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We extend the generalised comparison principle for the Monge–Ampère equation due to 
Rauch & Taylor (1977) [15] to nonconvex domains. From the generalised comparison 
principle, we deduce bounds (from above and below) on solutions to the Monge–Ampère 
equation with sign-changing right-hand side. As a consequence, if the right-hand side 
is nonpositive (and does not vanish almost everywhere), then the equation equipped 
with a constant boundary condition has no solutions. In particular, due to a connection 
between the two-dimensional Navier–Stokes equations and the Monge–Ampère equation, 
the pressure p in 2D Navier–Stokes equations on a bounded domain cannot satisfy �p ≤ 0
in � unless �p ≡ 0 (at any fixed time). As a result, at any time t > 0 there exists z ∈ �

such that �p(z, t) = 0.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous étendons aux domaines non convexes le principe de comparaison généralisé pour 
l’équation de Monge–Ampère, dû à Rauch et Taylor. Nous en déduisons des bornes 
(supérieure et inférieure) pour les solutions de l’équation de Monge–Ampère avec second 
membre changeant de signe. En conséquence, si le second membre est négatif ou nul (et 
ne s’annule pas presque partout), alors l’équation avec condition au bord constante n’a pas 
de solution. En particulier, en raison d’une relation entre les équations de Navier–Stokes en 
dimension 2 et l’équation de Monge–Ampère, la pression p dans les équations de Navier–
Stokes de dimension 2 sur un domaine borné � satisfait �p ≤ 0 dans �, à moins que 
�p ≡ 0 (à tout temps donné). Il en résulte qu’à tout temps t > 0, il existe z ∈ � tel que 
�p(z, t) = 0.
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1. Introduction

The Monge–Ampère equation is

det D2φ = f .

When the right-hand side f of this equation is positive, it constitutes an example of a nonlinear second order elliptic 
equation (see, for example, the Chapter 17 of Gilbarg & Trudinger [7]), and the study of the Dirichlet boundary value 
problem for this equation goes back to the works of Alexandrov [2], Bakelman [3], and Pogorelov [13], and it is related to 
the prescribed Gaussian curvature problem and to the Monge–Kantorovich mass transfer problem. Interesting results in this 
theory include Alexandrov’s maximum principle [1], the equivalence between the notion of generalised solution and the 
notion of viscosity solution [4], and, most notably, the interior regularity results (see [5]). See Gutiérrez [8] for a modern 
exposition of the theory of the Monge–Ampère equation.

Moreover, the Monge–Ampère equation with positive right-hand side f shares many striking similarities with the Laplace 
equation; take for instance the fact that both the Laplace operator �φ and the determinant of the Hessian det D2φ are 
invariant under orthogonal transformations, the similarity between the comparison principle (see Corollary 4) and the 
maximum principle for subharmonic functions, or the occurrence of Perron’s method in finding solutions to the Dirich-
let boundary value problem.

However, very little is known about the Monge–Ampère equation when the right-hand side f changes sign, since in 
this case it is a (nonlinear) mixed elliptic–hyperbolic problem. A step in this direction is a generalised comparison principle 
(see Theorem 7), which was first studied by Rauch & Taylor [15] in the case of a strictly convex domain �, and which 
gives pointwise bounds, above and below, to the solution to the Monge–Ampère equation with a sign-changing right-hand 
side (see Corollary 8). This result gives the uniqueness of the solution φ ≡ 0 to the problem det D2φ = 0 in � equipped 
with the boundary condition φ|∂� = 0 (the standard existence and uniqueness theorem (see Theorem 5) gives uniqueness 
only among convex and concave solutions). This filled a gap in the uniqueness problem in the theory of the buckling thin 
elastic shell (which was also a partial motivation for Rauch & Taylor [15]; see the first section therein and Remark 2.2 in 
Rabinowitz [14]).

Here we further extend this comparison principle to cover the case of nonconvex domains � and we point out an 
interesting application to the theory of two-dimensional Navier–Stokes equations.

In the next section, we recall some background theory of the Monge–Ampère equation. In Section 3, we prove the gen-
eralised comparison principle and discuss its consequences (bounds on the solution to the Monge–Ampère equation). In 
the last section (Section 4), we discuss the link between the two-dimensional Navier–Stokes equations and the Monge–
Ampère equation, and we use the bounds on solution to the Monge–Ampère equation to show that the pressure p in 2D 
Navier–Stokes equations on a bounded domain cannot satisfy �p ≤ 0, �p �≡ 0 at any t > 0.

