Algebra/Group theory

Metabelian \mathbb{Q}_{1}-groups

Les \mathbb{Q}_{1}-groupes métabéliens

Mozhgan Rezakhanlou ${ }^{\text {a }}$, Mohammad Reza Darafsheh ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Tarbiat Modares University, P.O. Box 14115-137, Tehran, Iran
${ }^{\text {b }}$ School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran

A R T I C L E I N F O

Article history:

Received 9 March 2017
Accepted after revision 27 October 2017
Available online 12 January 2018
Presented by the Editorial Board

Abstract

A finite group G is called a \mathbb{Q}_{1}-group if all of its non-linear irreducible characters are rational valued. In this paper, we will find the general structure of a metabelian \mathbb{Q}_{1}-group. © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Un groupe fini G est appelé un \mathbb{Q}_{1}-groupe si les valeurs des caractères non linéaires sont rationnelles. Dans cet article, nous déterminons la structure des \mathbb{Q}_{1}-groupes métabéliens.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

If χ is an irreducible complex character of a finite group G, then it is well known that $\chi(g)$ for any $g \in G$ is an algebraic number. Let $\mathbb{Q}(\chi)$ be the field generated by all $\chi(g)$ when g runs over G. If $\mathbb{Q}(\chi)=\mathbb{Q}$, then χ is called a rational character of G, and if each irreducible character of G is rational, then G is called a rational group or a \mathbb{Q}-group. Examples of rational groups are the Weyl groups of the complex Lie algebras [3]. Classification of finite \mathbb{Q}-groups is still an open problem, but in [5] it is shown that the only non-abelian simple \mathbb{Q}-groups are $S p_{6}(2)$ and $O_{8}^{+}(2)$. In [2], a generalization of \mathbb{Q}-groups is formulated as follows: a finite group G is called a \mathbb{Q}_{1}-group if all of its non-linear irreducible characters are rational. It is clear that every \mathbb{Q}-group is a \mathbb{Q}_{1}-group. The elementary properties of \mathbb{Q}_{1}-groups can be found in [4]. In [1], it is shown that if G is a metabelian \mathbb{Q}_{1}-group, then the exponent of the commutator subgroup G^{\prime} is either a prime number or divides 16,24 , or 40 . In this paper, using [1], we give the general structure of a metabelian \mathbb{Q}_{1}-group.

Throughout the paper, we consider finite solvable groups, and we employ the following notation and terminology: the semi-direct product of a group K with a group H is denoted by $K: H$. The symbol \mathbb{Z}_{n} denotes a cyclic group of order n. For a prime p and a non-negative integer n, the symbol $E\left(p^{n}\right)$ denotes the elementary abelian p-group of order p^{n}.

Let us mention some important consequences of rational groups and \mathbb{Q}_{1}-groups. Let G be a finite group. Let $n l(G)$ denote the set of non-linear irreducible characters of G.

[^0]An element $x \in G$ is called rational if $\chi(x) \in \mathbb{Q}$ for every $\chi \in \operatorname{Irr}(G)$; otherwise, it is called an irrational element. Also, $\chi \in \operatorname{Irr}(G)$ is called a rational character if $\chi(x) \in \mathbb{Q}$ for every $\chi \in G$.

Lemma 1.1. ([7, p. 11] and [6, p. 31]) A finite group G is $a \mathbb{Q}$-group if and only if for every $x \in G$ of order n the elements x and x^{m} are conjugate in G, whenever $(m, n)=1$. Equivalently, $N_{G}(\langle x\rangle) / C_{G}(\langle x\rangle) \cong$ Aut $(\langle x\rangle)$ for each $x \in G$.

The detailed proofs of Theorems 1.2 and 1.4 can be found in [4].

Theorem 1.2. Let G be a non-abelian \mathbb{Q}_{1}-group. Then the following are true:
(1) $|G|$ is even;
(2) a quotient of G is a \mathbb{Q}_{1}-group.

Definition 1.3. Let G be a non-abelian finite group. The vanishing-off subgroup of G is defined as follows:

$$
V(G)=\langle g \in G \mid \exists \chi \in n l(G): \chi(g) \neq 0\rangle .
$$

Notice that $V(G)$ is a characteristic subgroup of G and $V(G)$ is the smallest subgroup $V \leq G$ such that every character in $n l(G)$ vanishes on $G-V(G)$. Note that the exponent of a finite group denoted by $\exp (G)$ is the least common divisor of the orders of its elements.

Theorem 1.4. Let G be a non-abelian finite group. Then G is $a \mathbb{Q}_{1}$-group if and only if every element of $V(G)$ is a rational element.

The main result of this paper is as follows.

Theorem A. Suppose that G is a metabelian \mathbb{Q}_{1}-group and let $P \in \operatorname{Syl}_{2}(G)$.
Then, one of the following occurs:
(1) G is a 2 -group and $\exp \left(G^{\prime}\right)$ divides 16;
(2) $G \cong\left(E\left(3^{n}\right): P\right): \mathbb{Z}_{m}$ or $G \cong P: \mathbb{Z}_{m}$, where m is a positive integer that is coprime to 6 . Also P is a rational group, when $G \cong$ $\left(E\left(3^{n}\right): P\right): \mathbb{Z}_{m}$ also $E\left(3^{n}\right): P$ is a rational group, and $\exp \left(P^{\prime}\right)$ divides 8;
(3) $G \cong E\left(3^{n}\right): P$ or $G \cong E\left(5^{n}\right): P$, where P is a nonabelian \mathbb{Q}_{1}-group that is metabelian. Moreover, $\exp \left(P^{\prime}\right)$ divides 8;
(4) $G \cong E\left(p^{n}\right):\left(\left(\mathbb{Z}_{m}\right) \times E\left(2^{n}\right)\right)$, where p is an odd prime and m is an odd positive integer.

