
C. R. Acad. Sci. Paris, Ser. I 356 (2018) 133–137
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Number theory

Geometric sequences and zero-free region of the zeta function

Suites géométriques et région sans zéro de la fonction zêta

Jongho Yang

Department of Mathematics, Korea University, Seoul 02841, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 August 2017
Accepted after revision 20 November 2017
Available online 5 January 2018

Presented by the Editorial Board

Let N be the linear space of functions 
∑n

k=1 akρ(θk/x) with a condition 
∑n

k=1 akθk = 0
for 0 < θk ≤ 1. Here ρ(x) denotes the fractional part of x. Beurling pointed out that the 
problem of how well a constant function can be approximated by functions in N is closely 
related to the zero-free region of the Riemann zeta function. More precisely, Báez-Duarte 
gave a zero-free region related to a Lp-norm estimation of a constant function by using the 
Dirichlet series for the zeta function. In this paper, we consider the L∞-norm estimation of 
a constant function and give a wider zero-free region than that of the Báez-Duarte result.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit N l’espace vectoriel de fonctions 
∑n

k=1 akρ(θk/x) satisfaisant la condition 
∑n

k=1 akθk =
0 pour 0 < θk ≤ 1, où ρ(x) désigne la partie fractionnaire de x. Beurling a indiqué que le 
problème d’approximation d’une fonction constante par fonctions dans N est étroitement 
lié à la région sans zéro de la fonction zêta de Riemann. Plus précisement, Báez-Duarte a 
donné une région sans zéro liée à une estimation de la norme Lp d’une fonction constante 
en utilisant les séries de Dirichlet pour la fonction zêta. Dans cet article, nous considerons 
une estimation de la norme L∞ d’une fonction constante et donnons une région sans zéro 
plus large que celle du résultat de Báez-Duarte.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let ρ(x) be the fractional part of x. The Nyman space N consists of all functions of the form

n∑
k=1

akρ

(
θk

x

)
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for any natural number n, which satisfies the condition 
∑n

k=1 akθk = 0 for 0 < θk ≤ 1. In many approaches to solve the 
Riemann hypothesis, Beurling [5] and Nyman [8] found a connection between the existence of the nontrivial zeros of the 
Riemann zeta function and a density of a function space N in Lp(0, 1). More precisely, the fact that N is dense in Lp(0, 1)

is equivalent to that the zeta function is zero-free on the Re s > 1/p. In his paper [5], Beurling also pointed out that the 
problem of how well a function χ can be approached by functions in N is closely related to the distribution of the primes 
even in case ζ has zeros close to the line Re s = 1. Here χ denotes the characteristic function on (0, 1).

In [1], Báez-Duarte gave an explicit result about Beurling’s remark.

Theorem 1.1. If f ∈ N , 1 < p ≤ 2, and ε = ‖χ − f ‖p , then ζ does not vanish in the closed triangle with vertices at the points 
{1/p, 1, 1 + (i/2)ε−1}.

Though the Theorem 1.1 gives each f ∈ N to a zero-free region for ζ , the region is angled towards the line Re s = 1. In 
this paper we give a different zero-free region using L∞-norm.

We first introduce function spaces to work on. For 0 ≤ δ < 1, we define Xδ by

Xδ := { f ∈ N : f (x) = 1 for δ < x < 1},
where N is the closure of N in L2(0, 1). Concrete functions in Xδ are presented in Section 3.

The following is our main theorem.

Theorem 1.2. For 0 < δ < 0.043, suppose that f ∈Xδ and ε = ‖χ − f ‖∞ . Then ζ(σ + it) does not vanish in a region given by

|t| < C

εδσ

on the critical strip. Here C = π/4 e2π .

As a consequence of Theorem 1.2, we see that the region

|t| < C

ε
√

δ

is free from zero, which is more regular than Báez-Duarte’s result.

2. Proof of the theorem

For f ∈N as

f (x) =
n∑

k=1

akρ

(
θk

x

)

with a condition 
∑n

k=1 akθk = 0 for 0 < θk ≤ 1, we get

Re f (x) =
n∑

k=1

Re(ak)ρ

(
θk

x

)
and Im f (x) =

n∑
k=1

Im(ak)ρ

(
θk

x

)
.

Since 
∑n

k=1 Re(ak)θk = ∑n
k=1 Im(ak)θk = 0, both Re f and Im f also belong to N . So we may assume that f is a real-valued 

function without loss of generality. Moreover note that

f (x) = 0 for max θk ≤ x.

Thus, a contraction operator T v defined by

T v f (x) :=
{

f (x/v), 0 < x ≤ v

0, v < x < 1

for 0 < v < 1, is closed on N . As a result, T v is closed on N .
In [4], Bercovici and Foias obtained the following equivalent form for N using the Mellin transform;

N =
{

f ∈ L2(0,1) : M f (s)

ζ(s)
is analytic on Re s >

1

2

}
. (2.1)
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Here M f is the Mellin transform defined by

M f (s) := 1√
2π

1∫
0

f (x) xs−1 dx

for f ∈ L2(0, 1). By considering orthogonals in (2.1), Balazard and Saias pointed out that the Bercovici–Foias theorem gives 
a complete characterization for the complement space of N in L2(0, 1). More precisely, we have the following theorem.

