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We establish a formality theorem for smooth dg manifolds. More precisely, we prove that, 
for any finite-dimensional dg manifold (M, Q ), there exists an L∞ quasi-isomorphism 
of dglas from 

(
⊕T •

poly(M), [Q , −], [−, −]) to 
(
⊕D•

poly(M), �m + Q , −�, �−, −�
)

whose 
first Taylor coefficient (1) is equal to the composition hkr◦(td∇

(M,Q ))
1
2 : ⊕T •

poly(M) →
⊕D•

poly(M) of the action of (td∇
(M,Q ))

1
2 ∈ ∏

k≥0

(
�k(M)

)k
on ⊕T •

poly(M) (by contraction) 
with the Hochschild–Kostant–Rosenberg map and (2) preserves the associative algebra 
structures on the level of cohomology. As an application, we prove the Kontsevich–Shoikhet 
conjecture: a Kontsevich–Duflo-type theorem holds for all finite-dimensional smooth dg 
manifolds.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous prouvons un théorème de formalité pour les variétés lisses différentielles graduées. 
Plus précisément, nous prouvons qu’il existe, pour toute variété différentielle graduée 
(M, Q ), un quasi-isomorphisme L∞ de l’algèbre de Lie différentielle graduée(
⊕T •

poly(M), [Q , −], [−, −]) dans l’algèbre de Lie différentielle graduée(
⊕D•

poly(M), �m + Q , −�, �−, −�
)
, dont le premier coefficient de Taylor (1) est égal à 

la composée hkr◦(td∇
(M,Q ))

1
2 : ⊕T •

poly(M) → ⊕D•
poly(M) de l’action (par contraction) de 

(td∇
(M,Q ))

1
2 ∈ ∏

k≥0

(
�k(M)

)k
sur ⊕T •

poly(M) avec l’application de Hochschild–Kostant–
Rosenberg et (2) respecte les structures d’algèbres associatives en cohomologie. Comme 
application, nous prouvons la conjecture de Kontsevich–Shoikhet : il existe un théorème 
de type Kontsevich–Duflo valable pour toute variété différentielle graduée de dimension 
finie.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In 1997, Kontsevich revolutionized the field of deformation quantization with his formality theorem: there exists an L∞
quasi-isomorphism from the dgla Tpoly(M) of polyvector fields on a smooth manifold M to the dgla Dpoly(M) of polydiffer-
ential operators on M whose first “Taylor coefficient” is the classical Hochschild–Kostant–Rosenberg map [19]. Kontsevich’s 
formality theorem completely settled a long-standing problem [3] regarding the existence and classification of deforma-
tion quantizations for all smooth Poisson manifolds. An alternative approach to the formality theorem was developed by 
Tamarkin using operads [31].

Beyond deformation quantization, Kontsevich’s formality construction found other important applications in several dif-
ferent areas of mathematics. One of them is the extension of the classical Duflo theorem. Given a finite-dimensional Lie 
algebra g, the Poincaré–Birkhoff–Witt (PBW) map is the isomorphism of g-modules pbw : S(g) 

∼=−→ U(g) defined by the 
symmetrization map X1 
 · · · 
 Xn �→ 1

n!
∑

σ∈Sn
Xσ(1) · · · Xσ(n) . It induces an isomorphism pbw : S(g)g

∼=−→ U(g)g between 
subspaces of g-invariants. This isomorphism fails to intertwine the obvious multiplications on S(g)g and U(g)g. Neverthe-
less, it can be modified so as to become an isomorphism of associative algebras. The Duflo element J ∈ Ŝ(g∨) is the formal 
power series on g defined by J (x) = det

(
1−e− adx

adx

)
, for all x ∈ g. Considered as a formal linear differential operator on g∨

with constant coefficients, the square root of the Duflo element defines a transformation J
1
2 : S(g) → S(g). A remarkable 

theorem due to Duflo [14] asserts that the composition pbw ◦ J
1
2 : S(g)g → U(g)g is an isomorphism of associative alge-

bras. Duflo’s theorem generalizes a fundamental result of Harish-Chandra regarding the center of the universal enveloping 
algebra of a semi-simple Lie algebra. Duflo’s original proof is based on deep and sophisticated techniques of representation 
theory including Kirillov’s orbit method. As an application of his formality construction, Kontsevich proposed a new proof 
of Duflo’s theorem by means of the associative algebra structure carried by the tangent cohomology at a Maurer–Cartan 
element. Indeed, Kontsevich’s approach [19] led to an extension of Duflo’s theorem: for every finite dimensional Lie al-
gebra g, the map pbw◦ J

1
2 : H•

CE(g, S(g)) → H•
CE(g, U(g)) is an isomorphism of graded associative algebras. The classical 

Duflo theorem is simply the isomorphism between the cohomology groups of degree 0. A detailed proof of the above ex-
tended Duflo theorem was given by Pevzner–Torossian [29] (see also [22,23]). Furthermore, Kontsevich discovered a similar 
phenomenon in complex geometry [19]. Recall that the Hochschild cohomology groups H H•(X) of a complex manifold 
X are defined as the groups Ext•OX×X

(O�, O�). Gerstenhaber–Shack [18] derived an isomorphism of cohomology groups 

hkr : H•(X, �•T X ) 
∼=−→ H H•(X) from the classical Hochschild–Kostant–Rosenberg map. This isomorphism fails to intertwine 

the multiplications on the two cohomologies but can be tweaked so as to produce an isomorphism of associative algebras. 
More precisely, Kontsevich [19] obtained the following theorem: the composition hkr ◦(TdX )

1
2 : H•(X, �•T X ) 

∼=−→ H H•(X), 
where TdX denotes the Todd class of the complex manifold X , is an isomorphism of associative algebras. The multiplica-
tions on H•(X, �•T X ) and H H•(X) are respectively the wedge product and the Yoneda product. Calaque–Van den Bergh [6]
wrote a detailed proof of Kontsevich’s theorem and showed additionally that the map hkr ◦(TdX )

1
2 actually respects the 

Gerstenhaber algebra structures carried by the two cohomologies. A related result was also proved by Dolgushev–Tamarkin–
Tsygan [12,13].

Hence Kontsevich’s formality construction revealed a hidden connection between complex geometry and Lie theory. 
Kontsevich’s discovery of this mysterious and surprising similarity between the Todd class of a complex manifold and 
the Duflo element of a Lie algebra — two seemingly unrelated objects — was responsible for many subsequent exciting 
developments. Naturally, one would wonder whether a general framework encompassing both Lie algebras and complex 
manifolds as special cases could be developed in which a Kontsevich–Duflo-type theorem would hold. This is indeed the 
main goal of this Note. We claim that differential graded (dg) manifolds provide the appropriate framework.

By a dg manifold, we mean a Z-graded manifold endowed with a homological vector field, i.e. a vector field Q of 
degree +1 satisfying [Q , Q ] = 0. Dg manifolds arise naturally in many situations in geometry, Lie theory, and mathematical 
physics. Standard examples of dg manifolds are: (1) Lie algebras — Given a finite-dimensional Lie algebra g, we write g[1]
to denote the dg manifold having C∞(g[1]) = ∧•g∨ as its algebra of functions and the Chevalley–Eilenberg differential 
Q = dCE as its homological vector field. This construction admits an up-to-homotopy version: given a Z-graded vector 
space g = ⊕

i∈Z gi of finite type (i.e. each gi is a finite-dimensional vector space), g[1] is a dg-manifold if and only if g is 
a curved L∞ algebra. (2) Complex manifolds — Given a complex manifold X , we write T 0,1

X [1] to denote the dg manifold 
having C∞(T 0,1

X [1]) ∼= �0,•(X) as its algebra of functions and the Dolbeault operator Q = ∂̄ as its homological vector field. 
(3) Derived intersections — Given a smooth section s of a smooth vector bundle E → M , we write E[−1] to denote the 
dg-manifold having C∞(E[−1]) = �(∧−•(E∨)) as its algebra of functions and the contraction operator is as its homological 
vector field.

