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In this article, we prove that the compact simple Lie groups SU(n) for n ≥ 6, SO(n) for 
n ≥ 7, Sp(n) for n ≥ 3, E6, E7, E8, and F4 admit left-invariant Einstein metrics that are 
not geodesic orbit. This gives a positive answer to an open problem recently posed by 
Nikonorov.
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r é s u m é

Dans cet article, nous démontrons que les groupes simples compacts SU (n) pour n ≥ 6, 
S O (n) pour n ≥ 7, Sp(n) pour n ≥ 3, E6, E7, E8 et F4 admettent des métriques d’Einstein 
invariantes à gauche, dont une géodésique maximale n’est pas une orbite d’un sous-groupe 
à un paramètre du groupe des isométries complet. Ceci fournit une réponse positive à un 
problème récemment posé par Nikonorov.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The purpose of this short note is to give a positive answer to an open problem recently posed by Nikonorov. In his paper 
[10], Nikonorov proved that there exists a left-invariant Einstein metric on the compact simple Lie group G2 that is not 
a geodesic orbit metric. This metric is the first non-naturally reductive left-invariant Einstein metric on G2 discovered by 
I. Chrysikos and Y. Sakane in [6]. Recall that a Riemannian metric on a connected manifold M is said to be a geodesic orbit 
metric if any maximal geodesic of the metric is the orbit of a one-parameter subgroup of the full group of isometries (in this 
case, the Riemannian manifold is called a geodesic orbit space). It is well known that any naturally reductive metric must 
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be geodesic orbit, but the converse is not true. Recently, many interesting results have been established on non-naturally 
reductive homogeneous Einstein metrics. It is therefore a natural problem to study homogeneous Einstein metrics that are 
not geodesic orbit.

The following problem is posed in [10].

Problem 1.1. Is there any other compact simple Lie group admitting a left-invariant Einstein metric that is not geodesic 
orbit?

The main result of this short note is the following.

Theorem 1.2. The compact simple Lie groups SU(n) for n ≥ 6, SO(n) for n ≥ 7, Sp(n) for n ≥ 3, E6, E7, E8 and F4 admit left-invariant 
Einstein metrics that are not geodesic orbit.

2. Some known results and generalized Wallach spaces

In this section, we will recall a sufficient and necessary condition in [10] for a left-invariant metric on a compact Lie 
group to be a geodesic orbit metric. We will also give some results on generalized Wallach spaces. We first recall a result 
of [7] on the characterization of geodesic orbit metrics.

Lemma 2.1 ([7]). Let M be a homogeneous Riemannian manifold and G the identity component of the full group of isometries. Write 
M = G/H, where H is the isotropic subgroup of G at x ∈ M, and suppose the Lie algebra of G has a reductive decomposition

g = h+m,

where g = Lie G, h = Lie H, and m is the orthogonal complement subspace of h in g with respect to an AdH-invariant inner product 
on g. Then M is a geodesic orbit space if and only if, for any X ∈ m, there exits Z ∈ h such that ([X + Z , Y ]m, X) = 0 for all Y ∈m.

In [10], the author obtained a sufficient and necessary condition for a left-invariant Riemannian metric on a compact Lie 
group to be a geodesic orbit metric.

Theorem 2.2 ([10]). A simple compact Lie group G with a left-invariant Riemannian metric ρ is a geodesic orbit space if and only 
if there is a closed connected subgroup K of G such that for any X ∈ g there exists W ∈ k such that for any Y ∈ g the equality 
([X + W , Y ], X) = 0 holds or, equivalently, [A(X), X + W ] = 0, where A : g → g is a metric endomorphism and g, k are the Lie 
algebras of Lie groups G, K , respectively.

We now recall the definition of generalized Wallach spaces. Let G/K be a reductive homogeneous space, where G is a 
semi-simple compact connected Lie group, K is a connected closed subgroup of G , and g and k are the corresponding Lie 
algebras, respectively. If m, the tangent space of G/K at o = π(e), can be decomposed into three ad(k)-invariant irreducible 
summands pairwise orthogonal with respect to B as:

m = m1 ⊕m2 ⊕m3,

such that [mi, mi] ∈ k for i ∈ {1, 2, 3} and [mi, m j] ∈ mk for {i, j, k} = {1, 2, 3}, then G/K is called a generalized Wallach 
space.

In [5] and [10], the authors gave a complete classification of generalized Wallach spaces with G simple. Based on this 
result, the authors in [3] obtained some Einstein metrics arising from generalized Wallach spaces. We now recall some 
results in [3].

Let g = k0 ⊕ k1 ⊕· · ·⊕ kp ⊕mp+1 ⊕mp+2 ⊕mp+3 = (k0 ⊕ k1 ⊕· · ·⊕ kp) ⊕ (kp+1 ⊕ kp+2 ⊕ kp+3). We assume that dimRk0 ≤ 1
and the ideals ki are mutually non-isomorphic for i = 1, · · · , p. We consider the following inner product on g:

〈 , 〉 = u0 B( , )|k0 + · · · + up B( , )|kp + up+1 B( , )|kp+1 + up+2 B( , )|kp+2 + up+3 B( , )|kp+3 , (2.1)

where B( , ) is the negative Killing form of g and ui ∈ R
+ for all 0 	= i 	= p + 3.