Theorem 2.1. Let N⊥ be the orthogonal complement of N in L2(0, 1). Then we have

N⊥ = spanL2(0,1)

{
x → xs−1 logk x, ζ(s) = 0 with Re s > 1/2

}
, (2.2)

where 0 ≤ k ≤ multiplicity of s.

See [2,3,11,12] for more results of N and N⊥ . In (2.2), we put

ϕs(x) := Im(xs−1).

Clearly we have

ϕs(x) = xσ−1 sin(t log x),

where s = σ + i t . The graph of ϕs rapidly oscillate near the origin. So ϕs has infinitely many zeros near the origin. The zeros 
of ϕs on (0, 1], listed in decreasing order, are

rn := rn with r := e−π/t (2.3)

for n = 0, 1, . . . . For each natural number n, the area of ϕs on [rn, rn−1] is given by

An :=
rn−1∫
rn

|ϕs(x)| dx =
rn−1∫
rn

|Im(xs−1)| dx

=
∣∣∣∣∣∣Im

⎛
⎝ rn−1∫

rn

xs−1 dx

⎞
⎠

∣∣∣∣∣∣ = t

σ 2 + t2

1 + rσ

rσ
(rσ )n.

Consequently, we obtain two geometric sequences rn and An for each ϕs , which are crucial in the proof of our main theorem.
The following lemma can be easily proved by elementary calculus.

Lemma 2.2. For 0 < x ≤ 1 we have

e2πx

eπx − 1
≤ c

x
,

where c = e2π/π.

Now we prove our main result.

Proof. Let f ∈ Xδ for a sufficiently small δ > 0 and ε = ‖χ − f ‖∞ . We borrow the well-known fact that ζ(s) 	= 0 with 
|t| < 1 in the critical strip. Assume that there is a zero s0 = σ0 + i t0, with

1 < t0 <
C

εδσ0
and σ0 > 1/2,

where C = π/4 e2π . We will complete the proof by deriving a contradiction.
Let rn and An be the geometric sequences corresponding to ϕs0 . From t0 > 1, we have

r = e−π/t0 > e−π ≈ 0.043,

where r is defined in (2.3) for ϕs0 . So we can choose the positive integer N such that

rN ≤ δ < rN−1. (2.4)
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Then we consider a function f − Tr f . From f ∈Xδ , we get

( f − Tr f )(x) =

⎧⎪⎨
⎪⎩

1, r < x < 1

0, δ < x ≤ r

absolute value ≤ 2ε, 0 < x ≤ δ.

By Theorem 2.1, we have

0 =
1∫

0

( f − Tr f ) · ϕs0 =
δ∫

0

( f − Tr f ) · ϕs0 +
1∫

r

ϕs0 .

Thus we get

A1 =
∣∣∣∣∣∣

δ∫
0

( f − Tr f ) · ϕs0

∣∣∣∣∣∣ ≤ 2ε ·
rN−1∫
0

|ϕs0 | = 2ε ·
∞∑

n=N

An.

Moreover, we have

1 = 2ε · ∑∞
n=N An

A1
= 2εrσ0 N

rσ0(1 − rσ0)
≤ 2εδσ0

rσ0(1 − rσ0)
;

the last inequality holds by (2.4). By Lemma 2.2,

1

rσ0(1 − rσ0)
= e2πσ0/t0

eπσ0/t0 − 1
≤ e2π

π
· t0

σ0
≤ 2e2π

π
t0

Consequently, we obtain that

1 ≤ 2ε δσ0

rσ0(1 − rσ0)
≤ 4 e2π

π
εδσ0t0 < 1,

which is impossible. Thus we finish the proof. �
3. Remark and question

For an example function in Xδ , we define the natural approximation fn by

fn(x) = ng(n)ρ

(
1

nx

)
−

n∑
k=1

μ(k)ρ

(
1

kx

)
, where g(n) :=

n∑
k=1

μ(k)

k
.

Here μ denotes the Möbius function. Then, the fact that fn belongs to X1/n follows from the well-known one:

∞∑
k=1

μ(k)

[
1

k x

]
= 1 for 0 < x ≤ 1.

See [1] for more results. As a summatory function of μ, let

M(n) :=
n∑

k=1

μ(k).

The properties of the functions μ and M are central in the theory of prime numbers. There is an exhaustive list of results 
of μ, M . We refer the reader to [6,7,9,10] for related work.

The oscillating property of M is known by Pintz, see [10]. More precisely, M changes signs infinitely many times. In case 
of g , it is known that

lim
n→∞ g(n) = 0.

However, the oscillating property of g is not known yet. If g also changes signs infinitely often, then we obtain

|g(n)| ≤ 1/n
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for infinitely many n’s. As a result, we have∥∥∥∥ng(n)ρ

(
1

nx

)∥∥∥∥∞
≤ 1, for infinitely many n’s.

So we only need to consider the second term of fn for ‖χ − fn‖∞ on (0, 1/n). Thus the following is an interesting question.

Question 3.1. Does the sequence

g(n) =
n∑

k=1

μ(k)

k

has infinitely many sign-changing solutions?
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