In 1998, Shoikhet [30] proposed a conjecture, known as Kontsevich–Shoikhet conjecture, stating that a Kontsevich–Duflo-
type formula holds for all finite-dimensional smooth dg manifolds. In this Note, we prove a formality theorem for smooth dg 
manifolds (Theorem 4.2) and, as an immediate consequence, we confirm the Kontsevich–Shoikhet conjecture (Theorem 4.3). 
Applying Theorem 4.3 to the dg manifold examples of type (1) and (2) mentioned earlier, we recover the Kontsevich–
Duflo theorem for Lie algebras and Kontsevich’s theorem for complex manifolds, respectively. Thus we fulfill our stated 
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goal of conceiving a unified framework in which these two important theorems can be understood as one and the same 
phenomenon.

Our approach is based on the construction of Fedosov dg Lie algebroids, a concept of likely independent interest inspired 
by Dolgushev’s proof of Kontsevich’s global formality theorem for smooth manifolds. We start by constructing, firstly, a ho-
mological vector field D∇

Q on the Z-graded manifold N = TM[1] ⊕ TM such that the dg manifold NQ = (N , D∇
Q ) is weakly 

equivalent to (M, Q ) and, secondly, a Fedosov dg Lie algebroid FQ → NQ , i.e. a dg Lie subalgebroid of TNQ → NQ — a 
dg foliation of the dg manifold NQ — “homotopy equivalent” to the tangent dg Lie algebroid of the dg manifold (M, Q ). 
Then we apply the Z-graded version [7,32] of Kontsevich’s formality quasi-isomorphism essentially leafwise on N w.r.t. the 
F -foliation to prove our main results.

The formality theorem was transposed to the context of Z-graded manifolds by Cattaneo–Felder in connection with their 
study of the quantization of coisotropic submanifolds [7]. Our formality theorem for dg manifolds reduces to Cattaneo–
Felder’s when the homological vector field is trivial. Conversely, subsequently applying Cattaneo–Felder’s formality theorem 
to the Z-graded manifold M and then considering the tangent L∞ morphism between the tangent complexes at the ho-
mological vector field Q seen as a Maurer–Cartan element ought to yield the formality theorem for dg manifolds (M, Q ). 
However the novelty of our approach compared to Cattaneo–Felder’s resides in the explicit expression for the first Taylor 
coefficient of the formality quasi-isomorphism for the dg manifold (M, Q ), which plays an essential role in our proof of the 
Kontsevich–Shoikhet conjecture. The precise relation between our formality theorem and Cattaneo–Felder’s will be studied 
somewhere else. It is worth noting that, although both our and Cattaneo–Felder’s approaches make use of Fedosov resolu-
tions, the two approaches are significantly different: while Cattaneo–Felder resolve the subalgebra of functions generated by 
the coordinate functions on the support manifold (which is a genuine smooth manifold) and essentially ignore the virtual 
Z-graded coordinates, we resolve the whole algebra of functions of M w.r.t. to all coordinates, both genuine and virtual, by 
way of the formal exponential map introduced in [20] by the first two authors.

We conclude with a short comparison of the present work with the work of Calaque–Rossi [5]. Following Shoikhet [30], 
Calaque–Rossi gave a detailed proof of the Kontsevich–Duflo theorem for “Q -spaces,” i.e. Z2-graded vector spaces endowed 
with a homological vector field. Then they applied this result to the Q -space (g[1], dCE) so as to recover the Kontsevich–
Duflo theorem for the finite-dimensional Lie algebra g. On the other hand, given a complex manifold X , they proved the 
analogue in complex geometry of the Duflo-type theorem by applying their “Kontsevich–Duflo theorem for Q -spaces” to 
the resolutions �•(X, O), �•(X, Tpoly), and �•(X, Dpoly) of the O-modules �0,•(X), �0,•(X, T ′

poly), and �0,•(X, D ′
poly) con-

structed in [4]. These resolutions are straightforward adaptations to the context of complex manifolds of corresponding 
resolutions valid in the context of smooth manifolds, constructed by Dolgushev [11], and inspired by Fedosov’s iterative 
procedure [16]. Here, however, we prove a single unified Kontsevich–Duflo-type theorem (Theorem 4.3) valid for all finite-
dimensional smooth dg manifolds. Then we specialize this result to two important classes of dg manifolds — (1) the dg 
manifolds (g[1], dCE) arising from finite-dimensional Lie algebras and (2) the dg manifolds (T 0,1

X [1], ̄∂) arising from complex 
manifolds — so as to recover (1) the Kontsevich-Duflo theorem for finite dimensional Lie algebras (Theorem 7.1) and (2) its 
analogue in complex geometry discovered by Kontsevich (Theorem 7.4). The correction to the HKR map is precisely the Todd 
class of the dg manifold, which is a function of the Atiyah class of the dg manifold [28]. The Atiyah class of a dg manifold 
(M, Q ), which was introduced by Mehta and two of the authors [28], captures exactly the obstruction to the existence of 
a connection on M compatible with the homological vector field Q . This obstruction is thus clearly identified as the origin 
of the correction to the HKR map in the Kontsevich–Duflo-type theorem. We would like to warn the reader that, even in 
the complex manifold case, i.e. in the case of the dg manifold (T 0,1

X [1], ̄∂), the resolutions we construct in Section 5 via 
the Fedosov dg Lie algebroid are totally different from those used by Calaque–Rossi [5] and Calaque–Van den Bergh [6]. In 
fact, in this Note, we prove a formality theorem valid for all finite-dimensional smooth dg manifolds (Theorem 4.2) and de-
duce from it our single unified Kontsevich–Duflo-type theorem as a straightforward corollary. We expect that our formality 
theorem will find applications to the deformation theory of dg manifolds. Furthermore, we expect to obtain a number of 
new and interesting Duflo type theorems by applying our unified Kontsevich–Duflo-type theorem to various classes of dg 
manifolds. In particular, in a forthcoming paper, we will establish a Duflo-type theorem valid for arbitrary Lie algebroids.

2. Preliminaries

Throughout this Note, we use the symbol k to denote either of the fields R and C. A Z-graded manifold M over k is a 
sheaf OM of Z-graded, graded-commutative k-algebras over a smooth manifold M such that every point of M admits an 
open neighborhood U for which OM(U ) is isomorphic to C∞(U , k) ⊗k Ŝ(V ∨) for some fixed Z-graded vector space V over 
the field k. The manifold M is called the support of the graded manifold M. Here V ∨ denotes the k-dual of V and Ŝ(V ∨)

denotes the k-algebra of formal power series on V . A Z-graded manifold M is finite-dimensional if both dim M and dim V
are finite. We write either R or C∞(M) for the algebra of global functions OM(M). We refer the reader to [27, Chapter 2]
for a short introduction to Z-graded manifolds. In this Note, the word “graded” means “Z-graded” and, unless otherwise 
stated, the notation |−| denotes the total degree of its argument.
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2.1. Polyvector fields

By a vector field on a Z-graded manifold M over k, we mean a k-linear (graded) derivation of R. The tangent bundle 
TM of a graded manifold M is itself a graded manifold and is the total space of a vector bundle object in the category of 
graded manifolds whose space of sections �(TM) consists of all vector fields on M.

We use the symbol 
(
T −1

poly(M)
)q

to denote the space of smooth functions of degree q on M and the symbol 
(
T p

poly(M)
)q

to denote the space 
(
�(�p+1TM)

)q
of (p + 1)-vector fields of degree q on M. In other words, an element in 

(
T p

poly(M)
)q

is a finite sum 
∑

X0 ∧· · ·∧ Xp , where X0, · · · , Xp ∈ �(TM) are homogeneous vector fields on M with |X0|+ · · ·+ ∣∣Xp
∣∣ = q. 

The bigraded left R-module 
(
T •

poly(M)
)• = ⊕

p,q∈Z
p�−1

(
T p

poly(M)
)q

is called the space of polyvector fields on M. We are most 

interested in the graded left R-module ⊕T •
poly(M) defined by ⊕T n

poly(M) = ⊕
p+q=n

(
T p

poly(M)
)q

.

When endowed with the graded commutator [−, −], the space 
(
T 0

poly(M)
)• = (

Der(R)
)•

of graded derivations of R
is a graded Lie algebra. The Lie bracket on the space 

(
T 0

poly(M)
)•

of graded vector fields on M can be extended to 
the Schouten bracket [−, −] on the space 

(
T •

poly(M)
)•

of graded polyvector fields on M in such a way that the triple (
⊕T •

poly(M), [−, −], ∧)
becomes a Gerstenhaber algebra:

[ξ,η1 ∧ η2] = [ξ,η1] ∧ η2 + (−1)|ξ ||η1|η1 ∧ [ξ,η2],
for ξ ∈ (

T p0
poly(M)

)q0
, η1 ∈ (

T p1
poly(M)

)q1
, η2 ∈ (

T •
poly(M)

)•
, and |ξ | = p0 + q0, |η1| = p1 + q1. Finally, adding the zero differ-

ential 0 : ⊕T •
poly(M) → ⊕T •+1

poly (M), we obtain the dg Gerstenhaber algebra 
(
⊕T •

poly(M), 0, [−, −], ∧)
.