2. Preliminary material

Let � be a bounded, open subset of Rn . We will use a number of properties of convex functions (and concave functions), 
the Monge–Ampère measure, and the Monge–Ampère equation. In this section we quickly recall the relevant definitions and 
results; the proofs can be found in the first chapter of Gutiérrez [8].

A function φ : � → R is convex if φ(λx + (1 − λ)y) ≤ λφ(x) + (1 − λ)φ(y) for every segment [x, y] ⊂ � and λ ∈ [0, 1]. If 
φ ∈ C2(�), then φ is convex in � if and only if D2φ is positive semidefinite in �. A set � is convex if λx + (1 − λ)y ∈ �

for all x, y ∈ �, λ ∈ [0, 1]; it is strictly convex if λx + (1 − λ)y ∈ � for all x, y ∈ �, λ ∈ (0, 1). A supporting hyperplane to φ at 
x0 ∈ � is an affine function φ(x0) + m · (x − x0) such that

φ(x) ≥ φ(x0) + m · (x − x0) for all x ∈ �.

Definition 1. The normal mapping of φ (or subdifferential of φ) is the set-valued mapping ∂φ : � → P(Rn), which maps 
x0 ∈ � into the set of all those m for which φ(x0) + m · (x − x0) is a supporting hyperplane. Namely,

∂φ(x0) := {m ∈Rn : φ(x) ≥ φ(x0) + m · (x − x0) for all x ∈ Ux0},
where Ux0 denotes some open neighbourhood of x0. Given E ⊂ �, we define

∂φ(E) = ∪x∈E ∂φ(x).

A convex function φ has at least one supporting hyperplane at each point, that is ∂φ(x0) �= ∅ for all x0 ∈ �. If φ ∈ C(�)

then the family of sets

S := {E ⊂ � : ∂φ(E) is Lebesgue measurable}
is a Borel σ -algebra.
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Definition 2. The set function Mφ : S → R defined by

Mφ(E) := |∂φ(E)|,
where R := R ∪ {∞}, is the Monge–Ampère measure of φ.

In a sense, Mφ(E) measures “how convex” φ is on E . Moreover, this measure is finite on compact subsets of � and it 
satisfies the following three properties.

(i) If φ ∈ C2(�), then Mφ is absolutely continuous with respect to the Lebesgue measure and Mφ(E) = ∫
E det D2φ dx for 

all Borel sets E ⊂ �. In particular, if φ(x) := δ|x − x0|2 for some x0 ∈ �, δ > 0 then D2φ = 2δ I , where I denotes the unit 
matrix, and so

Mφ(E) =
∫
E

det D2φ dx = (2δ)n|E|

for every Borel set E .
(ii) If φ, ψ are convex functions then M(ψ + φ) ≥ Mψ + Mφ. In particular, adding a constant function has no effect on the 

Monge–Ampère measure, and adding a quadratic polynomial δ|x − x0|2 strictly increases the Monge–Ampère measure, 
that is, if

ψ̃ := ψ + δ| · −x0|2, then Mψ̃(E) ≥ Mψ(E) + (2δ)n|E|
for every Borel set E .

(iii) If � ⊂ Rn is a bounded open set and φ, ψ ∈ C(�) are such that φ = ψ on ∂� with ψ ≤ φ, then ∂φ(�) ⊂ ∂ψ(�), and 
hence also

Mφ(�) ≤ Mψ(�).

The comparison principle (Corollary 4) is an important tool in studying the Monge–Ampère equation. Here we present a 
stronger version of the comparison principle. We focus on the case of convex functions; the case of concave functions 
follows analogously by replacing, respectively, Mφ, Mψ by M(−φ), M(−ψ) and “minimum” by “maximum”.

Theorem 3 (Strong comparison principle). Let � be open and bounded and φ,ψ ∈ C(�) be convex functions such that

Mφ ≤ Mψ on �. (1)

If ψ̃ := ψ + Q for some quadratic polynomial Q (x) := δ|x − x0|2 , where δ > 0, then φ − ψ̃ does not attain its minimum inside �.

This theorem will be important in obtaining our generalised comparison principle for nonconvex domains (see Theo-
rem 7). We prove it by sharpening the proof of the standard comparison principle, see, e.g., Gutiérrez [8], p. 17.

Proof. Suppose that there exists z ∈ � such that

φ(z) − ψ̃(z) = min
�

(φ − ψ̃) =: a

and let

Q̃ (x) := δ

2
|x − (2x0 − z)|2 − δ|z − x0|2.

