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In this paper, we classify bm-Nambu structures via bm-cohomology. The complex of 
bm-forms is an extension of the De Rham complex, which allows us to consider singular
forms. bm-Cohomology is well understood thanks to Scott (2016) [12], and it can be 
expressed in terms of the De Rham cohomology of the manifold and of the critical 
hypersurface using a Mazzeo–Melrose-type formula. Each of the terms in bm-Mazzeo–
Melrose formula acquires a geometrical interpretation in this classification. We also give 
equivariant versions of this classification scheme.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On classifie les structures bm-Nambu de degré maximal en utilisant la bm-cohomologie. Le 
complexe des bm-formes est une extension du complexe de De Rham et permet considérer 
des formes singulières. La bm-cohomologie est bien comprise grâce à Scott (2016) [12], 
et elle peut être exprimée en termes de la cohomologie de De Rham de la variété et 
de l’hypersurface critique en utilisant une formule de type Mazzeo–Melrose. Chacun des 
termes dans la formule de bm-Mazzeo–Melrose acquiert une interpretation géométrique 
dans cette classification. On donne aussi des versions équivariantes des théorèmes de 
classification.
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1. Introduction

In this article, we focus our attention on bm-Nambu structures. Nambu structures were introduced by Nambu [11] and 
Takhtajan [13] as a generalization of Poisson structures. Unlike the domain of Poisson geometry, Nambu geometry is not so 
well explored. In this short note, we give a classification theorem for a class of Nambu structures using a generalization of 
De Rham cohomology called bm-cohomology. Our result generalizes a former classification theorem by Martínez-Torres for 
generic Nambu structures of top degree [8].

Recently, a class of Poisson structures called in the literature b-Poisson structures (see for instance, [3], [4], [6] and [2]) 
has been widely studied. A b-Poisson manifold is an even dimensional Poisson manifold (M2n, �) where the Poisson struc-
ture � satisfies the following transversality condition: �n cuts the zero section of the bundle �2n T (M2n) transversally. As 
a consequence the vanishing set of �n is a smooth submanifold of codimension 1, which is called critical hypersurface.

The transversality condition can be relaxed in a way the critical hypersurface is still a smooth submanifold. This is the 
case of bm-Poisson manifolds introduced by Scott [12] and later investigated by Guillemin, Miranda and Weitsman in [5]. 
In this paper, we generalize this setting to the Nambu world and classify these structures. This class of singular Nambu 
structures was already considered by Arnold in [1]. The classification theorem we prove here is an extension of Moser’s 
classification theorem [10] for volume forms on a manifold. As an outcome of this classification scheme, a geometrical 
interpretation is given to the Mazzeo–Melrose decomposition theorem (see section 2.16 in [9] for m = 1 and [12] for general 
m), which expresses bm-cohomology in terms of the classical De Rham cohomology groups of the manifold and of the critical 
hypersurface.

2. Constructions and classification of bm-Nambu structures

Nambu structures of bm-type can be described using forms that are singular along a smooth hypersurface. These forms, 
called bm-forms, were studied by Scott [12] in his thesis. We start introducing the language of bm-forms: we follow [12]
for these definitions and main properties. The set-up in Scott [12] allows us to consider smooth hypersurfaces without 
a globally defining function. For the sake of simplicity in this paper, we will consider Z a smooth hypersurfaces (not 
necessarily connected) and attach to it a defining function f .

Take a local set of coordinates (x, . . . , xn−1) in a neighborhood of a point p in the critical set, the bm-tangent bundle can 
be defined as the bundle whose sections are locally generated by:

{xm ∂

∂x
,

∂

∂x1
, . . . ,

∂

∂xn−1
}, (1)

with x such that |x| = λ, and λ is the distance function to z. For globally defining functions f = x.
As done in the case m = 1 in [3], we can define the dual bundle, the bm-cotangent bundle bm

T ∗(M). Sections of powers 
of these bundles are called bm-forms.

A Laurent series of a closed bm-form ω is a decomposition of ω in a tubular neighborhood U of the critical set Z of the 
form

ω = dx

xm
∧ (

m−1∑
i=0

π∗(αi)xi) + β (2)

with π : U → Z the projection of the tubular neighborhood onto Z , αi a closed smooth De Rham form on Z and β a De 
Rham form on M .

In [12], it is proved that in a neighborhood of Z , every closed bm-form ω can be written in a Laurent form of type (2)
once a defining function has been fixed.