2.2. Polydifferential operators

A linear differential operator of degree q on M is a k-linear endomorphism of R that can be obtained as a finite sum ∑
X1 ◦· · ·◦ Xk of compositions of graded derivations X1, . . . , Xk of R with |X1|+· · ·+|Xk| = q. We use the symbol 

(
D(M)

)q

to denote the space of linear differential operators of degree q on M.
The space Dp

poly(M) of (p + 1)-differential operators on M admits a canonical identification with the tensor product of 
(p + 1) copies of the left R-module D(M) of all linear differential operators on M. We use the symbol 

(
Dp

poly(M)
)q

to 
denote the space 

⊕
q0+···+qp=q

(
D(M)

)q0 ⊗R · · ·⊗R
(
D(M)

)qp , which must be thought of as the space of (p +1)-differential 
operators of degree q on M, and the symbol 

(
D−1

poly(M)
)q

to denote the space of smooth functions of degree q on M.

The bigraded left R-module 
(
D•

poly(M)
)• = ⊕

p,q∈Z
p�−1

(
Dp

poly(M)
)q

is called the space of polydifferential operators on M. 

We are most interested in the graded left R-module ⊕D•
poly(M) defined by ⊕Dn

poly(M) = ⊕
p+q=n

(
Dp

poly(M)
)q

.
As in the classical case, endowing the space of polydifferential operators ⊕D•

poly(M) with the Gerstenhaber bracket 

�−, −� and the Hochschild differential �m, −� : (
Dp

poly(M)
)q → (

Dp+1
poly (M)

)q
makes it a dgla. The tensor product of left 

R-modules determines a cup product 
(
Dp

poly(M)
)q × (

Dp′
poly(M)

)q′ 
−→ (
Dp+p′+1

poly (M)
)q+q′

, which descends to Hochschild 
cohomology. When endowed with the cup product and the Gerstenhaber bracket, the cohomology of the cochain complex 
(⊕D•

poly(M), �m, −�) becomes a Gerstenhaber algebra [7, Appendix].

3. Atiyah and Todd classes of a dg manifold

By a dg manifold, we mean a Z-graded manifold M endowed with a homological vector field, i.e. a vector field Q of 
degree +1 such that [Q , Q ] = 0. A dg vector bundle is a vector bundle in the category of dg manifolds. We refer the reader 
to [28,26] for details on dg vector bundles.

The space of sections �(E) of a vector bundle of graded manifolds E π−→ M is defined to be the direct sum 
⊕

j∈Z � j(E)

of the spaces � j(E) consisting of all degree preserving maps s ∈ Hom(M, E[− j]) such that (π[− j]) ◦ s = idM , where 
π[− j] : E[− j] →M is the natural (graded) map determined by π — see [26] for more details. When E →M is a dg vector 
bundle, the homological vector fields on E and M naturally induce a degree +1 operator Q on �(E), making �(E) a dg 
module over C∞(M). The converse is also true: since the space C∞(M) and the space �(E∨) of linear functions on E
together generate the ring C∞(E), the homological vector field on E can be reconstructed from Q and the homological 
vector field on M.

A dg Lie algebroid is a Lie algebroid object in the category of dg manifolds. A dg Lie algebroid A → M is thus a dg 
vector bundle together with a bundle map ρ : A → TM , called anchor, and a structure of graded Lie algebra on �(A) with 
Lie bracket satisfying

[X, f Y ] = ρ(X)( f )Y + (−1)|X || f | f [X, Y ]



H.-Y. Liao et al. / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 27–43 31
for all homogeneous X, Y ∈ �(A) and f ∈ C∞(M) and such that anchor and Lie bracket are ‘compatible’ with the 
homological vector fields on A and M. An A-connection on a graded vector bundle E → M is a degree 0 map 
∇ : �(A) × �(E) → �(E) satisfying the pair of relations

∇ f X s = f ∇X s,

∇X ( f s) = (
ρ(X) f

)
s + (−1)|X || f | f ∇X s,

for all homogeneous elements f ∈ C∞(M), X ∈ �(A), and s ∈ �(E). Such connections always exist since the standard par-
tition of unity argument holds in the context of graded manifolds. Given a dg vector bundle E → M and an A-connection 
∇ on it, we can consider the bundle map at∇E :A ⊗ E → E defined by

at∇E (X, s) = Q(∇X s) − ∇Q(X)s − (−1)|X |∇X
(
Q(s)

)
, ∀X ∈ �(A), s ∈ �(E).

The bundle map at∇E can be regarded as a section of degree +1 of A∨ ⊗ EndE . It is actually a cocycle: Q(at∇E ) = 0. 
Furthermore, the cohomology class of at∇E is independent of the choice of the connection ∇ [28]. Thus we obtain a natural 
cohomology class αE = [at∇E ] in H1

(
�(A∨ ⊗ EndE), Q

)
called Atiyah class of the dg vector bundle E → M relative to the 

dg Lie algebroid A → M. The Todd cocycle td∇
E and the Â cocycle t̃d

∇
E of the dg vector bundle E → M associated with the 

A-connection ∇ are the elements of 
∏

k≥0

(
�(�kA∨)

)k
defined by

td∇
E = Ber

(
at∇E

1 − e− at∇E

)
and t̃d

∇
E = Ber

(
at∇E

e
1
2 at∇E − e− 1

2 at∇E

)
,

where Ber denotes the Berezinian [25]. They satisfy the cocycle condition Q(td∇
E ) = 0 = Q(t̃d

∇
E ). Note that every element 

of 
(
�(�kA∨)

)k
is a finite sum 

∑
α1 ∧ · · · ∧ αk with α1, · · · , αk ∈ �(A∨) homogeneous and satisfying the degree condition 

|α1| + · · · + |αk| = k. The respective cohomology classes TdE and T̃dE in 
∏

k≥0 Hk
(
(�(�kA∨))•, Q

)
of the cocycles td∇

E and 

t̃d
∇
E are independent of the choice of the connection ∇ and are respectively called the Todd class and Â class of the dg vector 

bundle E →M relative to the dg Lie algebroid A. When A = TM , we will often write �k(M) instead of �(�k T ∨
M).

Let (M, Q ) be a finite-dimensional dg manifold. Its tangent bundle TM is naturally a dg vector bundle; the homological 
vector field Q̂ on TM is the tangent lift of Q and the differential on �(M; TM) determined by the homological vector 
fields Q̂ and Q is the Lie derivative LQ [28]. Actually, TM is naturally a dg Lie algebroid. Its Atiyah class, relative to TM
itself, is called the Atiyah class of the dg manifold (M, Q ). More precisely, an affine connection on a graded manifold M
is a TM-connection on the graded vector bundle TM . The torsion of an affine connection ∇ is the tensor T ∇ : �(TM) ×
�(TM) → �(TM) defined by the formula

T ∇(X, Y ) = ∇X Y − (−1)|X ||Y |∇Y X − [X, Y ],
for all homogeneous vector fields X, Y ∈ �(TM). We say that an affine connection is torsion-free if its torsion vanishes. 
A torsion-free affine connection always exists since the standard existence argument still holds in the context of graded 
manifolds. Given a dg manifold (M, Q ) and an affine connection ∇ , the Atiyah cocycle at∇

(M,Q )
∈ �(T ∨

M ⊗ End TM) is the 
section of degree +1 characterized by

at∇(M,Q )(X, Y ) = LQ (∇X Y ) − ∇LQ (X)Y − (−1)|X |∇X
(
LQ (Y )

)
, ∀X, Y ∈ �(TM).

The Atiyah class of (M, Q ) is the cohomology class α(M,Q ) = [at∇
(M,Q )

] ∈ H1(�(T ∨
M⊗End TM), L Q ), which is independent 

of the choice of the connection ∇ . We define the Todd cocycle td∇
(M,Q ) of the dg manifold (M, Q ) associated with the affine 

connection ∇ by

td∇
(M,Q ) = Ber

(
at∇(M,Q )

1 − e− at∇
(M,Q )

)
∈

∏
k≥0

(
�(�k T ∨

M)
)k ∼=

∏
k≥0

(
�k(M)

)k
.