This quadratic polynomial is tangent to Q (x) at z and supports it from below, that is, Q̃ (z) = Q (z) and Q̃ (x) < Q (x) for 
x �= z. Indeed, direct calculation gives Q̃ (z) = Q (z), ∇ Q̃ (z) = ∇ Q (z), D2(Q − Q̃ ) = δ I and so Taylor’s expansion for x �= z
gives (

Q − Q̃
)
(x) = (x − z) · δ I

2
(x − z) = δ

2
|x − z|2 > 0.

Hence, in particular, Q̃
∣∣
∂�

< Q |∂� , and we obtain

b := min
∂�

(
φ − ψ − Q̃

)
> min

∂�
(φ − ψ − Q ) ≥ a,

see Fig. 1. Now let
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Fig. 1. The set G (note this is a 1D sketch of a multidimensional situation).

w(x) := ψ(x) + Q̃ (x) + b + a

2

and

G := {x ∈ � : φ(x) < w(x)}.
We see that z ∈ G and so G is a nonempty open subset of �. Hence, |G| > 0 and property (ii) gives

Mψ(G) + δn|G| ≤ M w(G). (2)

Moreover, ∂G = {x ∈ � : w(x) = φ(x)} (see Fig. 1). Indeed, this is equivalent to G ∩ ∂� = ∅, but for y ∈ ∂�, we have

φ(y) − ψ(y) − Q̃ (y) ≥ b >
b + a

2
,

that is φ(y) > w(y) and so y /∈ G . Therefore indeed ∂G = {x ∈ � : w(x) = φ(x)} and hence property (iii) gives

M w(G) ≤ Mφ(G).

This and (2) gives Mψ(G) < Mφ(G), which contradicts the assumption (1). �
The standard comparison principle (Theorem 1.4.6 in Gutiérrez [8]) is a corollary of Theorem 3.

Corollary 4 (Comparison principle). Let � be open and bounded and φ, ψ ∈ C(�) be convex functions such that Mφ ≤ Mψ in �. 
Then

min
x∈�

(φ − ψ)(x) = min
x∈∂�

(φ − ψ)(x).

In particular, if φ ≥ ψ on ∂� then φ ≥ ψ in �.

Proof. Suppose otherwise that there exists an x0 ∈ � such that

φ(x0) − ψ(x0) = min
x∈�

(φ − ψ)(x) < min
x∈∂�

(φ − ψ)(x).

Because � is bounded, for sufficiently small δ > 0 the function φ − (ψ + δ|x − x0|2) still attains its minimum inside �, which 
contradicts the strong comparison principle (Theorem 3). �

If μ is a Borel measure defined in �, we say that a convex function v ∈ C(�) is a generalised solution to the Monge–
Ampère equation det D2 v = μ if M v = μ. If v is concave, it is a generalised solution to det D2 v = μ when M(−v) = μ. 
We have the following existence and uniqueness result for the Dirichlet problem for the Monge–Ampère equation (Theorem 
1.6.2 in Gutiérrez [8]).

Theorem 5 (Existence theorem for the Monge–Ampère equation). If � ⊂Rn is open, bounded, and strictly convex, μ is a Borel measure 
in � with μ(�) < +∞ and g ∈ C(∂�), then there exists a unique convex generalised solution ψ ∈ C(�) to the problem{

det D2ψ = μ in �,

ψ = g on ∂�.

Similarly, there exists a unique concave generalised solution to this problem.
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Before turning to the generalised comparison principle, we recall the following weak convergence result for Monge–
Ampère measures.

Lemma 6. Let � ⊂ Rn be an open, bounded and strictly convex domain, μ j , μ be Borel measures in � with μ j(�) ≤ A for all j and 
some A > 0 and μ j ⇀ μ as j → ∞, that is, 

∫
�

f dμ j → ∫
�

f dμ for all f ∈ C0(�). Let g j, g ∈ C(∂�) be such that ‖g j − g‖C(∂�) → 0
as j → ∞. If the family of convex functions {φ j} ⊂ C(�) satisfies{

Mφ j = μ j in �,

φ j = g j on ∂�,

then {φ j} contains a subsequence {φ jk }, such that φ jk → φ uniformly on compact subsets of � as k → ∞, where φ ∈ C(�) is convex 
and Mφ = μ in �, φ = g on ∂�.

The above lemma is proved in Gutiérrez [8], pp. 21–22, in the case g j ≡ g , j = 1, 2, . . .. The case g j �≡ g follows as a 
straightforward generalisation.

