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In this paper, we introduce an explicit parallel algorithm for finding common solutions to a 
system of variational inequalities over the set of common fixed points of a finite family of 
demi-contractive operators. Under suitable assumptions, we prove the strong convergence 
of this algorithm in the framework of a Hilbert space. The results obtained in this paper 
extend and improve the results of Tian and Jiang (2017), of Censor, Gibali and Reich (2012), 
and of many others.
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r é s u m é

Dans cette Note, nous introduisons un algorithme parallèle explicite, trouvant les solutions 
communes d’un système d’inégalités variationnelles sur l’ensemble des points fixes com-
muns à une famille finie d’opérateurs semi-contractants. Sous des hypothèses convenables, 
nous démontrons la convergence forte de cet algorithme dans le cadre des espaces de Hil-
bert. Les résultats obtenus étendent et améliorent ceux de Tian et Jiang (2017), de Censor, 
Gibali et Reich (2012), ainsi que de plusieurs autres auteurs.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Let F : H → H be a monotone operator. The 
classical variational inequality is formulated as the following problem:

finding a point x� ∈ C such that 〈F x�, y − x�〉 ≥ 0, ∀ y ∈ C .
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The set of solutions to this problem is denoted by V I(F , C). In recent years, variational inequalities have been used to study 
a large variety of problems arising in structural analysis, economics, optimization, operations research, and engineering 
sciences (see, e.g., [20,28,19] and the references therein).

Observe that the feasible set C of the variational inequality problem can always be represented as the fixed point set 
of some operator, say, C = Fix(P C ) (P C is the metric projection onto C ). Following this idea, Yamada [26] considered the 
variational inequality problem V I(F , Fix(T )), which calls for finding a point x� ∈ Fix(T ) such that

〈F x�, y − x�〉 ≥ 0 for all y ∈ Fix(T ).

Yamada [26] considered the following hybrid steepest-descent iterative method:

xn+1 = (I − μαn F )T xn,

where F is a Lipschitzian continuous and strongly monotone operator and T is a nonexpansive operator. Under some 
appropriate conditions, the sequence {xn} converges strongly to the unique point in V I(F , Fix(T )).

The literature on variational inequalities is vast, and the hybrid steepest-descent method has received great attention 
from many authors, who improved it in various ways; see, e.g., [27,7,6,29,5,15] and references therein.

Based on the hybrid steepest-descent method, recently (2017) Tian and Jiang [25] proved the following weak convergence 
theorem for zero points of an inverse strongly monotone operator and fixed points of a nonexpansive operator in a Hilbert 
space (Theorem 1.1).

Theorem 1.1. Let H be a real Hilbert space and T :H →H be a nonexpansive operator with Fix(T ) �= ∅. Let F :H →H be a k-inverse 
strongly monotone operator. Assume that Fix(T ) 

⋂
F −1(0) �= ∅. Let {xn} and {yn}, be sequences generated by x1 ∈H and{

yn = (1 − λn)xn + λn T xn,

xn+1 = (I − μαn F )yn,
(1)

for each n ∈ N, where {λn} ∈ [a, b] for some a, b ∈ (0, 1) and μαn ⊂ [c, d] for some c, d ∈ (0, 2k). Then the sequences {xn} and {yn}
converge weakly to a point z ∈ Fix(T ) 

⋂
F −1(0), where z = limn→∞ PFix(T )

⋂
F −1(0)xn. z is also a point in V I(F , Fix(T )).

On the other hand, Censor, Gibali and Reich [11] (see also [12]), introduced the Common Solutions to Variational Inequality 
Problem (CSVIP), which consists in finding common solutions to unrelated variational inequalities. The general form of the 
CSVIP is the following.