Its cohomology class Td(M,Q ) ∈ ∏
k≥0 Hk

(
(�(�k T ∨

M))•, LQ
)
, which is independent of the choice of the connection ∇ , will 

be referred to as the Todd class of the dg manifold (M, Q ).

4. Formality and Kontsevich–Duflo-type theorem for dg manifolds

Let (M, Q ) be a finite-dimensional dg manifold. Since Q is a homological vector field of degree +1, it is a Maurer–
Cartan element in the dgla of polyvector fields (⊕T •

poly(M), 0, [−, −]). Therefore, we can consider the tangent dgla at the 
homological vector field Q :
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(
⊕T •

poly(M)
)

Q = (
⊕T •

poly(M), [Q ,−], [−,−]).
The associated cohomology H•(⊕Tpoly(M), [Q , −]) is a Gerstenhaber algebra with the associative multiplication induced 
by the wedge product. Likewise, we can consider the tangent dgla at the Maurer–Cartan element Q of the dgla of polydif-
ferential operators:(

⊕D•
poly(M)

)
Q = (

⊕D•
poly(M), �m + Q ,−�, �−,−�

)
.

The corresponding cohomology H•(⊕Dpoly(M), �m + Q , −�
)

is a Gerstenhaber algebra with the cup product as associative 
multiplication.

The Hochschild–Kostant–Rosenberg map hkr : (
T •

poly(M)
)•

↪→ (
D•

poly(M)
)•

is the natural inclusion of 
(
T •

poly(M)
)•

into (
D•

poly(M)
)•

defined by skew-symmetrization:

hkr(X0 ∧ · · · ∧ Xp) =
∑

σ∈S p+1

κ(σ ) Xσ (0) ⊗ · · · ⊗ Xσ (p)

for all homogeneous vector fields X0, · · · , Xp ∈ (
T 0

poly(M)
)•

— the skew Koszul sign κ(σ ) is the scalar defined by the 
relation X0 ∧· · ·∧ Xp = κ(σ ) Xσ(0) ∧· · ·∧ Xσ(p) . The Hochschild–Kostant–Rosenberg map is a morphism of double complexes

hkr : ((T •
poly(M)

)•
,0, [Q ,−]) → ((

D•
poly(M)

)•
, �m,−�, � Q ,−�

)
. (1)

The following Hochschild–Kostant–Rosenberg theorem for dg manifolds follows from the HKR theorem for graded manifolds 
[7, Lemma A.2] and a spectral sequence argument.

Proposition 4.1. Let (M, Q ) be a finite-dimensional dg manifold. The Hochschild–Kostant–Rosenberg map (1) induces an isomor-
phism of vector spaces

hkr : H•(⊕Tpoly(M), [Q ,−]) ∼=−→ H
•(⊕Dpoly(M), �m + Q ,−�

)
on the cohomology level.

Remark. Proposition 4.1 holds for direct sum total cohomology. The analogous assertion for direct product total cohomology 
is false; a counterexample can be found in [9].

The following theorem is the main result of this Note.

Theorem 4.2 (Formality theorem for dg manifolds). Let (M, Q ) be a finite-dimensional dg manifold. Given a torsion-free affine 
connection ∇ on M, there exists an L∞ quasi-isomorphism of dglas

I : (⊕T •
poly(M)

)
Q �

(
⊕D•

poly(M)
)

Q

with first Taylor coefficient I1 : ⊕T •
poly(M) → ⊕D•

poly(M) satisfying the following two properties:

(1) I1 preserves the associative algebra structures (wedge and cup product, respectively) on the level of cohomology;

(2) I1 = hkr◦(td∇
(M,Q ))

1
2 , where (td∇

(M,Q ))
1
2 ∈ ∏

k≥0

(
�(�k T ∨

M)
)k ∼= ∏

k≥0

(
�k(M)

)k
acts on ⊕T •

poly(M) by contraction.

Remark. Given a pair of torsion-free affine connections ∇ and ∇′ on (M, Q ) with corresponding Todd cocycles td∇
(M,Q )

and td∇′
(M,Q ) , there exists, according to Proposition 6.8, an L∞ automorphism of the dgla 

(
⊕T •

poly(M)
)

Q having the operator (
td∇

(M,Q )

)− 1
2 ◦ (

td∇′
(M,Q )

) 1
2 as first Taylor coefficient.

As an immediate consequence, we obtain the following confirmation of the Kontsevich–Shoikhet conjecture:

Theorem 4.3 (Kontsevich–Duflo-type theorem for dg manifolds [30]). For any finite-dimensional dg manifold (M, Q ), the composition

hkr◦(Td(M,Q ))
1
2 :H•(⊕Tpoly(M), [Q ,−]) ∼=−→H

•(⊕Dpoly(M), �m + Q ,−�
)

of (1) the action of (Td(M,Q ))
1
2 ∈ ∏

k≥0 Hk
(
(�k(M))•, LQ

)
on H•(⊕Tpoly(M), [Q , −]), by contraction, with (2) the Hochschild–

Kostant–Rosenberg map (on cohomology) is an isomorphism of Gerstenhaber algebras.
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5. Fedosov dg Lie algebroids

Our proof of Theorem 4.2 is based on the construction of Fedosov dg Lie algebroids, objects that are very much in-
spired by the resolutions of smooth manifolds devised by Dolgushev for his construction of the global Kontsevich formality 
quasi-isomorphism [11] — see [8] for a different approach to the globalization of Kontsevich’s formality quasi-isomorphism. 
Dolgushev constructed his resolutions by applying Fedosov’s famous gluing technique — an effective procedure for assem-
bling global objects out of local building blocks. Fedosov’s method was itself motivated by and is, in some sense, essentially 
equivalent to formal geometry [16]. The version of Fedosov’s method that is relevant to our purpose is the one developed by 
Emmrich–Weinstein [15] and later refined by Dolgushev [11] specifically for arbitrary ordinary smooth manifolds. Originally, 
the Dolgushev–Fedosov differentials were constructed by Fedosov’s iterative method [15,11]. Recently, the first two authors 
proposed a different construction based on formal exponential maps [20].

Let us recall briefly the construction of [20]. Let M be a finite-dimensional Z-graded manifold, let (xi)i∈{1,...,n} be a set 
of local coordinates on M and let (y j) j∈{1,...,n} be the induced local frame of T ∨

M regarded as fiberwise linear functions on 
TM . We define

δ : �p(M, Sq T ∨
M) → �p+1(M, Sq−1T ∨

M)

and

h : �p(M, Sq T ∨
M) → �p−1(M, Sq+1T ∨

M)

by

δ =
n∑

i=1

dxi ⊗ ∂

∂ yi
and h = 1

p + q

n∑
i=1

i ∂
∂xi

⊗ yi

or, more precisely,

δ(ω ⊗ f ) =
n∑

i=1

(−1)

∣∣∣ ∂
∂ yi

∣∣∣|ω|
dxi ∧ ω ⊗ ∂

∂ yi
( f )

and

h(ω ⊗ f ) = 1
p+q

n∑
i=1

(−1)
∣∣yi

∣∣|ω|i ∂
∂xi

ω ⊗ yi · f

for all homogeneous ω ∈ �p(M) and for all f ∈ �(Sq T ∨
M). The operators δ and h are well defined, i.e. independent of the 

choice of local coordinates, and can be extended to �•(M, End(̂S(T ∨
M))

)
. The operator δ has degree +1 while the operator 

h has degree −1.
An affine connection ∇ on the tangent bundle TM of a graded manifold M determines a connection �(TM) ×

�(S(TM)) → �(S(TM)) on S(TM), also denoted ∇ by abuse of notation. We use the symbol d∇ to denote the covari-
ant differential of the induced connection on the dual vector bundle Ŝ(T ∨

M).
The following proposition was proved in [20].