3. Generalised comparison principle

Let φ ∈ H2(�), that is, φ : � → R is such that φ, ∇φ, D2φ ∈ L2(�) (in other words, these functions exist almost every-
where in � and are square summable on �). Let

Aφ := {x ∈ � : D2φ(x) is positive definite at x},
Bφ := {x ∈ � : D2φ(x) is negative definite at x}.

We will denote by [Mφ]+ the measure that is absolutely continuous with respect to the Lebesgue measure with density 
(det D2φ)+ . Observe that, since φ ∈ H2(�) and det D2φ = φxx φyy − φ2

xy consists only of products of two second-order 
derivatives, the Hölder inequality gives det D2φ ∈ L1(�), and consequently [Mφ]+(�) < ∞. Moreover, if additionally φ ∈
C2(�), then Aφ is an open subset of �, φ is convex on Aφ and, using (i), [Mφ]+ is equal to the Monge–Ampère measure 
Mφ when restricted to Aφ .

We also denote by [Mφ]− the measure that is absolutely continuous with respect to the Lebesgue measure with density 
(det D2(−φ))+ .

Theorem 7 (Generalised comparison principle). Let � be a bounded, open set in Rn. Let ψ ∈ C(�) be a convex function in � with 
Mψ(�) < ∞ and let φ ∈ H2(�) be such that

[Mφ]+ ≤ Mψ in �. (3)

Then

min
�

(φ − ψ) = min
∂�

(φ − ψ).

In particular, if φ ≥ ψ on ∂�, then φ ≥ ψ in �. Similarly, if ψ is concave in � and φ ∈ H2(�) is such that [Mφ]− ≤ M(−ψ) in �, 
then

max
�

(φ − ψ) = max
∂�

(φ − ψ).

We give a proof that does not use the solvability result of the Monge–Ampère equation on �, and so does not require 
strict convexity of � (see Theorem 5). Instead, we replace it with the solvability result on a neighbourhood B of a point in 
� and an application of the strong comparison principle (Theorem 3). Since the resulting proof is therefore local in nature 
– it does not use any global properties of � – it allows for � to be nonconvex. (In fact, the original proof due to Rauch & 
Taylor [15] does not use the strict convexity of � when φ is assumed to be C2(�); but for φ ∈ H2(�) their approximation 
argument requires the solvability result (Theorem 5), which is only valid for � strictly convex.)

Proof. We focus on the case of ψ convex; the case of concave ψ follows by replacing φ, ψ by −φ, −ψ respectively. Assume 
first that φ ∈ C2(�) (here we can follow Rauch & Taylor [15]). Suppose otherwise that there exists x0 ∈ � such that

(φ − ψ)(x0) = min
x∈�

(φ − ψ)(x)

and consider the function



W.S. Ożański / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 198–206 203
ψ̃(x) := ψ(x) + ε0|x − x0|2 (4)

for ε0 > 0. Since � is bounded, it is clear that, for ε0 sufficiently small, the function φ − ψ̃ still does not attain its minimum 
on ∂�. This means that for such an ε0 fixed, there exists ̃x ∈ � such that

(φ − ψ̃)(̃x) = min
x∈�

(φ − ψ̃)(x) < min
x∈∂�

(φ − ψ̃)(x). (5)

Moreover, because on Aφ both ψ̃ and φ are convex, and

Mψ̃ ≥ Mψ ≥ Mφ,

the strong comparison principle (Theorem 3) gives ̃x /∈ Aφ . In other words, D2φ(̃x) is not positive definite. Now, because any 
symmetric matrix is positive definite if and only if all its eigenvalues are positive (see, e.g., Theorem 7.2.1 in Horn & Johnson 
[9]), we see that D2φ(̃x) has at least one nonpositive eigenvalue. Let λ ≤ 0 be one such eigenvalue and let α ∈ Rn , |α| = 1, 
be the respective eigenvector. Then, by performing a Taylor expansion in the α direction, we can write, for t ∈ R with |t|
small