Let H be a Hilbert space. Let there be given, for each i = 1, 2, ..., m, an operator Fi :H →H and a nonempty, closed and 
convex subset Ci ⊂H, with 

⋂m
i=1 Ci �= ∅. The CSVIP (for single-valued operators) is to find a point z ∈ ⋂m

i=1 Ci such that, for 
each i = 1, 2, ..., m,

〈Fi z, x − z〉 ≥ 0, ∀ x ∈ Ci, 1 ≤ i ≤ m. (2)

We note that in CSVIP, if we choose all Fi = 0, then the problem reduces to that of finding a point z ∈ ⋂m
i=1 Ci in the 

nonempty intersection of a finite family of closed and convex sets, which is the well-known Convex Feasibility Problem (CFP).
Now, in this paper, we study the following problem.
Let H be a Hilbert space. Let there be given, for each i = 1, 2, ..., m, an operator Fi :H →H and an operator Ti :H →H

with 
⋂m

i=1 Fix(Ti) �= ∅. We intend to find a point z ∈ ⋂m
i=1 Fix(Ti) such that, for each i = 1, 2, ..., m,

〈Fi z, x − z〉 ≥ 0, ∀ x ∈ Fix(Ti), 1 ≤ i ≤ m. (3)

Recall that an operator U :H →H is said to be demicontractive [18] if there exists μ ∈ [0, 1) such that

‖U x − p‖2 ≤ ‖x − p‖2 + μ‖x − U x‖2, ∀ x ∈ H, ∀ p ∈ Fix(U ). (4)

In particular, if μ = 0 then U is called quasi-nonexpansive on H. An operator satisfying (4) will be referred to as a 
μ-demicontractive operator. This class of operators is fundamental because it includes many types of nonlinear operators 
arising in applied mathematics and optimization, see for example [23] and references therein.

In this paper, to solve (3), we introduce an explicit parallel algorithm based on the Halpern iterative method and the 
hybrid steepest-descent method for finding common solutions to a system of variational inequalities over the set of common 
fixed points of a finite family of demi-contractive operators. We prove the strong convergence of the algorithm for a family 
of inverse strongly monotone operators in the framework of a Hilbert space. Finally, some applications of our main results 
have been obtained. Our results generalize and improve the results of Tian and Jiang [25], Censor, Gibali and Reich [11], and 
of many others.
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2. Preliminaries

We use the following notation in the sequel:

• ⇀ for weak convergence and → for strong convergence.
Given a nonempty, closed convex set, C ⊂H, the mapping that assigns every point, x ∈H, to its unique nearest point in 

C is called the metric projection onto C and is denoted by P C ; i.e., P C (x) ∈ C and ‖x − P C (x)‖ = inf y∈C ‖x − y‖. The metric 
projection P C is characterized by the fact that P C (x) ∈ C and

〈y − P C (x), x − P C (x)〉 ≤ 0, ∀ x ∈ H, y ∈ C

(see for example, [[16], Section 3]).
We recall the following definitions concerning operator F :H →H. The operator F is called:

• Lipschitz continuous with constant L > 0 if

‖F (x) − F (y)‖ ≤ L‖x − y‖, ∀ x, y ∈ H;
• monotone if

〈F (x) − F (y), x − y〉 ≥ 0, ∀ x, y ∈ H;
• strongly monotone with constant β > 0, if

〈F (x) − F (y), x − y〉 ≥ β‖x − y‖2, ∀ x, y ∈ H;
• inverse strongly monotone with constant β > 0, (β − ism) if

〈F (x) − F (y), x − y〉 ≥ β‖F (x) − F (y)‖2, ∀ x, y ∈ H.

It is known that every β-inverse strongly monotone operator is monotone and Lipschitz continuous. We note that there 
exist some operators that are inverse strongly monotone, but not strongly monotone [25].

We also have the following definitions concerning T :H →H. The operator T is called:

• nonexpansive, if

‖T (x) − T (y)‖ ≤ ‖x − y‖, ∀ x, y ∈ H;
• β-strict pseudo-contractive [2], if there exists a constant β ∈ [0, 1) such that

‖T x − T y‖2 ≤ ‖x − y‖2 + β‖(x − T x) − (y − T y)‖2, ∀ x, y ∈ H;
• generalized nonexpansive [14] if there exists a constant μ ≥ 0 such that

‖T x − T y‖ ≤ ‖x − y‖ + μ‖x − T x‖, ∀ x, y ∈ H.

We note that every generalized nonexpansive operator is quasi-nonexpansive. The class of demi-contractive operators con-
tains the generalized nonexpansive operators and the strictly pseudo-contractive operators.

