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We prove that the set G P of all nonzero generalized pentagonal numbers is an additive 
uniqueness set; if a multiplicative function f satisfies the equation

f (a + b) = f (a) + f (b),

for all a, b ∈ G P , then f is the identity function.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous prouvons que l’ensemble G P de tous les nombres pentagonaux généralisés non nuls 
est un ensemble d’unicité additive ; si une fonction multiplicative f satisfait l’équation

f (a + b) = f (a) + f (b),

pour tous a, b ∈ G P , alors f est la fonction identité.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

An arithmetic function f : Z+ −→ C is called multiplicative if f (1) = 1 and f (mn) = f (m) f (n) whenever m and n are 
relatively prime. In 1992, Spiro proved that if a multiplicative function f satisfies f (p0) �= 0 for some prime p0 and
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f (p + q) = f (p) + f (q) for all primes p and q,

then f is the identity function [9]. More generally, Spiro asked which subset E of Z+ could determine an arithmetic function 
f uniquely in S under conditions

f (a + b) = f (a) + f (b) for all a,b ∈ E,

where S is a set of arithmetic functions. Such a set E is called an additive uniqueness set for S following Spiro’s theme.
After Spiro’s work, this interesting subject has been studied and extended in many directions (see [1], [2], [3], [4], [5], [6], 

[7], and [8], for example). In particular, Chung and Phong [3] showed that the set of all triangular numbers is an additive 
uniqueness set for multiplicative functions, while Chung [2] showed that the set of square numbers is not an additive 
uniqueness set for multiplicative functions.

So it is natural to examine pentagonal numbers. The nonzero generalized pentagonal numbers are the integers obtained by 
the formula

Pn = n(3n − 1)

2
,

with n = ±1, ±2, ±3, . . . . Let G P be the set of nonzero generalized pentagonal numbers;

G P = {1,2,5,7,12,15,22,26,35, . . . }.
In this article, we prove that the set G P is an additive uniqueness set for multiplicative functions.

Theorem 1.1. If a multiplicative function f : Z+ −→ C satisfies

f (a + b) = f (a) + f (b),

for arbitrary generalized pentagonal numbers a, b, then f is the identity function.

2. Proof of Theorem 1.1

We will prove the Theorem using induction on n. We assume that f (k) = k for all k < n. Since f is multiplicative, it 
suffices to prove the case that n is a prime power. For notational convenience, we let P ε

m = m(3m+ε)
2 where ε ∈ {−1, +1}.

Proposition 2.1. P ε
n is a product of two coprime numbers.

Proof. If n is even, then

P ε
n = n

2
· (3n + ε),

where gcd( n
2 , 3n + ε) ≤ gcd(n, 3n + ε) = gcd(n, ε) = 1.

When n is odd,

P ε
n = n · 3n + ε

2
,

where gcd(n, 3n+ε
2 ) ≤ gcd(n, 3n + ε) = 1. �

Lemma 2.2. Let p �= 5 be a prime and let r ∈ Z
+ . Then there are a, b ∈ G P and λ ∈ Z

+ such that

λpr = a + b,

where gcd(λ, p) = 1 with λ < pr . Moreover, a and b are products of coprime numbers which are smaller than pr . Furthermore, the 
same statement is true for p = 5 with r > 1.

Proof. We split the proof into four cases: p = 2, p = 3, p = 5, and p ≥ 7.

Case p = 2: Since 2r ≡ ε (mod 3), we can let 2r = 3m + ε for a positive odd integer m. Then

P ε
m + P ε

m = m(3m + ε)

2
+ m(3m + ε)

2
= m(3m + ε) = m · 2r,

where the largest factor 3m+ε
2 of P ε

m is smaller than 2r . By letting a = P ε
m , b = P ε

m and λ = m = 2r−ε
3 , we get a and b whose 

factors are smaller than 2r and gcd(λ, 2) = 1. Hence, the p = 2 case follows.
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Case p = 3: When r is even, we let r = 2� for some � ∈ Z
+ . Since 32 ≡ −1 (mod 10), we may assume that 32� = 10m + ε

for some m ∈ Z
+ . Let n = 6m + ε . Then

P−ε
n + P ε

2m = (6m + ε)(18m + 2ε)

2
+ 2m(6m + ε)

2

= (6m + ε)(10m + ε) = (6m + ε) · 32� = (6m + ε) · 3r,

where max(6m + ε, 9m + ε, m, 6m + ε) < 10m + ε = 3r . As gcd(6m + ε, 3) = 1, by setting a = P−ε
n , b = P ε

2m and λ = 6m + ε , 
we have the desirable result.

When r is odd, we let r = 2� − 1 for some � ∈ Z
+ . For n = 3�−1, we find that

P ε
n + P−ε

n = n(3n + ε)

2
+ n(3n − ε)

2
= 3n2 = 1 · 32�−1 = 1 · 3r,

where max(n, 3n±ε
2 ) < 3n2 = 3r . By choosing a = P ε

n , b = P−ε
n and λ = 1 for this case, we complete the proof of the p = 3

case.

Case p = 5: When r = 2k, we set n = 5k . Then, we find that

P−1
n + P+1

n = n(3n − 1)

2
+ n(3n + 1)

2
= 3n2 = 3 · 5r,

where max(n, 3n±1
2 ) < n2 = 5r . Thus, we can set a = P−1

n , b = P+1
n and λ = 3 for this case.

