier.com/S1631-073X(17)30274-1/bib616461s1
http://refhub.elsevier.com/S1631-073X(17)30274-1/bib636D6Ds1
http://refhub.elsevier.com/S1631-073X(17)30274-1/bib636D6Ds1
http://refhub.elsevier.com/S1631-073X(17)30274-1/bib63696D612D72696769643264s1
http://refhub.elsevier.com/S1631-073X(17)30274-1/bib63696D612D6B6F726E3364s1
http://refhub.elsevier.com/S1631-073X(17)30274-1/bib636F6Es1
http://refhub.elsevier.com/S1631-073X(17)30274-1/bib636F6Es1
http://refhub.elsevier.com/S1631-073X(17)30274-1/bib666A6Ds1
http://refhub.elsevier.com/S1631-073X(17)30274-1/bib666A6Ds1
http://refhub.elsevier.com/S1631-073X(17)30274-1/bib6E6563s1

	Nonlinear estimates for hypersurfaces in terms of their fundamental forms
	1 Introduction
	2 Two key lemmas
	3 Main results
	Acknowledgements
	References