An operator T :H →H is said to be an averaged operator [1] if there exists some number α ∈ (0, 1) such that

T = (1 − α) I + α S, (5)

where I :H →H is the identity operator and S :H →H is nonexpansive. More precisely, when (5) holds, we say that T is 
α-averaged. It is not difficult to see that the averaged operator T is also nonexpansive and Fix(T ) = Fix(S).

Lemma 2.1. [8] Let H be a real Hilbert space. Let T :H →H be an operator.

(i) T is nonexpansive if and only if the complement I − T is 1
2 -inverse strongly monotone.

(ii) If T is κ-inverse strongly monotone, then for γ > 0, γ T is κγ -inverse strongly monotone.

(iii) For α ∈ (0, 1), T is α-averaged if and only if I − T is 1
2α -inverse strongly monotone.

Definition 2.2. Let U : C → C be an operator, then I − U is said to be demiclosed at zero if for any sequence {xn} in C , the 
conditions xn ⇀ x and limn→∞ ‖xn − U xn‖ = 0, imply x = U x.

Lemma 2.3. [13] Let C be nonempty closed convex subset of a real Hilbert space H, and U : C → C be β-demicontractive operator. 
Then the fixed point set Fix(U ) of U is closed and convex.
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Lemma 2.4. [22] Let C be nonempty closed convex subset of a real Hilbert space H, and let U : C → C be β-strict pseudo-contractive. 
Then I − U is demiclosed at 0.

Lemma 2.5. [14] Let C be nonempty closed convex subset of a real Hilbert space H, and let U : C → C be a generalized nonexpansive 
operator. Then I − U is demiclosed at 0.

Lemma 2.6. For all x, y ∈H and α ∈ [0, 1], there holds the relation:

‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2.

Lemma 2.7. ([17]) Assume {sn} is a sequence of nonnegative real numbers such that{
sn+1 ≤ (1 − λn)sn + λnδn, n ≥ 0,

sn+1 ≤ sn − ηn + μn, n ≥ 0,

where (λn) is a sequence in (0, 1), (ηn) is a sequence of nonnegative real numbers and (δn) and (μn) are two sequences in R such that

(i)
∑∞

n=1 λn = ∞,
(ii) limn→∞ μn = 0,

(iii) limk→∞ ηnk = 0, implies lim supk→∞ δnk ≤ 0 for any subsequence (nk) ⊂ (n).

Then limn→∞ sn = 0.

3. An algorithm and its convergence analysis

In this section, we introduce an explicit parallel algorithm for finding common solutions to a system of variational 
inequalities over the set of common fixed points of a finite family of demi-contractive operators.

Theorem 3.1. Let H be a real Hilbert space. Let for each i ∈ {1, 2, ..., m}, Fi :H →H be a κi -inverse strongly monotone operator and 
Ti :H →H be a λi -demi-contractive operator such that I −Ti is demiclosed at 0. Assume that F = ⋂m

i=1 Fix(Ti) 
⋂⋂m

i=1 F −1
i (0) �= ∅. 

Let {xn} be the sequence generated by x0, ν ∈H and by{
y(i)

n = (I − μ(i)β
(i)
n Fi)T n

i xn, i = 1,2, ...,m

xn+1 = γ
(0)

n ν + ∑m
i=1 γ

(i)
n y(i)

n , ∀n ≥ 0,
(6)

where T n
i = α

(i)
n I + (1 − α

(i)
n )Ti . Let the sequences {α(i)

n }, {β(i)
n } and {γ (i)

n } satisfy the following conditions:

(i) {γ (i)
n } ⊂ [ai, bi] ⊂ (0, 1) and 

∑m
i=0 γ

(i)
n = 1,

(ii) limn→∞ γ
(0)

n = 0 and 
∑∞

n=1 γ
(0)

n = ∞,

(iii) {μ(i)β
(i)
n } ⊂ [ci, di] ⊂ (0, 2κi),

(iv) λi < α
(i)
n ≤ ei < 1.