Proposition 5.1 ([20]). Given a torsion-free affine connection ∇ on the tangent bundle TM of a Z-graded manifold M, there exists a 
unique element

A∇ =
n∑

i=1

∑
J∈Zn

�0
| J |�2

n∑
k=1

Ai
J ,kdxi ⊗ y J ∂

∂ yk

of degree +1 in �1
(
M, ̂S�2(T ∨

M) ⊗ TM
)

such that h(A∇) = 0 and the operator

D∇ : �•(M, Ŝ(T ∨
M)

) → �•+1(M, Ŝ(T ∨
M)

)
of degree +1 defined by D∇ = −δ + d∇ + A∇ satisfies D∇ ◦ D∇ = 0.

Let N = TM[1] ⊕ TM be the Z-graded manifold with support T M characterized by the function space C∞(N ) =
�•(M, ̂S(T ∨

M)). According to Proposition 5.1, (N , D∇ ) is a dg manifold. It turns out that (N , D∇ ) is in fact weakly equiva-
lent to the Z-graded manifold M (endowed with the zero homological vector field), i.e. (C∞(N ), D∇ ) is quasi-isomorphic 
to C∞(M) seen as a cochain complex concentrated in degree 0. Indeed, it was proved in [20] that we have a contraction
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(
C∞(M),0

) (
�•(M, Ŝ(T ∨

M)), D∇)τ̆

σ
h̆

with homotopy operator h̆ : �•(M, ̂S(T ∨
M)) → �•−1(M, ̂S(T ∨

M)) defined by the convergent series h̆ = ∑∞
n=0

(
h ◦ (d∇ +

A∇)
)n ◦ h. Any such dg manifold (N , D∇ ) is called a Fedosov dg manifold associated with M.

More precisely we have, for each q ∈ Z, a contraction(
K •,q,0

) (
W •,q, D∇)τ̆

σ
h̆ , (2)

where K r,q is the homogeneous component of degree q of C∞(M) if r = 0 and is zero otherwise while W r,q is the 
homogeneous component of degree r + q of the subspace �(�r(T ∨

M) ⊗ Ŝ(T ∨
M)) of C∞(N ).

Consider the surjective submersion N �M. Let F → N denote the pullback of the vector bundle TM → M through 
N � M. It is a graded vector bundle whose total space F is a graded manifold with support T M . Its space of sec-
tions �(N ; F) is the C∞(N )-module C∞(N ) ⊗R X(M) = �•(M, ̂S(T ∨

M) ⊗ TM). It can be identified canonically to a 
C∞(N )-submodule of X(N ) as follows. Let ∂1, . . . , ∂m and χ1, . . . , χm denote the dual local frames for TM and T ∨

M aris-
ing from a choice of local coordinates (x1, . . . , xm) on M. To 1 ⊗ ∂k ∈ C∞(N ) ⊗R X(M) = �(N ; F) we associate the 
(graded) derivation of C∞(N ) mapping χ j ∈ �0

(
M, S1(T ∨

M)
) ⊂ C∞(N ) to δkj and ω ∈ �p

(
M, S0(T ∨

M)
) ⊂ C∞(N ) to 0. 

Thus F →N is a vector subbundle of TN →N .

Lemma 5.2. The pullback bundle F →N is a dg Lie subalgebroid of the tangent dg Lie algebroid TN →N of the Fedosov dg manifold 
(N , D∇).

In other words, F is a dg foliation of the dg manifold (N , D∇ ). Each leaf of this foliation is essentially diffeomorphic 
to a fixed formal Z-graded vector space: the standard fiber of the vector bundle TM → M. Each such dg Lie algebroid 
F →N is called a Fedosov dg Lie algebroid associated with the Z-graded manifold M.

Since the dg Lie algebroid F → N is a (dg) foliation on N , its universal enveloping algebra U(F) can be thought 
of as the algebra of leafwise differential operators on N — see [33] for the general theory of the universal enveloping 
algebra of a Lie algebroid and [21, Appendix] for an instance of the extension of the concept to dg Lie algebroids. The 
universal enveloping algebra U(F) of the Fedosov dg Lie algebroid F → N can be identified in a natural way with the 
C∞(N )-module �(�(T ∨

M) ⊗ Ŝ(T ∨
M) ⊗ S(TM)).

For all p ∈ Z�−1, q ∈ Z, and r ∈ Z�0, let Kr,q,p be 
(
T p

poly(M)
)q

if r = 0 and zero otherwise; let Wr,q,p be the homo-

geneous component of degree r + q of the subspace �(�r(T ∨
M) ⊗ Ŝ(T ∨

M) ⊗ �p+1TM) of �(N ; �p+1F); let K r,q,p be (
Dp

poly(M)
)q

if r = 0 and zero otherwise; and let W r,q,p be the homogeneous component of degree r + q of the subspace 
�(�r(T ∨

M) ⊗ Ŝ(T ∨
M) ⊗ (S(TM))⊗p+1) of the tensor power U(F)⊗p+1 of p+1 copies of the left (graded) C∞(N )-module 

U(F). Then, for each p ∈ Z�−1 and q ∈ Z, there is a pair of contractions

(
K•,q,p,0

) (
W•,q,p, [D∇ ,−])τ̆�

σ�

h̆� (3)

and (
K •,q,p,0

) (
W •,q,p, � D∇ ,−�

)τ̆�

σ�

h̆� (4)

analogous to the contraction (2) above.
We note that

⊕T n
poly(M) =

⊕
p,q∈Z
p+q=n
p�−1

K0,q,p and ⊕Dn
poly(M) =

⊕
p,q∈Z
p+q=n
p�−1

K 0,q,p.

Defining

⊕T n
poly(F) =

⊕
p,q,r∈Z

p+q+r=n
p�−1, r�0

Wr,q,p and ⊕Dn
poly(F) =

⊕
p,q,r∈Z

p+q+r=n
p�−1, r�0

W r,q,p,

we obtain two cochain complexes(
⊕T •

poly(F), [D∇ ,−]) and
(
⊕D•

poly(F), �m + D∇ ,−�
)
.

Taking direct sums of the contractions (3) and (4), we prove
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Proposition 5.3. Given a finite-dimensional Z-graded manifold M and a torsion-free affine connection ∇ on M, let F → N be 
the corresponding Fedosov dg Lie algebroid and let D∇ be the corresponding Fedosov homological vector field on N . Then there are 
contractions

(1) at the level of polyvector fields:

(
⊕T •

poly(M),0
) (

⊕T •
poly(F), [D∇ ,−]

)τ̆�

σ�

h̆�

(2) at the level of polydifferential operators:

(
⊕D•

poly(M), �m,−�
) (

⊕D•
poly(F), �m + D∇ ,−�

)τ̆�

σ�

h̆�

(3) and at the level of tensor fields of any type (k, l):

((
�(M; T ⊗k

M ⊗ (T ∨
M)⊗l)

)•
,0

) ((
�(N ;F⊗k ⊗ (F∨)⊗l)

)•
,LD∇

)τ̆ k,l
�

σ k,l
�

h̆k,l
�

Now we move to the case of a finite-dimensional dg manifold (M, Q ). Let F →N be a Fedosov dg Lie algebroid over a 
Fedosov dg manifold (N , D∇ ) associated with the graded manifold M. By NQ , we denote the dg manifold (N , D∇ + τ̆�(Q )). 
We write FQ to denote the dg manifold structure on the Z-graded manifold F characterized by the following property: 
FQ →NQ is a dg vector space such that the induced operator on �(N ; F) determined by the homological vector fields of 
FQ and NQ is LD∇+τ̆�(Q ) .

Lemma 5.4. The dg vector bundle FQ →NQ is a dg Lie subalgebroid of the tangent dg Lie algebroid TNQ →NQ .

In other words, FQ is a dg foliation of the dg manifold NQ = (N , D∇ + τ̆�(Q )). Such a dg Lie algebroid FQ → NQ is 
called a Fedosov dg Lie algebroid associated with the dg manifold (M, Q ).