If r = 4k + 3, we set 5r = 13n + 8 for an odd integer n. Then

P−1
n+1 + P−1

8n+5 = (n + 1)(3n + 2)

2
+ (8n + 5)(12n + 7)

= 3

2
(5n + 3)(13n + 8) = 3

2
(5n + 3) · 5r,

where max(n+1
2 , 3n + 2, 8n + 5, 12n + 7) < 13n + 8 = 5r . Since 3

2 (5n + 3) < 13n + 8 = 5r and gcd(5n + 3, 5) = 1, we can set 
a = P−1

n+1, b = P−1
8n+5, and λ = 3

2 (5n + 3) for this case.
Finally, if r = 4k + 1 > 1, then, 5r = 39n + 5 such that n is a multiple of 10. We observe that

P−1
15n+2 + P+1

23n+3 = 5(15n + 2)(9n + 1)

2
+ (23n + 3)(69n + 10)

2
= (29n + 4)(39n + 5) = (29n + 4) · 5r,

where max( 15n+2
2 , 9n + 1, 23n + 3, 69n+10

2 ) < 39n + 5 = 5r . Since n is a multiple of 5, we see that gcd(29n + 4, 5) = 1. 
Therefore, by setting a = P−1

15n+2, b = P+1
23n+3 and λ = 29n + 4, we obtain the desirable result.

Case p ≥ 7: Since p ≥ 7, pr ≡ ε (mod 10) or pr ≡ 3ε (mod 10).

(1) pr ≡ ε (mod 10): Let pr = 10m +ε and n = 6m +ε . We see that gcd(6m +ε, 10m +ε) = 1 and max(6m +ε, m, 9m +ε) <
10m + ε = pr . Thus, the equality

P−ε
n + P ε

2m = (6m + ε)(18m + 2ε)

2
+ 2m(6m + ε)

2
= (6m + ε)(10m + ε) = (6m + ε) · pr

implies that the desirable result follows by setting a = P−ε
n , b = P ε

2m , and λ = 6m + ε .
(2) pr ≡ 3ε (mod 10): Since p �= 3, pr ≡ 7ε (mod 30) or pr ≡ 13ε (mod 30).

When pr ≡ 7ε (mod 30), let pr = 30m + 7ε and let n = 4m + ε . Then we obtain that

P ε
n + P−ε

2n = n(3n + ε)

2
+ 2n(6n − ε)

2

= n(15n − ε)

2
= (4m + ε)(30m + 7ε) = (4m + ε) · pr .

We see that max(n, 3n+ε
2 , 6n − ε) = 24m + 5ε < 30m + 7ε = pr and gcd(4m + ε, 30m + 7ε) = 1. Thus we can choose 

a = P ε
n , b = P−ε and λ = 4m + ε to conclude the case.
2n
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When pr ≡ 13ε (mod 30), let pr = 30m + 13ε and let n = 2m + ε . Then we observe that

P−ε
n + P−ε

3n = n(3n − ε)

2
+ 3n(9n − ε)

2
= n(15n − 2ε) = (2m + ε)(30m + 13ε) = (2m + ε) · pr,

where max(n, 3n−ε
2 , 3n, 9n−ε

2 ) = 9m +4ε < 30m +13ε = pr and gcd(2m +ε, 30m +13ε) = 1. By letting a = P−ε
n , b = P−ε

3n
and λ = 2m + ε , we obtain the desirable result. �

Proof of Theorem 1.1. We will show f (n) = n for any positive integer n and will use the induction on n.

(1) By the multiplicative property of f , we get f (1) = 1.
(2) By the additive property of f on G P , we get

f (2) = f (1) + f (1) = 2, f (3) = f (1) + f (2) = 3, f (4) = f (1) + f (3) = 4.

(3) Because f (1) + f (5) = f (6) = f (2) f (3), we get f (5) = 5.
(4) Let n be an integer larger than 5. Suppose that f (k) = k for all k < n. The multiplicativity of f and the factorization of 

n =
�∏

i=1

pei
i says

f (n) =
�∏

i=1

f (pei
i ).

If � ≥ 2, then pei
i < n for all i and hence the induction hypothesis guarantees that f (pei

i ) = pei
i . So f (n) = n.

If � = 1, then n = pe for some prime p and a positive integer e. Lemma 2.2 says

λ · pe = a + b,

where a and b are generalized pentagonal numbers of which coprime factors are smaller than pe , λ < pe and 
gcd(λ, pe) = 1. Thus the multiplicativity and additivity on G P of f implies that

f (λ) · f (n) = f (a) + f (b),

where f (λ) = λ, f (a) = a and f (b) = b by the induction hypothesis. So we get the desirable result. �
3. A concluding remark

One might ask whether the set {n(3n−1)
2 : n ∈ Z

+} of nonzero ordinary pentagonal numbers is an additive uniqueness set 
for multiplicative functions. As it has less possible additive combinations available, it is a much harder problem. Moreover, 
it is connected to a deep general Catalan’s conjecture to find integer solutions r and s for pr − qs = k, where p and q are 
distinct primes and k is a positive integer. Our work on ordinary pentagonal numbers is on progress and we hope we can 
address this case soon.

Acknowledgements

The authors are grateful to the referee for his or her valuable comments which improve the exposition of this 
paper. In particular, Lemma 2.2 is based on the referee’s suggestion. The authors are also thankful to the work-
shop “Trends in Number Theory”, where this project was initiated. The authors were supported by the Basic Sci-
ence Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education 
(NRF-2016R1D1A1A09917344, NRF-2017R1D1A1B03028905, NRF-2016R1D1A1B01009208) and by the Ministry of Science 
and ICT (NRF-2017R1A2B1010761).

References
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