Then the sequence {xn} converges strongly to PFν ∈F which is also a point in 
⋂m

i=1 V I(Fi, Fix(Ti)).

Proof. First we show that {xn} is bounded. Take x� ∈ F . Since for each i ∈ {1, 2, ..., m}, Ti is λi -demicontractive, using 
Lemma 2.6 we arrive at

‖T n
i xn − x�‖2 = ‖α(i)

n xn + (1 − α
(i)
n )Ti xn − x�‖2

= α
(i)
n ‖xn − x�‖2 + (1 − α

(i)
n )‖Ti xn − x�‖2 − α

(i)
n (1 − α

(i)
n )‖Ti xn − xn‖2

≤ α
(i)
n ‖xn − x�‖2 + (1 − α

(i)
n )(‖xn − x�‖2 + λi‖Ti xn − xn‖2)

− α
(i)
n (1 − α

(i)
n )‖Ti xn − xn‖2

= ‖xn − x�‖2 + (1 − α
(i)
n )(λi − α

(i)
n )‖Ti xn − xn‖2.

(7)

Put w(i)
n = T n

i xn . From condition (iii) and by the assumption that Fi is a κi -inverse strongly monotone, we get that

‖y(i)
n − x�‖2 = ‖(I − μ(i)β

(i)
n Fi)w(i)

n − (I − μ(i)β
(i)
n Fi)x�)‖2

≤ ‖w(i)
n − x�‖2 + (μ(i)β

(i)
n )2‖Fi w(i)

n − Fi x
�‖2 − 2μ(i)β

(i)
n 〈Fi w(i)

n − Fi x
�, w(i)

n − x�〉
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≤ ‖w(i)
n − x�‖2 + (μ(i)β

(i)
n )2‖Fi w(i)

n − Fi x
�‖2 − 2μ(i)β

(i)
n κi‖Fi w(i)

n − Fi x
�‖2

≤ ‖w(i)
n − x�‖2 + μ(i)β

(i)
n (μ(i)β

(i)
n − 2κi)‖Fi w(i)

n − Fi x
�‖2

≤ ‖w(i)
n − x�‖2

≤ ‖xn − x�‖2.

By the convexity of ‖.‖2, we have:

‖xn+1 − x�‖2 = ‖γ (0)
n ν +

m∑
i=1

γ
(i)

n y(i)
n − x�‖2

≤ γ
(0)

n ‖ν − x�‖2 +
m∑

i=1

γ
(i)

n ‖y(i)
n − x�‖2

≤ γ
(0)

n ‖ν − x�‖2 + (1 − γ
(0)

n )‖xn − x�‖2

≤ max{‖ν − x�‖2,‖xn − x�‖2}
≤ ... ≤ max{‖ν − x�‖2,‖x0 − x�‖2}.

(8)

This yields that the sequence {xn} is bounded. Furthermore, the sequence {y(i)
n } is bounded. Next we prove that the se-

quences {xn} converge strongly to ν� = PF ν . From the inequality, ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉(∀ x, y ∈H), we find that

‖xn+1 − ν�‖2 ≤ ‖
m∑

i=1

γ
(0)

n y(i)
n − (1 − γ

(0)
n )ν�‖2

+ 2γ
(0)

n 〈ν − ν�, xn+1 − ν�〉

= ‖(1 − γ
(0)

n )(

m∑
i=1

γ
(i)

n

1 − γ
(0)

n

y(i)
n − ν�)‖2

+ 2γ
(0)

n 〈ν − ν�, xn+1 − ν�〉

= (1 − γ
(0)

n )2
m∑

i=1

γ
(i)

n

1 − γ
(0)

n

‖y(i)
n − ν�‖2

+ 2γ
(0)

n 〈ν − ν�, xn+1 − ν�〉

≤ (1 − γ
(0)

n )

m∑
i=1

γ
(i)

n ‖y(i)
n − ν�‖2

+ 2γ
(0)

n 〈ν − ν�, xn+1 − ν�〉
≤ (1 − γ

(0)
n )2‖xn − ν�‖2

+ 2γ
(0)

n 〈ν − ν�, xn+1 − ν�〉.
It immediately follows that

�n+1 ≤ (1 − γ
(0)

n )2�n + 2γ
(0)

n ηn

= (1 − 2γ
(0)

n )�n + (γ
(0)

n )2�n + 2γ
(0)

n ηn

≤ (1 − 2γ
(0)

n )�n + 2γ
(0)

n {γ
(0)

n N

2
+ ηn)

