Number theory

On the denominators of harmonic numbers ${ }^{*}$

Sur les dénominateurs des nombres harmoniques

Bing-Ling Wu, Yong-Gao Chen

School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China

A R T I C L E IN F O

Article history:

Received 23 October 2017
Accepted after revision 12 January 2018
Presented by the Editorial Board

Abstract

Let H_{n} be the n-th harmonic number and let v_{n} be its denominator. It is well known that v_{n} is even for every integer $n \geq 2$. In this paper, we study the properties of v_{n}. One of our results is: the set of positive integers n such that v_{n} is divisible by the least common multiple of $1,2, \cdots,\left\lfloor n^{1 / 4}\right\rfloor$ has density one. In particular, for any positive integer m, the set of positive integers n such that v_{n} is divisible by m has density one. © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Soit H_{n} le n-ième nombre harmonique et notons v_{n} son dénominateur. Il est bien connu que v_{n} est pair pour tout entier $n \geq 2$. Dans ce texte, nous étudions les propriétés de v_{n}. Un de nos résultats montre que l'ensemble des entiers positifs n tels que v_{n} soit divisible par le plus petit commun multiple de $1,2, \ldots,\left[n^{1 / 4}\right]$ est de densité 1 . En particulier, pour tout entier positif m, l'ensemble des entiers positifs n tels que v_{n} soit divisible par m est de densité 1.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For any positive integer n, let

$$
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\frac{u_{n}}{v_{n}}, \quad\left(u_{n}, v_{n}\right)=1, v_{n}>0
$$

The number H_{n} is called the n-th harmonic number. In 1991, Eswarathasan and Levine [2] introduced I_{p} and J_{p}. For any prime number p, let J_{p} be the set of positive integers n such that $p \mid u_{n}$ and let I_{p} be the set of positive integers n such that $p \nmid v_{n}$. Here I_{p} and J_{p} are slightly different from those in [2]. In [2], Eswarathasan and Levine considered $0 \in I_{p}$ and $0 \in J_{p}$. It is clear that $J_{p} \subseteq I_{p}$.

[^0]https://doi.org/10.1016/j.crma.2018.01.005
1631-073X/© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In 1991, Eswarathasan and Levine [2] conjectured that J_{p} is finite for any prime number p. In 1994, Boyd [1] confirmed that J_{p} is finite for $p \leq 547$, except $83,127,397$. For any set S of positive integers, let $S(x)=|S \cap[1, x]|$. In 2016, Sanna [3] proved that

$$
J_{p}(x) \leq 129 p^{\frac{2}{3}} x^{0.765}
$$

Recently, Wu and Chen [5] proved that

$$
\begin{equation*}
J_{p}(x) \leq 3 x^{\frac{2}{3}+\frac{1}{25 \log p}} \tag{1.1}
\end{equation*}
$$

For v_{n}, Shiu [4] proved that, for any primes $2<p_{1}<p_{2}<\cdots<p_{k}$, there exists n such that the least common multiple of $1,2, \cdots, n$ is divisible by $p_{1} \cdots p_{k} v_{n}$.

For any positive integer m, let I_{m} be the set of positive integers n such that $m \nmid v_{n}$. In this paper, the following results are proved.

Theorem 1.1. The set of positive integers n such that v_{n} is divisible by the least common multiple of $1,2, \cdots,\left\lfloor n^{1 / 4}\right\rfloor$ has density one.

Theorem 1.2. For any positive integer m and any positive real number x, we have

$$
I_{m}(x) \leq 4 m^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log q_{m}}},
$$

where q_{m} is the least prime factor of m.

From Theorem 1.1 or Theorem 1.2, we immediately have the following corollary.
Corollary 1.3. For any positive integer m, the set of positive integers n such that $m \mid v_{n}$ has density one.

2. Proofs

We always use p to denote a prime. Firstly, we give the following two lemmas.