The cochain complexes appearing in Proposition 5.3 admit exhaustive and complete filtrations compatible with the con-
traction data:

F k(⊕T n
poly(M)

) =
⊕

p,q∈Z
p+q=n

p�−1, q�k

K0,q,p F k(⊕T n
poly(F)

) =
⊕

p,q,r∈Z
p+q+r=n

p�−1, q�k, r�0

Wr,q,p

F k(⊕Dn
poly(M)

) =
⊕

p,q∈Z
p+q=n

p�−1, q�k

K 0,q,p F k(⊕Dn
poly(F)

) =
⊕

p,q,r∈Z
p+q+r=n

p�−1, q�k, r�0

W r,q,p

Perturbing the filtered contractions of Proposition 5.3 homologically (see [20, Appendix] and references therein) by τ̆�(Q ), 
we obtain

Proposition 5.5. Given a finite-dimensional dg manifold (M, Q ) and a torsion-free affine connection ∇ on M, let F → N be the 
Fedosov dg Lie algebroid corresponding to the Z-graded manifold M (as in Lemma 5.2) and let D∇ be the corresponding Fedosov 
homological vector field on N (as in Proposition 5.1). Then there are contractions

(1) at the level of polyvector fields:

(
⊕T •

poly(M), [Q ,−]
) (

⊕T •
poly(F), [D∇ + τ̆�(Q ),−]

)τ̆�

σ̃�

h̃�

(2) at the level of polydifferential operators:

(
⊕D•

poly(M), �m + Q ,−�
) (

⊕D•
poly(F), �m + D∇ + τ̆�(Q ),−�

)τ̆�

σ̃�

h̃�
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(3) and at the level of tensor fields of any type (k, l):

((
�(M; T ⊗k

M ⊗ (T ∨
M)⊗l)

)•
,LQ

) ((
�(N ;F⊗k ⊗ (F∨)⊗l)

)•
,LD∇+τ̆�(Q )

)τ̆ k,l
�

σ̃ k,l
�

h̃k,l
�

Remark. The maps τ̆� appearing in Proposition 5.3 and τ̆� appearing in Proposition 5.5 are actually identical. However, the 
homological perturbation modifies the maps σ� and h̆� appearing in Proposition 5.3 and returns the new maps σ̃� and h̃�

appearing in Proposition 5.5.

Remark. Writing 
(
�(N ; F⊗k ⊗ (F∨)⊗l)

)n
in Proposition 5.5 is an abuse of notation. In fact, to ensure the conver-

gence of the series involved in the homological perturbation, 
(
�(N ; F⊗k ⊗ (F∨)⊗l)

)n
must be replaced by its subspace (⊕

r∈Z�0
�(�r(T ∨

M) ⊗ Ŝ(T ∨
M) ⊗ T ⊗k

M ⊗ (T ∨
M)⊗l)

)n
.

6. Proof of main theorems

Recall Kontsevich’s formality theorem for the vector space kd:

Theorem 6.1 ([19]). There exists a GL(kd)-equivariant L∞ quasi-isomorphism

U : T •
poly(k

d)�D•
poly(k

d)

having the Hochschild–Kostant–Rosenberg map as first Taylor coefficient.

Kontsevich’s original paper [19] lists additional properties satisfied by U .
Kontsevich’s formality L∞ quasi-isomorphism U : T •

poly(V ) � D•
poly(V ) still makes sense for a finite-dimensional 

Z-graded vector space V over the field k and is GL(V )-equivariant — see [7,32]. Applying the Taylor coefficients Un :
�n

(
T •

poly(V )
) → D•

poly(V )[1 − n] (with n ∈ N) of Kontsevich’s formality L∞ morphism U essentially leafwise on N w.r.t. 
the F -foliation, we obtain a sequence (U leaf

n )n∈N of morphisms

U leaf
n : �n(⊕T •

poly(F)
) → ⊕D•

poly(F)[1 − n]
of left �(�T ∨

M)-modules — the subalgebra �(�T ∨
M) of C∞(N ) consists of those functions on N that are constant along 

the F -leaves. The vector field ω ∈X(N ) defined by

ω = D∇ − d∇ + τ̆�(Q ) = −δ + A∇ + τ̆�(Q )

is tangent to the leaves of the F -foliation of N . Since −δ + A∇ ∈ W1,0,0 and τ̆�(Q ) ∈ W0,1,0, we have ω ∈ ⊕T 0
poly(F). We 

do not claim that ω is a Maurer–Cartan element for any dgla structure on ⊕T •
poly(F). Twisting nevertheless the sequence 

of maps (U leaf
n )n∈N by ω, we define a sequence (�n)n∈N of morphisms of left �(�T ∨

M)-modules

�n : �n(⊕T •
poly(F)

) → ⊕D•
poly(F)[1 − n]

by the relations

�n(γ ) =
∞∑
j=0

U leaf
n+ j (ω

j ∧ γ ), ∀γ ∈ �n(⊕T •
poly(F)

)
.

Now consider the dgla(
⊕T •

poly(F)
)

Q = (
⊕T •

poly(F), [D∇ + τ̆�(Q ),−], [−,−])
of “polyvector fields” on the dg Lie algebroid FQ →NQ and the dgla(

⊕D•
poly(F)

)
Q = (

⊕D•
poly(F), �m + D∇ + τ̆�(Q ),−�, �−,−�

)
of “polydifferential operators” on the dg Lie algebroid FQ →NQ .

One can prove the following result:

Lemma 6.2. The maps (�n)
∞
n=1 are well defined and are the Taylor coefficients of an L∞ morphism of dglas

� : (⊕T •
poly(F)

)
Q �

(
⊕D•

poly(F)
)

Q .
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We need to obtain a more explicit description of the first Taylor coefficient �1 and to investigate the behavior of �1
w.r.t. the associative algebra structures at hand.

Making use of the canonical inclusion �(TM) ↪→ �•(M, ̂S(T ∨
M) ⊗ TM) ∼= �(N ; F), we define a “canonical”

F -connection ∇can on F by the relation

∇can
a b = 0, ∀ a,b ∈ �(TM).

The Â cocycle of the dg Lie algebroid FQ →NQ associated with the connection ∇can is

t̃d
can
FQ

= Ber

(
atcan

FQ

e
1
2 atcan

FQ − e
− 1

2 atcan
FQ

)
.

We prove the following

Proposition 6.3.

(1) The map �1 : ⊕T •
poly(F) → ⊕D•

poly(F) is the modification

�1 = hkr◦(t̃d
can
FQ

)
1
2

of the Hochschild–Kostant–Rosenberg map by (the square root of) the canonical ̂A cocycle.
(2) Although the map �1 does not intertwine the wedge product and the cup product, there exists a homotopy H : ⊕T •

poly(F) ×
⊕T •

poly(F) → ⊕D•
poly(F) satisfying

�1(α ∧ β) − �1(α) 
 �1(β) = �m + D∇ + τ̆�(Q ), H(α,β)�

− H
([D∇ + τ̆�(Q ),α], β) + (−1)a H

(
α, [D∇ + τ̆�(Q ),β])

for all α ∈ ⊕T a
poly(F) and β ∈ ⊕T b

poly(F).

The actions on ⊕T •
poly(F), by contraction, of the square roots of the Todd cocycle tdcan

FQ
and Â cocycle t̃d

can
FQ

are related 
to one another in a rather simple way, which we proceed to explain.

Lemma 6.4. Let A →M be a dg Lie algebroid. Let Q denote the endomorphism of �(A) encoding the dg structure and let dA denote 
the Chevalley–Eilenberg differential. If ξ ∈ �(A∨) satisfies dA(ξ) = 0 and Q(ξ) = 0, then the contraction with ξ is a derivation of the 
differential Gerstenhaber algebra 

(
�(�•A), [−, −], Q)

.

The difference between

tdcan
FQ

= Ber

(
atcan

FQ

1 − e
− atcan

FQ

)
and t̃d

can
FQ

= Ber

(
atcan

FQ

e
1
2 atcan

FQ − e
− 1

2 atcan
FQ

)

is the factor e
1
2 str(atcan

FQ
)
. The section str(atcan

FQ
) of the bundle F∨ → N satisfies dFQ

(
str(atcan

FQ
)
) = 0 and

LD∇+τ̆�(Q )

(
str(atcan

FQ
)
) = 0. Therefore, applying Lemma 6.4 to the Fedosov dg Lie algebroid FQ → NQ and the section 

str(atcan
FQ

) of its dual vector bundle and noting that �(�•F) ∼= ⊕T •
poly(F) and Q = [D∇ + τ̆�(Q ), −], we obtain

Corollary 6.5.

(1) The contraction by str(atcan
FQ

) is a derivation of the differential Gerstenhaber algebra 
(
⊕T •

poly(F), [D∇ + τ̆�(Q ), −], ∧, [−, −]).

(2) The contraction by e
1
2 str(atcan

FQ
)

is an automorphism of the differential Gerstenhaber algebra 
(
⊕T •

poly(F), [D∇ + τ̆�(Q ), −], ∧,

[−, −]), which satisfies the equation

(t̃d
can
FQ

)
1
2 ◦ e

1
2 str(atcan

FQ
) = (tdcan

FQ
)

1
2 .