≤ (1 − ρn)�n + ρnδn,

(9)

where �n = ‖xn − ϑ�‖2, ηn = 〈ν − ν�, xn+1 − ν�〉, N = sup{‖xn − ν�‖2 : n ≥ 0}, ρn = 2γ
(0)

n and δn = γ
(0)

n N
2 + ηn . We observe 

that ρn → 0, 
∑∞

n=1 ρn = ∞.

Since Fi is κi-inverse strongly monotone, we can rewrite y(i)
n as

y(i)
n = (1 − ξ

(i)
n )w(i)

n + ξ
(i)
n S(i)

n w(i)
n ,

by using Lemma 2.1, where ξ (i)
n = μ(i)β

(i)
n and S(i)

n are nonexpansive operators of H into H. Utilizing Lemma 2.6, we have:
2κi
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‖y(i)
n − ν�‖2 = ‖(1 − ξ

(i)
n )w(i)

n + ξ
(i)
n S(i)

n w(i)
n − ν�‖2

≤ (1 − ξ
(i)
n )‖w(i)

n − ν�‖2 + ξ
(i)
n ‖S(i)

n w(i)
n − ν�‖2 − ξ

(i)
n (1 − ξ

(i)
n )‖S(i)

n w(i)
n − w(i)

n ‖2

≤ ‖w(i)
n − ν�‖2 − ξ

(i)
n (1 − ξ

(i)
n )‖S(i)

n w(i)
n − w(i)

n ‖2.

This implies that

‖xn+1 − ν�‖2 = ‖γ (0)
n ν +

m∑
i=1

γ
(i)

n y(i)
n − ν�‖2

≤ γ
(0)

n ‖ν − ν�‖2 +
m∑

i=1

γ
(i)

n ‖y(i)
n − ν�‖2

≤ γ
(0)

n ‖ν − ν�‖2 + (1 − γ
(0)

n )‖x(i)
n − ν�‖2

−
m∑

i=1

γ
(i)

n ξ
(i)
n (1 − ξ

(i)
n )‖S(i)

n w(i)
n − w(i)

n ‖2

−
m∑

i=1

γ
(i)

n (1 − α
(i)
n )(α

(i)
n − λi)‖Ti xn − xn‖2.

(10)

Now by setting

ζn =
m∑

i=1

γ
(i)

n ξ
(i)
n (1 − ξ

(i)
n )‖S(i)

n w(i)
n − w(i)

n ‖2

+
m∑

i=1

γ
(i)

n (1 − α
(i)
n )(α

(i)
n − λi)‖Ti xn − xn‖2,

(11)

and

�n = γ
(0)

n ‖ν − ν�‖2, (12)

the inequality (10) can be rewritten in the following form:

�n+1 ≤ �n − ζn + �n. (13)

To use Lemma 2.7 (considering inequalities (9) and (13)), it suffices to verify that, for all subsequences {nk} ⊂
{n}, limk→∞ ζnk = 0 implies

lim sup
k→∞

δnk ≤ 0.

We assume that limk→∞ ζnk = 0. From (11) and by our assumptions on {γ (i)
n }, {α(i)

n }, and {ξ (i)
n }, we have:

lim
k→∞

‖Ti xnk − xnk‖ = lim
k→∞

‖S(i)
nk

w(i)
nk

− w(i)
nk

‖ = 0. (14)

Since {xnk } is bounded, there exists a subsequence {xnk j
} of {xnk } that converges weakly to ̂x. Without loss of generality, we 

can assume that xnk ⇀ x̂. Since limn→∞ ‖xn − w(i)
n ‖ = 0, we have w(i)

nk
⇀ x̂. Since {β(i)

nk
} is bounded, we can find a subse-

quence {β(i)
nk j

} converging to β(i) such that μ(i)β(i) ⊂ [ci, di]. Since {w(i)
nk j

} is bounded and Fi is inverse strongly monotone, 

we know that {Fi w(i)
nk j

} is bounded. Hence, we have:

‖(I − μ(i)β
(i)
nk j

F i)wnk j
− (I − μ(i)β(i) Fi)wnk j

‖ ≤ |μ(i)β
(i)
nk j

− μ(i)β(i)|‖Fi w(i)
nk j

‖ → 0.