Lemma 2.1. For any prime p and any positive integer k, we have

$$
I_{p^{k}}=\left\{p^{k} n_{1}+r: n_{1} \in J_{p} \cup\{0\}, 0 \leq r \leq p^{k}-1\right\} \backslash\{0\}
$$

Proof. For any integer a, let $v_{p}(a)$ be the p-adic valuation of a. For any rational number $\alpha=\frac{a}{b}$, let $v_{p}(\alpha)=v_{p}(a)-v_{p}(b)$. It is clear that $n \in I_{p^{k}}$ if and only if $v_{p}\left(H_{n}\right)>-k$.

If $n<p^{k}$, then $v_{p}\left(H_{n}\right) \geq-v_{p}([1,2, \cdots, n])>-k$. So $n \in I_{p^{k}}$. In the following, we assume that $n \geq p^{k}$. Let

$$
n=p^{k} n_{1}+r, \quad 0 \leq r \leq p^{k}-1, n_{1}, r \in \mathbb{Z} .
$$

Then $n_{1} \geq 1$. Write

$$
\begin{equation*}
H_{n}=\sum_{m=1, p^{k} \nmid m}^{n} \frac{1}{m}+\frac{1}{p^{k}} H_{n_{1}}=\frac{b}{p^{k-1} a}+\frac{u_{n_{1}}}{p^{k} v_{n_{1}}}=\frac{p b v_{n_{1}}+a u_{n_{1}}}{p^{k} a v_{n_{1}}}, \tag{2.1}
\end{equation*}
$$

where $p \nmid a$ and $\left(u_{n_{1}}, v_{n_{1}}\right)=1$.
If $n_{1} \in J_{p}$, then $p \mid u_{n_{1}}$ and $p \nmid v_{n_{1}}$. Thus $p \mid a u_{n_{1}}+p b v_{n_{1}}$ and $v_{p}\left(p^{k} a v_{n_{1}}\right)=k$. By (2.1), $v_{p}\left(H_{n}\right)>-k$. So $n \in I_{p^{k}}$.
If $n_{1} \notin J_{p}$, then $p \nmid u_{n_{1}}$. Thus $p \nmid a u_{n_{1}}+p b v_{n_{1}}$. It follows from (2.1) that $v_{p}\left(H_{n}\right) \leq-k$. So $n \notin I_{p^{k}}$.
Now we have proved that $n \in I_{p^{k}}$ if and only if $n_{1} \in J_{p} \cup\{0\}$.
This completes the proof of Lemma 2.1.

Lemma 2.2. For any prime power p^{k} and any positive number x, we have

$$
I_{p^{k}}(x) \leq 4\left(p^{k}\right)^{\frac{1}{3}-\frac{1}{25 \log p}} x^{\frac{2}{3}+\frac{1}{25 \log p}}
$$

Proof. If $x \leq p^{k}$, then

$$
I_{p^{k}}(x) \leq x<4 x^{\frac{1}{3}-\frac{1}{25 \log p}} x^{\frac{2}{3}+\frac{1}{25 \log p}} \leq 4\left(p^{k}\right)^{\frac{1}{3}-\frac{1}{25 \log p}} x^{\frac{2}{3}+\frac{1}{25 \log p}}
$$

Now we assume that $x>p^{k}$. By Lemma 2.1 and (1.1), we have

$$
\begin{aligned}
I_{p^{k}}(x) & =\left|\left\{p^{k} n_{1}+r \leq x: n_{1} \in J_{p} \cup\{0\}, 0 \leq r \leq p^{k}-1\right\}\right|-1 \\
& \leq p^{k}\left(J_{p}\left(\frac{x}{p^{k}}\right)+1\right) \leq 4\left(p^{k}\right)^{\frac{1}{3}-\frac{1}{25 \log p}} x^{\frac{2}{3}+\frac{1}{25 \log p}} .
\end{aligned}
$$

This completes the proof of Lemma 2.2.
Proof of Theorem 1.1. Let m_{n} be the least common multiple of $1,2, \cdots,\left\lfloor n^{\theta}\right\rfloor$, where $\left\lfloor n^{\theta}\right\rfloor$ denotes the greatest integer not exceeding the real number n^{θ} and $0<\theta<1$, which will be given later. Let $T=\left\{n: m_{n} \nmid v_{n}\right\}$. For any prime p and any positive number x with $p \leq x^{\theta}$, let α_{p} be the integer such that $p^{\alpha_{p}} \leq x^{\theta}<p^{\alpha_{p}+1}$.