Denote di = dimR ki and let {ei
α}di

α=1 be a B-orthonormal basis adapted to the decomposition of g, in the sense that 
ei
α ∈ ki and α is the number of basis in ki . Let Aγ

α,β = B([ei
α, e j

β ], ek
γ ), equivalently, Aγ

α,β are determined uniquely by the 
identity [ei

α, e j
β ] = ∑

γ Aγ
α,βek

γ . Set

(i jk) :=
[ i

j k

]
=

∑
(Aγ

α,β)2,
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Table 1
Number of non-naturally reductive left-invariant Einstein metrics on excep-
tional simple Lie group G arising from generalized Wallach spaces.

G Types K p + q Nnon−nn

F4 F4-I SO(8) 1 + 3 1 [4]
F4-II SU(2) × SU(2) × SO(5) 3 + 3 3 [3]

E6 E6-III SU(2) × Sp(3) 2 + 3 4 [3]
E6-II U(1) × SU(2) × SU(2) × SU(4) 0 + 3 + 3 7 [3]

E7 E7-I SU(2) × SU(2) × SU(2) × SO(8) 4 + 3 7 [3]
E7-III SO(8) 1 + 3 1 [11]
E7-II U(1) × SU(2) × SU(6) 0 + 2 + 3 6 [3]

E8 E8-I SU(2) × SU(2) × SO(12) 3 + 3 11 [3]
E8-II Ad(SO(8) × SO(8)) 2 + 3 2 [3]

where the sum is taken over all indices α, β, γ with ei
α ∈ ki, e

j
β ∈ k j , and ek

γ ∈ kk . Then (i jk) is independent of the choice for 
the B-orthonormal basis of ki, k j, kk , and is symmetric with respect to the three indices, i.e. (i jk) = ( jik) = ( jki).

Using the two involutions of g, the authors calculate all the numbers (i jk) for the Lie algebra under consideration. 
A direct conclusion is that if (i jk) 	= 0, then [ki, k j] 	= 0.

Remark 2.3. Although there are some cases in our discussion with isomorphic ideals in k, it is easy to see that they are 
non-equivalent Ad(K )-modules. Combining this fact with Theorem 3.18 of [5], we conclude that the Ricci curvature is still 
diagonal.

3. Proof of Theorem 1.2

In this section, we will show that the compact simple Lie groups SU(n) for n ≥ 6, SO(n) for n ≥ 7, Sp(n) for n ≥ 3, 
E6, E7, E8 and F4 admit left-invariant Einstein metrics that are not geodesic orbit. Combined with some known results in the 
literature, this gives a proof of the main theorem of this paper.

We first prove the following theorem.

Theorem 3.1. Let G be a compact simple Lie group with Lie algebra g, and g = k0 ⊕· · ·⊕ kp ⊕ kp+1 ⊕ kp+2 ⊕ kp+3 be the B-orthogonal 
decomposition arising from generalized Wallach spaces. Then G is equipped with the left-invariant Riemannian metrics generated by 
the inner products (2.1) with up+i > 0, i = 1, 2, 3, and at least two of them, not being equal, are not geodesic orbit spaces.

Proof. Suppose that (g, 〈 , 〉) generates a geodesic orbit space. Then, by Theorem 2.2, for any Xi ∈ kp+i, i = 1, 2, 3, there 
exists W ∈ k such that [up+i Xi + up+ j X j, Xi + X j + W ] = 0, for i 	= j. Thus

(up+i − up+ j)[Xi, X j] + [up+i Xi + up+ j X j, W ] = 0.

By the structure of generalized Wallach spaces, there exist Xi ∈ kp+i and X j ∈ kp+ j such that [Xi, X j] 	= 0. Since (i jk) 	= 0
(see Table 1 in [9]), we have

up+i = up+ j,

for any i 	= j, that is,

up+1 = up+2 = up+3. �
Let us recall some known results from the literature about Einstein metrics on compact simple Lie groups related to 

the decomposition of generalized Wallach spaces. In [8], Mori obtained some non-naturally reductive Einstein metrics on 
compact simple Lie groups SU(n) for n ≥ 6. All these metrics satisfy the condition up+1 	= up+2 = up+3 = 1. In 2015, the 
authors of [1,2] obtained non-naturally reductive Einstein metrics on SO(n) for n ≥ 7 and Sp(n) for n ≥ 3 of the form (2.1), 
such that at least two of up+1, up+2, up+3 are not equal. More recently, in [3], [4] and [11], the authors found a large 
number of non-naturally reductive Einstein metrics on all the compact simple exceptional Lie groups (except G2) of the 
form (2.1). The results in [3], [4] and [11] can be summarized in the Table 1.

In this table, we use the notations in [5] to represent the type of generalized Wallach space, Nnon−nn represents the 
number of non-naturally reductive Einstein metrics on G , and p, q coincides with the indices in the decomposition g =
k0 ⊕ k1 ⊕ · · · ⊕ kp ⊕m1 ⊕ · · · ⊕mq , where in fact q = 3 for all types and 0 + p + q means that there is a center of dimension 
1 in k.

Now Theorem 1.2 follows from Theorem 2.2 and the above results.
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