2. Proof of Theorem A

Let G be a metabelian \mathbb{Q}_{1}-group and $P \in S y l_{2}(G)$. First, suppose that $P \subseteq V(G)$. In this case, by [10], $G \cong V(G): \mathbb{Z}_{m}$, where $V(G)$ is a rational group and m is an odd integer. $V(G)$ is metabelian, because G is metabelian. So, we deduce from [1] that $V(G)$ is a $\{2,3\}$-group. Since $G^{\prime} \leq V(G)$, so $\exp \left(G^{\prime}\right)$ divides 16 or 24 . From the rationality of $V(G)$, we conclude that $V(G) / G^{\prime}$ is an elementary abelian 2-group. Therefore, if $\exp \left(G^{\prime}\right)$ divides 16 , then $V(G)$ is a rational 2-group. In this case, we show that $\exp \left(G^{\prime}\right) \neq 16$. Otherwise, there exists $g \in G^{\prime}$ of order 16 . Since $V(G)$ is rational, so $\frac{N_{V(G)}(\langle g\rangle)}{\left.C_{V(G)}(l g)\right)} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}$. On the other hand, $\frac{N_{V(G)}(\langle g\rangle)}{C_{V(G)}(\langle g\rangle)}$ is an elementary abelian 2-group, because $G^{\prime} \leq C_{V(G)}(\langle g\rangle)$. Therefore, $\exp \left(G^{\prime}\right)$ can not be equal to 16 . Now, suppose that $\exp \left(G^{\prime}\right)$ divides 24 . The Sylow 3 -subgroup of G^{\prime} is elementary abelian, because G^{\prime} is abelian. Let $S \in S y l_{3}(G)$. Since S is characteristic in G^{\prime} and G^{\prime} is normal in $V(G), S$ is normal in $V(G)$. If $S>1$, then $S=E\left(p^{n}\right)$, and then recall that $V(G)=S P=E\left(3^{n}\right): P$ is rational and $P \cong V(G) / S$ will be rational since it is the quotient of a rational group. If $S=1$, then $V(G)=P$ is rational. Also, it is not difficult to see that $\exp \left(P^{\prime}\right)$ will be the 2-part of $\exp \left(G^{\prime}\right)$, so $\exp \left(P^{\prime}\right)$ divides 8 . Hence, we get the case (2) of the main theorem.

If $P \nsubseteq V(G)$ and P is non-abelian, then, by [9], $G \cong K: P$, where K is a $\{3,5,7\}$-group. By [8, Lemma 3.3], we have $K \varsubsetneqq V(G)$, and since every element in $V(G)$ of odd order is contained in $G^{\prime}, K \subset G^{\prime}$. This shows that $\exp \left(G^{\prime}\right)$ can not be an odd prime greater than 5 . Now, if $\exp \left(G^{\prime}\right)$ divides 16 , then the case (1) of the main theorem follows. If $\exp \left(G^{\prime}\right)$ divides 24 , then similar to previous paragraph, the Sylow 3-subgroup of G^{\prime} is elementary abelian and is normal in G. Similarly, if $\exp \left(G^{\prime}\right)$ divides 40 , then the Sylow 5 -subgroup of G^{\prime} is elementary abelian and is normal in G. This leads to the case (3) of the main theorem.

For the case (4) of the main theorem, let $P \nsubseteq V(G)$ and P is abelian. By [9, Theorem 2.8] and its proof, $G \cong G^{\prime}$: $\left(\mathbb{Z}_{m} \times E\left(2^{n}\right)\right.$) and G^{\prime} has odd order. Therefore, $\exp \left(G^{\prime}\right)$ can only be an odd prime. Thus G^{\prime} is an elementary abelian p-group for some odd prime p. This completes the proof of the main theorem.

References

[1] B.G. Basmaji, Rational non-linear characters of metabelian groups, Proc. Amer. Math. Soc. 85 (2) (1982) 175-180.
[2] Y.A.G. Berkovich, E.M. Zhmud, Characters of Finite Groups, Part I, Trans. Math. Monographs, vol. 172, American Mathematical Society, Providence, RI, USA, 1997.
[3] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Oxford University Press, 1985.
[4] M.R. Darafsheh, A. Iranmanesh, S.A. Moosavi, Groups whose non-linear irreducible characters are rational valued, Arch. Math. (Basel) 94 (5) (2010) 411-418.
[5] W. Feit, G.M. Seitz, On finite rational groups and related topics, Ill. J. Math. 33 (1) (1988) 103-131.
[6] I. Isaacs, Character Theory of Finite Groups, Academic Press, 1976.
[7] D. Kletzing, Structure and Representations of Q-Groups, Lecture Notes in Mathematics, vol. 1084, Springer-Verlag, 1984.
[8] M.L. Lewis, The vanishing-off subgroups, J. Algebra 321 (2009) 1313-1325.
[9] M. Norooz-Abadian, H. Sharifi, Sylow 2-subgroups of solvable Q1-groups, C. R. Acad. Sci. Paris, Ser. I (2016) 1-4.
[10] M. Norooz-Abadian, H. Sharifi, Some results about Q_{1}-groups, in press.

[^0]: E-mail addresses: m.rezakhanlou@modares.ac.ir (M. Rezakhanlou), darafsheh@ut.ac.ir (M.R. Darafsheh).