By the definitions of m_{n} and T,

$$
T(x) \leq \sum_{p \leq x^{\theta}} I_{p^{\alpha_{p}}}(x)
$$

In view of Lemma 2.2, we have

$$
\sum_{p \leq x^{\theta}} I_{p^{\alpha_{p}}}(x) \leq 4 \sum_{p \leq x^{\theta}}\left(p^{\alpha_{p}}\right)^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log p}}:=S_{1}+S_{2}
$$

where

$$
S_{1}=4 \sum_{x^{\delta}<p \leq x^{\theta}}\left(p^{\alpha_{p}}\right)^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log p}}, \quad S_{2}=4 \sum_{p \leq x^{\delta}}\left(p^{\alpha_{p}}\right)^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log p}}
$$

and δ is a positive constant less than θ which will be given later.
If $p>x^{\delta}$, then

$$
x^{\frac{1}{25 \log p}}=e^{\frac{\log x}{25 \log p}} \leq e^{\frac{\log x}{25 \delta \log x}}=e^{\frac{1}{25 \delta}} .
$$

It follows from $p^{\alpha_{p}} \leq x^{\theta}$ and a Chebychev-type bound for $\pi(x)$ that

$$
S_{1}=4 \sum_{x^{\delta}<p \leq x^{\theta}}\left(p^{\alpha_{p}}\right)^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log p}} \leq 4 e^{\frac{1}{25 \delta}} \sum_{x^{\delta}<p \leq x^{\theta}} x^{\frac{\theta}{3}+\frac{2}{3}} \ll \frac{1}{\log x} x^{\frac{4 \theta}{3}+\frac{2}{3}}
$$

For S_{2}, by $p^{\alpha_{p}} \leq x^{\theta}$ and a Chebychev-type bound for $\pi(x)$, we have

$$
\begin{aligned}
S_{2} & =4 \sum_{p \leq x^{\delta}}\left(p^{\alpha_{p}}\right)^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log p}} \\
& \leq 4 \sum_{p \leq x^{\delta}} x^{\frac{\theta}{3}+\frac{2}{3}+\frac{1}{25 \log 2}} \\
& \ll \frac{1}{\log x} x^{\delta+\frac{\theta}{3}+\frac{2}{3}+\frac{1}{25 \log 2}} .
\end{aligned}
$$

We choose $\theta=\frac{1}{4}$ and $\delta=0.1$. Then

$$
S_{1} \ll \frac{x}{\log x}, \quad S_{2} \ll x^{0.91}
$$

Therefore,

$$
T(x) \leq \sum_{p \leq x^{\theta}} I_{p^{\alpha_{p}}}(x)=S_{1}+S_{2} \ll \frac{x}{\log x}
$$

It follows that the set of positive integers n such that v_{n} is divisible by the least common multiple of $1,2, \cdots,\left\lfloor n^{1 / 4}\right\rfloor$ has density one. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. We use induction on m to prove Theorem 1.2.
By Lemma 2.2, Theorem 1.2 is true for $m=2$. Suppose that Theorem 1.2 is true for all integers less than $m(m>2)$.
If $x \leq m$, then

$$
I_{m}(x) \leq x<4 x^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log q_{m}}} \leq 4 m^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log q_{m}}}
$$