From (14) we have limn→∞ ‖y(i)
n − w(i)

n ‖ = 0, hence

‖(I − μ(i)β
(i)
nk j

F i)w(i)
nk j

− w(i)
nk j

‖ → 0.

Therefore, we get

‖(I − μ(i)β(i) Fi)w(i)
nk j

− w(i)
nk j

‖ ≤ ‖(I − μ(i)β
(i)
nk j

F i)w(i)
nk j

− (I − μ(i)β(i) Fi)w(i)
nk j

‖
+ ‖(I − μ(i)β

(i)
nk j

F )w(i)
nk j

− w(i)
nk j

‖ → 0.



1174 M. Eslamian / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 1168–1177
From the demiclosedness of I − μ(i)β(i) Fi , we obtain that

x̂ ∈ Fix(I − μ(i)β(i) Fi) = F −1
i (0), i ∈ {1,2, ...,m}.

From the demiclosedness of I − Ti and using (14), we get that ̂x ∈ ⋂m
i=1 Fix(Ti). Thus ̂x ∈F . Now we show that

lim sup
k→∞

δnk = lim sup
k→∞

〈ϑ − ϑ�, xnk − ϑ�〉 ≤ 0. (15)

To show this inequality, we choose a subsequence {xnk j
} of {xnk } such that

lim
j→∞

〈ν − ν�, xnk j
− ν�〉 = lim sup

k→∞
〈ν − ν�, xnk − ν�〉.

Since {xnk j
} converges weakly to ̂x, it follows that

lim sup
k→∞

〈ν − ν�, xnk − ν�〉 = lim
j→∞

〈ν − ν�, xnk j
− ν�〉 = 〈ν − PF (ν), x̂ − PF (ν)〉 ≤ 0. (16)

Hence, all conditions of Lemma 2.7 are satisfied. Therefore, we immediately deduce that limn→∞ �n = limn→∞ ‖xn −ν�‖ = 0, 
that is {xn} converges strongly to ν� = PF (ν), which completes the proof. �
Theorem 3.2. Let H be a real Hilbert space. Let, for each i ∈ {1, 2, ..., m}, Fi :H →H be a κi -inverse strongly monotone operator and 
Ti : H → H be a λi -strict pseudo-contractive operator. Assume that F = ⋂m

i=1 Fix(Ti) 
⋂⋂m

i=1 F −1
i (0) �= ∅. Let {xn} be the sequence 

generated by x0 ∈H and

xn+1 =
m∑

i=1

γ
(i)

n (I − μ(i)β
(i)
n Fi)T n

i xn, ∀n ≥ 0, (17)

where T n
i = α

(i)
n I + (1 − α

(i)
n )Ti . Let the sequences {α(i)

n }, {β(i)
n } and {γ (i)

n } satisfy the following conditions:

(i) {γ (i)
n } ⊂ [ai, bi] ⊂ (0, 1),

(ii)
∑m

i=1 γ
(i)

n = 1 − γ
(0)

n where γ (0)
n ∈ (0, 1), limn→∞ γ

(0)
n = 0 and 

∑∞
n=1 γ

(0)
n = ∞,

(iii) {μ(i)β
(i)
n } ⊂ [ci, di] ⊂ (0, 2κi),

(iv) λi < α
(i)
n ≤ ei < 1.

Then, the sequence {xn} converges strongly to x� ∈F , which satisfies ‖x�‖ = min{‖x‖ : x ∈F}.