The complex of bm-forms endowed with a natural extension of De Rham differential defines bm-cohomology. The fol-
lowing theorem tells us that bm-cohomology can be read off from de Rham cohomology, thus generalizing the classical 
Mazzeo–Melrose decomposition theorem in Section 2.16 in [9].

Theorem 2.1 (bm-Mazzeo–Melrose, [12]). The bm-cohomology groups can be determined from De Rham cohomology groups as follows:

bm
H p(M) ∼= H p(M) ⊕ (H p−1(Z))m. (3)

We now introduce bm-Nambu structures of top degree,

Definition 2.2. A bm-Nambu structure of top degree on a pair (Mn, Z) with Z a smooth hypersurface is given by a smooth 
n-multivector field � such that there exists a local system of coordinates for which

� = xm
1

∂

∂x1
∧ . . . ∧ ∂

∂xn
(4)

and Z is defined by x1 = 0 in a neighborhood of Z .
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Dualizing the local expression of the Nambu structure, we obtain the form

	 = 1

xm
1

dx1 ∧ . . . ∧ dxn (5)

(which is not a smooth de Rham form), but it is a bm-form of degree n defined on a bm-manifold. As it is done in [3], we 
can check that this dual form is non-degenerate. So we may define a bm-Nambu form as follows.

Mimicking the same condition as for bm-symplectic forms, we can talk about non-degenerate bm-forms of top degree. 
This means that seen as a section of �n(b T ∗M), the form does not vanish.

Notation: We will denote by � the Nambu multivectorfield and by 	 its dual.

Definition 2.3. A bm-Nambu form is a non-degenerate bm-form of top degree.

We first include a collection of motivating examples, and then prove an equivariant classification theorem.

2.1. Examples

(i) bm-Symplectic surfaces: any bm-symplectic surface is a bm-Nambu manifold with Nambu structure of top degree.
(ii) bm-Symplectic manifolds as bm-Nambu manifolds: let (M2n, ω) be a bm-symplectic manifold, then (M2n, ω ∧ . . . ∧ ω︸ ︷︷ ︸

n

)

is automatically bm-Nambu.
(iii) Orientable manifolds: let (Mn, 
) be any orientable manifold (with 
 a volume form) and let f be a defining function 

for Z , then (1/ f m)
 defines a bm-Nambu structure of top degree having Z as critical set.
Any Nambu structure can be written in this way if the hypersurface can be globally described as the vanishing set of a 
smooth function.

(iv) Spheres: in [8], it was given special importance to the example (Sn, �i S(n−1)
i ) because of the Schoenflies theorem,1

which imposes the associated graph to be a tree. The nice feature of this example is that O (n) acts on the bm-manifold 
(Sn, S(n−1)), and it makes sense to consider its classification under these symmetries. This also works for other homo-
geneous spaces of type (G1/G2, G2/G3) with G2 and G3 with codimension 1 in G1 and G2, respectively.

2.2. bm-Nambu structures of top degree and orientability

We start proving:

Theorem 2.4. A compact n-dimensional manifold M admitting a b2k-Nambu structure is orientable.

Proof. Consider a collar of charts for the b2k-Nambu structure such that in local coordinates the Nambu structure can be 
written as x2k

1
∂

∂x1
∧ . . . ∧ ∂

∂xn
with compatible orientations in a neighborhood of each connected component of Z .

Consider a 2:1 orientable covering (M̃, Z̃) of the manifold, and denote by ρ : Z/2Z × M̃ → M̃ the deck transformation. 
For each point p ∈ Z̃ , take a neighborhood U p that does not contain other points identified by ρ thus U p ∼= π(U p) =: V p , 
and 	 = 1

x2k dx1 ∧ . . .∧ dxn . This form defines an orientation on V p \ π(Z). Take a symmetric covering of such neighborhoods 
to define a collar of Z with compatible orientations, and compatible with the covering. The compatible orientations and 
the symmetric coverings descend to (M, Z), thus defining an orientation in (M, Z). Thus, we have an orientation in V \ Z . 
By perturbing 	 in V , we obtain a volume form on V , ω̃, and thus an orientation in V . These can be glued to define an 
orientation via the volume form 	̃ on the whole M , proving that M is oriented. �
2.3. Classification of bm-Nambu structures of top degree and bm-cohomology

We present the definitions contained in [8] of modular period attached to the connected component of an orientable 
Nambu structure using the language of bm-forms.

Let 	 be the dual to the multivectorfield � defining a Nambu structure. From the general decomposition of bm-forms as 
it was set in Equation (2), we may write:

	 = 	0 ∧ d f

f m

with 	0 ∈ 
n−1(M).