One significant technical difficulty is the absence of a simple direct relation between tdcan
FQ

and the Todd cocycle td∇
(M,Q )

of the dg manifold (M, Q ). Overcoming it requires the introduction of an intermediate F -connection ∇̆ on F , which is 
obtained by pushing forward the connection ∇ through the map τ̆�:
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τ̆�(∇X Y ) = ∇̆τ̆�(X)τ̆�(Y ), ∀ X, Y ∈ X(M).

The Todd cocycle of the Fedosov dg Lie algebroid FQ → NQ associated with this intermediate connection ∇̆ is denoted 
td∇̆

FQ
.

The following lemma can be easily checked.

Lemma 6.6. The following identities hold.

(1) τ̆ 1,2
� (at∇

(M,Q )
) = at∇̆FQ

(2) τ̆�(td∇
(M,Q )) = td∇̆

FQ

The square roots of the Todd cocycles tdcan
FQ

and td∇̆
FQ

act on ⊕T •
poly(F) by contraction.

Lemma 6.7. The chain map 
(

tdcan
FQ

)− 1
2 ◦ (

td∇̆
FQ

) 1
2 from the cochain complex 

(
⊕T •

poly(F), [D∇ + τ̆�(Q ), −]) to itself is chain homo-
topic to the identity map.

Proof. Since the Atiyah class of a dg vector bundle is independent of the connection used to compute it, we have at∇̆FQ
=

atcan
FQ

+LQ β , for some β in 
(
�(F∨⊗EndF)

)0
. It follows that (td∇̆

FQ
)

1
2 = (tdcan

FQ
)

1
2 +LQ ζ , for some ζ in 

∏
k�0

(
�(�kF∨)

)k−1
, 

then (tdcan
FQ

)− 1
2 ∧ (td∇̆

FQ
)

1
2 = 1 + (tdcan

FQ
)− 1

2 ∧LQ ζ = 1 +LQ (ξ), for some ξ in 
∏

k�0

(
�(�kF∨)

)k−1
, and finally (tdcan

FQ
)− 1

2 ◦
(td∇̆

FQ
)

1
2 = id+iLQ (ξ) . Since iLQ (ξ) = LQ ◦ iξ + iξ ◦ LQ , the chain map (tdcan

FQ
)− 1

2 ◦ (td∇̆
FQ

)
1
2 is chain homotopic to the 

identity:

(tdcan
FQ

)−
1
2 ◦ (td∇̆

FQ
)

1
2 − id = LQ ◦ iξ + iξ ◦LQ . �

The following proposition is a consequence of the “homotopy transfer theorem” for L∞ algebra structures [1, Theorem 1.9 
and Lemma 1.11] (see also [17, Theorem 4.1 and Proposition 4.2]).

Proposition 6.8. If V • is an L∞ algebra and f : V • → V • is a chain map homotopic to the identity, then there exists an L∞ morphism 
F : V • � V • having f as first Taylor coefficient. Moreover, F admits an explicit algebraic expression in terms of f and the chain 
homotopy.

Proof. Let K : V • → V • be the chain homotopy between idV and f , i.e. f − idV = dV K + KdV . Consider the L∞ algebra 
V • ⊗ k[t, dt] obtained by tensoring the L∞ algebra V • with the 2-term cdga k[t, dt] (where the scalars have degree 0, the 
variable t has degree 0, and its image dt under the differential has degree 1). The evaluation maps ev0 : V • ⊗ k[t, dt] → V •
and ev1 : V • ⊗ k[t, dt] → V • defined by

ev0
(∑

p≥0

t pap + dt
∑
q≥0

tqbq
) = a0

ev1
(∑

p≥0

t pap + dt
∑
q≥0

tqbq
) =

∑
p≥0

ap

preserve the L∞ multi-brackets. Therefore, they are the respective first Taylor coefficients of a pair of L∞ morphisms ev0 :
V • ⊗ k[t, dt] � V • and ev1 : V • ⊗ k[t, dt] � V • whose higher Taylor coefficients are all equal to zero.

Consider the contraction(
V •,dV

) (
V • ⊗ k[t,dt],d

)j

ev0
H (5)

defined by

j(x) = (1 − t)x + t f (x) + dt K (x),

H
(∑

p≥0

t pap + dt
∑
q≥0

tqbq
) = t K (a0) −

∑
q≥0

1

q + 1
tq+1bq.

According to Lemma 1.11 in [1], the L∞ structure on V • obtained by homotopy transfer [1, Theorem 1.9] of the L∞
structure on V • ⊗ k[t, dt] through the contraction (5) coincides with the original L∞ structure on V • . Furthermore, there 
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exists, according to Theorem 1.9 in [1], an L∞ morphism J : V • � V • ⊗ k[t, dt] having j as its first Taylor coefficient. The 
desired L∞ morphism F : V • � V • is the composition F = ev1 ◦ J . Its first Taylor coefficient is ev1 ◦ j = f . �

Applying Proposition 6.8 to the dgla V • = (
⊕T •

poly(F)
)

Q and the chain map f = (
tdcan

FQ

)− 1
2 ◦ (

td∇̆
FQ

) 1
2 , we obtain the 

following

Lemma 6.9. There exists an L∞ automorphism �∇̆ of the dgla 
(
⊕T •

poly(F)
)

Q having the chain map 
(

tdcan
FQ

)− 1
2 ◦ (

td∇̆
FQ

) 1
2 as first 

Taylor coefficient �∇̆
1 .

Proof. Since the chain map (tdcan
FQ

)− 1
2 ◦ (td∇̆

FQ
)

1
2 is chain homotopic to the identity (Lemma 6.7), there exists, accord-

ing to Proposition 6.8, an L∞ morphism �∇̆ : (
⊕T •

poly(F)
)

Q �
(
⊕T •

poly(F)
)

Q having 
(

tdcan
FQ

)− 1
2 ◦ (

td∇̆
FQ

) 1
2 as its first 

Taylor coefficient. Furthermore, since the chain map 
(

tdcan
FQ

)− 1
2 ◦ (

td∇̆
FQ

) 1
2 is an automorphism of the cochain complex (

⊕T •
poly(F), [D∇ + τ̆�(Q ), −]), the lifted L∞ morphism �∇̆ is actually an automorphism of the L∞ algebra 

(
⊕T •

poly(F)
)

Q
— see [24, Corollary 12.5.5]. �

We are thus led to consider the L∞ morphism

� : (⊕T •
poly(F)

)
Q �

(
⊕D•

poly(F)
)

Q ,

from the dgla of “polyvector fields” on the dg Lie algebroid FQ → NQ to the dgla of “polydifferential operators” on the dg 
Lie algebroid FQ →NQ , defined as the composition

� = � ◦ e
1
2 str

(
atcan
FQ

)
◦ �∇̆ .

Proposition 6.10. The first Taylor coefficient �1 : ⊕T •
poly(F) → ⊕D•

poly(F) of the L∞ morphism � : (
⊕T •

poly(F)
)

Q �(
⊕D•

poly(F)
)

Q satisfies the following two properties:

(1) �1 preserves the associative algebra structures (wedge and cup product, respectively) up to homotopy;

(2) �1 is the composition hkr◦(td∇̆
FQ

)
1
2 of the action of the square root of the Todd cocycle td∇

FQ
on ⊕T •

poly(F), by contraction, with 
the Hochschild–Kostant–Rosenberg map hkr : ⊕T •

poly(F) → ⊕D•
poly(F).

Sketch of proof.

�1 = �1 ◦ e
1
2 str

(
atcan
FQ

)
◦ �∇̆

1

= hkr◦(t̃d
can
FQ

)
1
2 ◦ e

1
2 str

(
atcan
FQ

)
◦ �∇̆

1 (by Proposition 6.3)

= hkr◦(tdcan
FQ

)
1
2 ◦ �∇̆

1 (by Corollary 6.5)

= hkr◦( td∇̆
FQ

) 1
2 (by Lemma 6.9) �

One proves that the map τ̆� on polyvector fields of Proposition 5.5 is a morphism of Gerstenhaber algebras:

Proposition 6.11.

(1) The map τ̆� : ⊕T •
poly(M) → ⊕T •

poly(F) is a morphism of associative algebras as it preserves the wedge product of polyvector 
fields.