φ(̃x + tα) − φ(̃x) = a1t + λt2 + o(t2), (6)

where a1 ∈ R and o(·) : R →R denotes any function such that o(y)/y 
y→0−→ 0. As ψ is convex, it has a supporting hyperplane 

at ̃x (see (4)). Hence,

ψ̃ (̃x + tα) − ψ̃ (̃x) = ψ(̃x + tα) − ψ(̃x) + ε0(|̃x + tα − x0|2 − |̃x − x0|2)
≥ a2t + ε0(|̃x + tα − x0|2 − |̃x − x0|2) = a3t + ε0 t2,

where a2, a3 ∈ R. Combining this with (6) and using (5), we obtain

(φ − ψ̃)(̃x)≤(φ − ψ̃)(̃x + tα) ≤ (φ − ψ̃)(̃x) + (a1 − a3)t + (λ − ε0)t
2 + o(t2)

for small values of |t|. This means that the quadratic polynomial

(a1 − a3)t + (λ − ε0)t
2

attains its minimum at t = 0. Hence a1 = a3 and λ − ε0 ≥ 0, which contradicts λ ≤ 0 < ε0.
Now let φ ∈ H2(�), and similarly as before consider ψ̃ and ̃x given by (4) and (5). Let B be an open ball centered at ̃x

and such that B ⊂ �.
Let {φ j} ⊂ C∞

0 (R2) be such that ‖φ j − φ‖H2(B) → 0 as j → ∞. By the embedding H2(B) ⊂ C0(B), we also have ‖φ j −
φ‖C0(B) → 0 as j → ∞. Let μ j , μ be Borel measures on B defined by μ j := [Mφ j]+ , μ := [Mφ]+ (note that μ j(�), μ(�) <
∞ due to the Hölder inequality). For each j, let ψ j be the unique convex solution to the Dirichlet problem:{

Mψ j = μ j in B,

ψ j = φ j on ∂ B.

The existence of such ψ j is guaranteed by the existence theorem (Theorem 5). Because φ j ∈ C2, the first part gives

ψ j ≤ φ j in B. (7)

Furthermore, because ‖(det D2φ j)
+ − (det D2φ)+‖L1(B) → 0 as j → ∞ gives μ j ⇀ μ, and because ‖φ j − φ‖C0(∂ B) → 0, we 

can use the convergence lemma (Lemma 6) to obtain that ψ j →  uniformly on compact subsets of B for some subsequence 
(which we relabel), where  ∈ C0(B) is convex and satisfies{

M = μ in B,

 = φ on ∂ B.

Taking the limit j → ∞ in (7) we get  ≤ φ on B and so in particular (̃x) ≤ φ(̃x) and

( − ψ̃)(̃x) ≤ (φ − ψ̃)(̃x) = min
�

(φ − ψ̃) ≤ min
∂ B

(φ − ψ̃) = min
∂ B

( − ψ̃). (8)

Because M = μ = [Mφ]+ ≤ Mψ ≤ Mψ̃ on B and both  and ψ̃ are convex, we can use the comparison principle (Corol-
lary 4) to write min∂ B( − ψ̃) = minB( − ψ̃). Therefore, (8) becomes

( − ψ̃)(̃x) ≤ min
B

( − ψ̃),

that is  − ψ̃ admits an internal minimum in B . This contradicts the strong comparison principle (Theorem 3). �
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An immediate consequence of the generalised comparison principle is that a solution to the Monge–Ampère equation 
with sign-changing right-hand side can be bounded above and below by, respectively, the concave and the convex solutions 
to certain Monge–Ampère problems.

Corollary 8. Let � be a bounded, open subset of Rn. If φ ∈ H2(�), �conv is a convex generalised solution to det D2�conv = (
det D2φ

)+

and �conc is a concave generalised solution to det D2(−�conc) =
(
det D2(−φ)

)+
such that �conv = �conc = φ on ∂�, then

�conv ≤ φ ≤ �conc in �.

Proof. This follows from the generalised comparison principle (Theorem 7), since Mφ ≤ M�conv = M(−�conc) and

M�conv(�) = M(−�conc)(�) = ‖
(

det D2(−φ)
)+ ‖L1 ≤ C‖φ‖H2 < ∞. �

Note that if � is strictly convex then the functions �conv, �conc are uniquely determined by the existence theorem 
(Theorem 5). What is more, if n is even, then det D2(−φ) = det D2φ and hence �conv and �conc are solutions to the same 
problem{

det D2� = (
det D2φ

)+
in �,

� = φ on ∂�.

In other words, if n is even, then any φ ∈ H2(�) can be bounded below and above using functions �conv and �conc, which 
depend only on the positive part of det D2φ and on the boundary values of φ. The power of Corollary 8 is demonstrated by 
the following nonexistence result.

Corollary 9. Let n be even, � a bounded, open subset of Rn, C ∈R and f a nonpositive function such that f �≡ 0. Then the problem{
det D2φ = f in �,

φ = C on ∂�

has no H2(�) solution.