Proof. We note that every strict pseudo-contractive mapping is demi-contractive. Also, from Lemma 2.4 we know that I − Ti
are demiclosed at 0. Now setting ν = 0 in Theorem 3.1 we obtain the desired result. �

Now we consider an algorithm similar to algorithm (6) for finding common solutions to a system of variational inequali-
ties over the set of common fixed points of a finite family of strongly quasi-nonexpansive operators. Recall that an operator 
U :H →H is said to be ρ-strongly quasi-nonexpansive, where ρ ≥ 0, if

‖U x − p‖2 ≤ ‖x − p‖2 − ρ‖x − U x‖2, ∀ x ∈ H, ∀ p ∈ Fix(U ). (18)

More information on strongly quasi-nonexpansive operators can be found in Section 2.2 of [21].

Theorem 3.3. Let H be a real Hilbert space. Let for each i ∈ {1, 2, ..., m}, Fi : H → H be a κi -inverse strongly monotone operator 
and Ui : H → H be a ρi -strongly quasi-nonexpansive operator where ρi > 0 and such that I − Ui is demiclosed at 0. Assume that 
F = (

⋂m
i=1 Fix(Ui)) 

⋂
(
⋂m

i=1 F −1
i (0)) �= ∅. Let {xn} be the sequence generated by x0, ν ∈H and by{

y(i)
n = (I − μ(i)β

(i)
n Fi)Ui xn, i = 1,2, ...,m

xn+1 = γ
(0)

n ν + ∑m
i=1 γ

(i)
n y(i)

n , ∀n ≥ 0.
(19)

Let the sequences {β(i)
n } and {γ (i)

n } satisfy the following conditions:

(i) {γ (i)
n } ⊂ [ai, bi] ⊂ (0, 1) and 

∑m
i=0 γ

(i)
n = 1,

(ii) limn→∞ γ
(0)

n = 0 and 
∑∞

n=1 γ
(0)

n = ∞,

(iii) {μ(i)β
(i)
n } ⊂ [ci, di] ⊂ (0, 2κi).

Then, the sequence {xn} converges strongly to PFν ∈F which is also a point in 
⋂m

i=1 V I(Fi, Fix(Ui)).
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Proof. Since Ui is ρi -strongly quasi-nonexpansive operator with ρi > 0, for each x� ∈F , we have:

‖Ui xn − x�‖2 ≤ ‖xn − x�‖2 − ρi‖xn − Uixn‖2. (20)

On substituting inequality (20) into inequality (7) in Theorem 3.1 and by similar arguments, we obtain the desired result. �
Remark 3.4. In [25], Tian and Jiang proved a weak convergence theorem (see Theorem 1.1) for finding zero points of an 
inverse strongly monotone operator and fixed points of a nonexpansive operator in a Hilbert space. In this paper, we 
generalized the result for finding common fixed points of a finite family of demi-contractive operators (as a general class 
of operators) and of zero points of a family of inverse strongly monotone operators. We also proved a strong convergence 
theorem, which is more desirable than weak convergence.

4. Applications

In this section, we present some application of our main result.

4.1. The multiple-set split feasibility problem

Let H and K be real Hilbert spaces, A : H → K be a bounded linear operator and let {Ci}p
i=1 be a family of nonempty 

closed convex subsets in H and {Q i}r
i=1 be a family of nonempty closed convex subsets in K. The multiple-set split fea-

sibility problem (MSSFP) was introduced by Censor et al. (2005) [10], and is formulated as finding a point x� with the 
property:

x� ∈
p⋂

i=1

Ci and Ax� ∈
r⋂

i=1

Q i .

Masad and Riech [24] studied the constrained multiple-set split convex feasibility problem (CMSSCFP). Let Ai : H → K, 
i = 1, 2, ..., r, be r bounded linear operators and let � be another closed and convex subset of H. The CMSSCFP is formulated 
as follows:

find a point x� ∈ � such that x� ∈
p⋂

i=1

Ci and Ai(x�) ∈ Q i for each i = 1,2, ..., r.

The multiple-set split feasibility problem with p = r = 1 is known as the split feasibility problem (SFP), which is formulated 
as finding a point x� with the property:

x� ∈ C and Ax� ∈ Q ,

where C and Q are nonempty closed convex subsets of H and K, respectively. The split feasibility problem was introduced 
by Censor and Elfving (1994) ([9]). It has attracted many authors attention due to its application in optimization problem 
and signal processing. To solve the SFP, Byrne [3,4] proposed his CQ algorithm, which generates a sequence {xn} by

xn+1 = P C (I − λA∗(I − P Q )A)xn

where λ ∈ (0, 2
‖A‖2 ), A∗ is the adjoint of A.