1 The nature of this theorem is purely topological in dimension equal or greater than four, and so is its construction.
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This decomposition is valid in a neighborhood of Z whenever the defining function is well defined. For non-orientable 
manifolds, a similar decomposition can be proved by replacing the defining function f by an adapted distance (see [7]).

With this language in mind, the modular (n − 1)-vector field in [8] of 	 along Z is the dual of the form 	0 in the 
decomposition above which is indeed the modular (n − 1)-form along Z in [8].

Recall the following from [8] in our language.

Definition 2.5. The modular period T Z
� of the component Z of the zero locus of � is

T Z
� :=

∫
Z

	0 > 0.

In fact, this positive number determines the Nambu structure in a neighborhood of Z up to isotopy, as it was proved 
in [8].

The following theorem gives a classification of bm-Nambu structures.

Theorem 2.6. Let 	0 and 	1 be two bm-Nambu forms of degree n on a compact orientable manifold Mn. If [	0] = [	1] in 
bm-cohomology, then there exists a diffeomorphism φ such that φ∗	1 = 	0 .

Proof. We will apply the techniques of [10] with the only difference that we work with bm-volume forms instead of volume 
forms.

Since 	0 and 	1 are non-degenerate bm-forms, both of them are a multiple of a volume form and thus the linear path 
	t = (1 − t)	0 + t	1 is a path of non-degenerate bm-forms.

Because 	0 and 	1 determine the same cohomology class:

	1 − 	0 = dβ

with d the bm-De Rham differential and β a bm-form of degree n − 1.
Now consider the Moser equation:

ιXt 	t = −β. (6)

Observe that since β is a bm-form and 	t is non-degenerate. The vector field Xt is a bm-vector field. Let φt be the 
t-dependent flow integrating Xt .

The φt gives the desired diffeomorphism φt : M → M , leaving Z invariant (since Xt is tangent to Z ) and φ∗
t 	t = 	0. �

In particular, we recover the classification of b-Nambu structures of top degree in [8].

Theorem 2.7 (Classification of b-Nambu structures of top degree, [8]). A generic b-Nambu structure 	 is determined, up to orientation 
preserving diffeomorphism, by the following three invariants: the diffeomorphism type of the oriented pair (M, Z), the modular periods 
and the regularized Liouville volume.

By Theorem 2.1,

bHn(M) ∼= Hn(M) ⊕ Hn−1(Z).

The first term on the right-hand side is the Liouville volume image by the De Rham theorem, as it was done in [4] for 
b-symplectic forms. The second term collects the periods of the modular vector field. So if the three invariants coincide, 
then they determine the same b-cohomology class.

In other words, the statement in [8] is equivalent to the following theorem in the language of b-cohomology.

Theorem 2.8. Let 	1 and 	2 be two b-Nambu forms on an orientable manifold M. If [	1] = [	2] in b-cohomology, then there exists 
a diffeomorphism φ such that φ∗	1 = 	2 .

This global Moser theorem for bm-Nambu structures admits an equivariant version:

Theorem 2.9. Let 	0 and 	1 be two bm-Nambu forms of degree n on a compact orientable manifold Mn and let ρ : G × M −→ M be a 
compact Lie group action preserving both bm-forms. If [	0] = [	1] in bm-cohomology, then there exists an equivariant diffeomorphism 
φ such that φ∗	1 = 	0 .
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Proof. As in the former proof, write

	1 − 	0 = dβ

with d the bm-De Rham differential and β a bm-form of degree n − 1. Observe that the path 	t = (1 − t)	0 + t	1 is a path 
of invariant bm-forms.

Now consider Moser’s equation:

ιXt 	t = −β. (7)

Since 	t is invariant, we can find an invariant β̃ . For instance, take β̃ = ∫
G ρ∗

g (β) dμ with μ a de Haar measure on G
and ρg the induced diffeomorphism ρg(x) := ρ(g, x).

Now replace β by β̃ to obtain,

ιX G
t
	t = −β̃ (8)

with X G
t = ∫

G ρg∗ Xt dμ. The vector field X G
t is an invariant b-vector field. Its flow φG

t preserves the action and 
φG

t
∗	t = 	0. �
Playing the equivariant bm-Moser trick using the 2:1 cover of a non-orientable manifold and taking as G the group of 

deck transformations, we obtain the following corollary.

Corollary 2.10. Let 	0 and 	1 be two bm-Nambu forms of degree n on a manifold Mn (not necessarily oriented). If [	0] = [	1] in 
bm-cohomology, then there exists a diffeomorphism φ such that φ∗	1 = 	0 .
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