Proof. Suppose that there exists φ ∈ H2(�), a solution to the above problem. The constant function � ≡ C satisfies 
det D2� = 0 = f + with �|∂� = C . Therefore, by Corollary 8, C ≤ φ ≤ C , i.e. φ ≡ C . Hence 0 ≡ det D2φ ≡ f �≡ 0, which 
is a contradiction. �
4. An application to the 2D Navier–Stokes equations

Let us consider the two-dimensional Navier–Stokes equations

ut + (u · ∇)u − �u + ∇p = 0

at any t > 0 equipped with the incompressibility constraint div u = 0. Taking the divergence of the equations and using the 
incompressibility constraint, we obtain:

∇ · [(u · ∇)u] + �p = 0.

Now, because any divergence-free 2D vector field can be represented as u = (φy, −φx) for some scalar function φ, we can 
write

−�p = ∂x(u2∂xu1 + u1∂xu1) + ∂y(u2∂yu2 + u1∂xu2)

= ∂x(−φxφyy + φyφxy) + ∂y(φxφxy − φyφxx) = −2φxxφyy + 2(φxy)
2,

that is,

φxxφyy − (φxy)
2 = 1

2
�p. (9)

This is the Monge–Ampère equation

det D2φ = 1
�p. (10)
2



W.S. Ożański / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 198–206 205
This connection between the pressure p and the velocity u in 2D Navier–Stokes equations was first studied by Larchevêque 
[10,11], who also observed that, in the regions of positive �p, the velocity u has closed streamlines, which he related to the 
appearance of coherent structures (see also Roulstone et al. [18] for a connection between coherent structures and �p in the 
case of three-dimensional Navier–Stokes equations). In contrast to this local analysis, here we use the results of the previous 
section to show that, if �p �≡ 0, then it is not possible that �p ≤ 0 throughout �. Indeed, because the global-in-time 
solution (u, p) to the two-dimensional Navier–Stokes equations is smooth, we have in particular that u ∈ H1

0(�), that is 
φ ∈ H2(�) and ∇φ = 0 on ∂�. Therefore, given C1 regularity of ∂�, we obtain φ|∂� = C for some C ∈ R. Hence the last 
corollary gives that �p ≤ 0 (with �p �= 0) cannot hold throughout �.

We also note that �p > 0 cannot hold throughout �, which can be shown using elementary methods. Indeed, because 
the solution (u, p) to the 2D Navier–Stokes equations is smooth (see, e.g., Lions & Prodi [12], Section 3.3 of Temam [19] or 
Section 9.6 of Robinson [16]) we have in particular that u ∈ C1(�), that is, φ ∈ C2(�). Therefore, if �p > 0, we can follow 
an idea from Section IV.6.3 of Courant & Hilbert [6] to write, using (9),

φxx φyy ≥ det D2φ = 1

2
�p > 0

and we see (by continuity) that either

φxx, φyy > 0 in � or φxx, φyy < 0 in �. (11)

Supposing that φxx, φyy > 0, we can use the divergence theorem to obtain

0 <

∫
�

�φ dx dy =
∫
∂�

∂φ

∂ν
dS = 0,

which is a contradiction; we argue similarly if φxx, φyy < 0.
Therefore, if at any time t > 0, we have �p �≡ 0, then either �p changes sign inside the domain or �p ≥ 0 with �p ≯ 0. 

In either case, �p = 0 at some interior point of the domain.
One of the questions related to the connection of the pressure p and velocity u in the 2D incompressible Navier–Stokes 

equations is whether the pressure determines the velocity uniquely (see the review article Robinson [17]). The answer to 
this question is negative, as the following example shows.

Example. Consider the shear flow u(x, y, t) = (U (y, t), 0) in a channel � := T × [0, 1], where U satisfies the 1D heat equa-
tion Ut − U yy = 0 in [0, 1] × [0, ∞), with boundary conditions U (0, t) = U (1, t) = 0. Note that U (y, t) := Ce−k2t sin(ky) is 
a solution to this problem for any C �= 0, k ∈ N. Then the pair (u, p), where p ≡ 0, satisfies the 2D incompressible Navier–
Stokes equations as div u vanishes, and ut − �u + (u · ∇)u + ∇p = ut − u yy = 0.

This example also illustrates the relevance of boundary conditions in Corollary 8. Indeed, if the periodic boundary condi-
tion (in x) was replaced by the homogeneous Dirichlet boundary condition, then Corollary 8 implies that the only velocity 
field u corresponding to p ≡ 0 is u ≡ 0.
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