Now we present an algorithm for solving the multiple-set split feasibility problem when Ci are the fixed point set of 
nonlinear operators.

Theorem 4.1. Let H and K be two real Hilbert spaces. Let for each i ∈ {1, 2, ..., m}, Ai : H → K be a bounded linear operator and 
Ti : H → H be a generalized nonexpansive mapping. Let {Q i}m

i=1 be a family of nonempty closed convex subsets in K. Assume that 
F = {x� ∈ ⋂m

i=1 Fix(Ti) : Ai(x�) ∈ Q i, i = 1, 2, ..., m} �= ∅. Let {xn} be the sequence generated by x0, ν ∈H and by{
y(i)

n = (I − μ(i)β
(i)
n Ai

∗(I − P Q i )Ai)T n
i xn, i = 1,2, ...,m

xn+1 = γ
(0)

n ν + ∑m
i=1 γ

(i)
n y(i)

n , ∀n ≥ 0,
(21)

where T n
i = α

(i)
n I + (1 − α

(i)
n )Ti . Let the sequences {α(i)

n }, {β(i)
n } and {γ (i)

n } satisfy the following conditions:

(i) {γ (i)
n } ⊂ [ai, bi] ⊂ (0, 1) and 

∑m
i=0 γ

(i)
n = 1,

(ii) limn→∞ γ
(0)

n = 0 and 
∑∞

n=1 γ
(0)

n = ∞,

(iii) {μ(i)β
(i)
n } ⊂ [ci, di] ⊂ (0, 2

‖Ai‖2 ),

(iv) {α(i)
n } ⊂ [ei, li] ⊂ (0, 1).

Then, the sequence {xn} converges strongly to PFν ∈F .
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Proof. Notice that Ai x� ∈ Q i if and only if x� ∈ (Ai
∗(I − P Q i )Ai)

−1(0). Putting Fi = Ai
∗(I − P Q i )Ai we see that Fi is 

1
‖Ai‖2 -inverse strongly monotone operator (see [25] for details). We note that every generalized nonexpansive operator is 
0-demi-contractive. Also, from Lemma 2.5 we know that I − Ti are demiclosed at 0. Now, utilizing Theorem 3.1, we obtain 
the desired result. �
4.2. Common solutions to a system of variational inequalities

Now, we present a strong convergence theorem for finding common solutions to a system of variational inequalities that 
generalizes the result of Censor, Gibali, and Reich [11].

Theorem 4.2. Let H be a real Hilbert space. Let for each i ∈ {1, 2, ..., m}, Ci be a nonempty, closed convex subset of H and Fi :H →H
be a κi -inverse strongly monotone operator. Assume that F = ⋂m

i=1 V I(Fi, Ci) �= ∅. Let {xn} be the sequence generated by x0, ν ∈ H
and by{

y(i)
n = (I − μ(i)β

(i)
n Fi)P Ci xn, i = 1,2, ...,m

xn+1 = γ
(0)

n ν + ∑m
i=1 γ

(i)
n y(i)

n , ∀n ≥ 0.
(22)

Let the sequences {β(i)
n } and {γ (i)

n } satisfy the following conditions:

(i) {γ (i)
n } ⊂ [ai, bi] ⊂ (0, 1) and 

∑m
i=0 γ

(i)
n = 1,

(ii) limn→∞ γ
(0)

n = 0 and 
∑∞

n=1 γ
(0)

n = ∞,

(iii) {μ(i)β
(i)
n } ⊂ [ci, di] ⊂ (0, 2κi).

Then, the sequence {xn} converges strongly to PFν ∈ ⋂m
i=1 V I(Fi, Ci).

Proof. We note that the metric projection P C is a 1-strongly quasi-nonexpansive operator. Now utilizing Theorem 3.3, we 
obtain the desired result. �
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