(2) The map τ̆� : (⊕T •
poly(M)

)
Q → (

⊕T •
poly(F)

)
Q is a morphism of differential graded Lie algebras as it intertwines the differentials 

[Q , −] and [D∇ + τ̆�(Q ), −] and preserves the Schouten bracket of polyvector fields.

Likewise, for polydifferential operators, the quasi-isomorphism(
⊕D•

poly(M), �m + Q ,−�
) (

⊕D•
poly(F), �m + D∇ + τ̆�(Q ),−�

)τ̆�
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of Proposition 5.5 preserves the cup product of polydifferential operators. Therefore the map on cohomology induced by τ̆�

is an isomorphism of associative algebras. Since the maps τ̆� and σ̃� constitute a contraction, the pair of maps they induce 
in cohomology are mutual inverses. Hence, the map on cohomology induced by σ̃� is an isomorphism of associative algebras 
as well.

Proposition 6.12. The quasi-isomorphism ̃σ� of Proposition 5.5 induces an isomorphism

σ̃� : H•(⊕Dpoly(F), �m + D∇ + τ̆�(Q ),−�
) →H

•(⊕Dpoly(M), �m + Q ,−�
)

of associative algebras on the cohomology level.

Let T : (⊕T •
poly(M)

)
Q �

(
⊕T •

poly(F)
)

Q denote the L∞ quasi-isomorphism having the quasi-isomorphism of cochain com-

plexes τ̆� : (⊕T •
poly(M), [Q , −]) → (

⊕T •
poly(F), [D∇ + τ̆�(Q ), −]) as first Taylor coefficient and all higher Taylor coefficients 

equal to zero.
Since the quasi-isomorphism of cochain complexes σ̃� : (⊕D•

poly(F), �m + D∇ + τ̆�(Q ), −�
) → (

⊕D•
poly(M), �m + Q , −�

)
is part of a contraction (Proposition 5.5), standard results about L∞ morphisms (see [24, Chapter 13] and [1]) assert the 
existence of an L∞ quasi-isomorphism � : (

⊕D•
poly(F)

)
Q �

(
⊕D•

poly(M)
)

Q having the quasi-isomorphism σ̃� as its first 
Taylor coefficient.

Consider the L∞ morphism

I : (⊕T •
poly(M)

)
Q �

(
⊕D•

poly(M)
)

Q

obtained as the composition

I = � ◦ � ◦ T

of the L∞ morphism � : (⊕T •
poly(F)

)
Q �

(
⊕D•

poly(F)
)

Q of Proposition 6.10 with the L∞ quasi-isomorphisms T and �:

(
⊕T •

poly(F)
)

Q

(
⊕D•

poly(F)
)

Q

(
⊕T •

poly(M)
)

Q

(
⊕D•

poly(M)
)

Q

�

�T

I

(6)

The following result follows immediately from Lemma 6.6:

Lemma 6.13. The diagram

⊕T •
poly(F) ⊕T •

poly(F)

⊕T •
poly(M) ⊕T •

poly(M)

(
td∇̆

FQ

) 1
2

τ̆�

(
td∇

(M,Q )

) 1
2

τ̆�

commutes.

The following result is also immediate:

Lemma 6.14. The diagram

⊕T •
poly(F) ⊕D•

poly(F)

⊕T •
poly(M) ⊕D•

poly(M)

hkr

τ̆�

hkr

τ̆�

commutes.
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Therefore, the first Taylor coefficient of the L∞ morphism I is

I1 = �1 ◦ �1 ◦ T1

= σ̃� ◦ hkr◦(td∇̆
FQ

)
1
2 ◦ τ̆� (by Proposition 6.10)

= σ̃� ◦ hkr◦τ̆� ◦ (td∇
(M,Q ))

1
2 (by Lemma 6.13)

= σ̃� ◦ τ̆� ◦ hkr◦(td∇
(M,Q ))

1
2 (by Lemma 6.14)

= hkr◦(td∇
(M,Q ))

1
2 (by Proposition 5.5).

Finally, since hkr is a quasi-isomorphism of cochain complexes (Proposition 4.1), so is I1. Hence I is an L∞ quasi-
isomorphism.

According to Proposition 6.11; Proposition 6.10; and Proposition 6.12 respectively, the morphism T1 = τ̆�; �1; and �1 =
σ̃� preserve the associative algebra structures on the cohomology level. Therefore, so does I1.

The proof of Theorem 4.2 is thus complete.

7. Applications

Theorem 4.2 can be applied to various interesting examples of dg manifolds to the study of deformation quantization 
problem of (0-shifted) derived Poisson manifolds or P∞-manifolds [2,7]. As another application, Theorem 4.3 can be applied 
to various geometric situations so as to obtain Duflo-type theorems. In particular, we can recover the Kontsevich–Duflo 
theorem for Lie algebras [14,19] and the Kontsevich theorem for complex manifolds [19] and unify them in a common 
framework by considering two special classes of dg manifolds.

7.1. Kontsevich–Duflo theorem

We apply Theorem 4.3 to the dg manifold (M, Q ) = (g[1], dCE) arising from a finite-dimensional Lie algebra g. The 
cohomology of polyvector fields is

H
•(⊕Tpoly(M),Q) ∼= H•

CE(g, S(g)), (7)

and the cohomology of polydifferential operators is

H
•(⊕Dpoly(M),Q) ∼= H H•(U(g),U(g)) ∼= H•

CE(g,U(g)). (8)

The symbols ∼= in Equations (7) and (8) denote isomorphisms of associative algebra structures.1 Since we shift the degree 
of g by one, the map hkr becomes the well known symmetrization map pbw : H•

CE

(
g, S(g)

) → H•
CE

(
g, U(g)

)
. Moreover, the 

Todd class of the dg manifold (g[1], dCE) is essentially the Duflo element J ∈ (̂
S(g∨)

)g
— see [28]. Theorem 4.3 implies

Theorem 7.1 ([19,29]). Let g be a Lie algebra. The map

pbw◦ J
1
2 : H•

CE

(
g, S(g)

) ∼=−→ H•
CE

(
g,U(g)

)
is an isomorphism of associative algebras.

Restriction of this isomorphism to the subalgebras consisting solely of the cohomology groups of degree 0 yields the 
classical Duflo theorem [14].

7.2. Kontsevich theorem for complex manifolds

The following result was proved in [10].

Proposition 7.2 ([10]). Let (M, Q ) = (T 0,1
X [1], ̄∂) be the dg manifold arising from a complex manifold X. Then there exists a canonical 

isomorphism

�k,l :H•(�(T ⊗k
M ⊗ (T ∨

M)⊗l),Q
) ∼=−→ H•

sheaf

(
X, T ⊗k

X ⊗ (T ∨
X )⊗l) (9)

such that

1 The right hand sides of Equations (7) and (8) actually admit Gerstenhaber algebra structures. However, unlike their associative algebra structures, their 
Lie algebra structures are not so obvious.
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(1) �•,0 : H•(⊕Tpoly(M), Q) 
∼=−→ H

•
sheaf(X, �•T X ) is an isomorphism of Gerstenhaber algebras.

(2) �0,•(Td(M,Q )) = TdX

We can also prove the following

Proposition 7.3. Let (M, Q ) = (T 0,1
X [1], ̄∂) be the dg manifold arising from a complex manifold X. Then there exists a canonical 

isomorphism of Gerstenhaber algebras

H
•(⊕Dpoly(M),Q)

∼=−→ H H•(X).

Combining Theorem 4.3 with Proposition 7.2 and Proposition 7.3, we recover Kontsevich’s theorem:

Theorem 7.4 (Kontsevich theorem for complex manifolds [19,21,6]). For every complex manifold X, the composition

hkr◦(TdX )
1
2 : H•

sheaf(X,�•T X )
∼=−→ H H•(X)

is an isomorphism of Gerstenhaber algebras. It is understood that the square root of the Todd class

TdX ∈
⊕
k=0

Hk,k(X) ∼=
⊕
k=0

Hk
sheaf(X,�k

X )

acts on H•
sheaf(X, �•T X ) by contraction.

The Kontsevich theorem for complex manifolds is due to Kontsevich [19] (for associative algebra structures). A detailed 
proof appeared in [6], where the additional Gerstenhaber algebra structures were also addressed. See also [21] for another 
proof using formality for Lie pairs.
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