In the following, we always assume that $x>m$.
If m is a prime power, then, by Lemma 2.2, Theorem 1.2 is true. Now we assume that m is not a prime power. Write m as $m=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ with

$$
1<p_{1}^{\alpha_{1}}<\cdots<p_{r}^{\alpha_{r}}
$$

where p_{1}, \cdots, p_{r} are distinct primes, $r \geq 2$, and let $p_{1}^{\alpha_{1}}=p^{\alpha}$ and $m_{1}=m / p^{\alpha}$. Then $m_{1}>p^{\alpha}$. It is clear that $I_{m}=I_{m_{1}} \cup\left(I_{p^{\alpha}} \backslash\right.$ $I_{m_{1}}$). By Lemma 2.1 and the definition of $p^{\alpha},\left\{1,2, \cdots, p^{\alpha}-1\right\} \subseteq I_{m_{1}}$. Hence

$$
I_{m}(x)=I_{m_{1}}(x)+\left(I_{p^{\alpha}} \backslash I_{m_{1}}\right)(x) \leq I_{m_{1}}(x)+I_{p^{\alpha}}(x)-\left(p^{\alpha}-1\right) .
$$

By the inductive hypothesis, we have

$$
I_{m_{1}}(x) \leq 4 m_{1}^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log q_{m_{1}}}} \leq 4 m_{1}^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log q_{m}}}
$$

It follows that

$$
\begin{equation*}
I_{m}(x) \leq 4 m_{1}^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log q_{m}}}+I_{p^{\alpha}}(x)-\left(p^{\alpha}-1\right) \tag{2.2}
\end{equation*}
$$

We divide into the following three cases:
Case 1: $p^{\alpha} \geq 8$. Then $m_{1}>p^{\alpha} \geq 8$. By Lemma 2.2, we have

$$
I_{p^{\alpha}}(x) \leq 4\left(p^{\alpha}\right)^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log q_{m}}}
$$

It follows from (2.2) that

$$
\begin{aligned}
I_{m}(x) & \leq 4 m_{1}^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log q_{m}}}+4\left(p^{\alpha}\right)^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log q_{m}}} \\
& =4\left(\frac{1}{\left(p^{\alpha}\right)^{\frac{1}{3}}}+\frac{1}{m_{1}^{\frac{1}{3}}}\right) m^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log q_{m}}} \\
& \leq 4 m^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log q_{m}}}
\end{aligned}
$$

Case 2: $p^{\alpha}<8, p=2$. Then $p^{\alpha}=2$ or 4 and $x>m \geq 2 \times 3=6$. By Lemma 2.1 and $J_{2}=\emptyset$, we have $I_{4}=\{1,2,3\}$ and $I_{2}=\{1\}$. It is clear that $I_{p^{\alpha}}(x)-\left(p^{\alpha}-1\right)=0$. It follows from (2.2) that

$$
I_{m}(x) \leq 4 m_{1}^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log q_{m}}}<4 m^{\frac{1}{3}} x^{\frac{2}{3}+\frac{1}{25 \log q_{m}}}
$$

Case 3: $p^{\alpha}<8, p \neq 2$. Then $\alpha=1$ and $p=3$, 5 or 7. In addition, $x>m \geq 3 \times 4=12$. Noting that $m^{\frac{1}{3}}-m_{1}^{\frac{1}{3}}=m_{1}^{\frac{1}{3}}\left(p^{\frac{\alpha}{3}}-\right.$ $1) \geq 4^{\frac{1}{3}}\left(3^{\frac{1}{3}}-1\right)>\frac{1}{2}$, by (2.2), it is enough to prove that $I_{p}(x)-(p-1) \leq 2 x^{\frac{2}{3}}$. By Lemma 2.1, we have

$$
I_{p}=\left\{p n_{1}+r: n_{1} \in J_{p} \cup\{0\}, 0 \leq r \leq p-1\right\} \backslash\{0\}
$$

By [2], $J_{3}=\{2,7,22\}, J_{5}=\{4,20,24\}$ and

$$
J_{7}=\{6,42,48,295,299,337,341,2096,2390,14675,16731,16735,102728\} .
$$

If $x \geq 7^{3}$, then $I_{p}(x)-(p-1) \leq 91 \leq 2 x^{\frac{2}{3}}$. If $35<x<7^{3}$, then $I_{p}(x)-(p-1) \leq 21 \leq 2 x^{\frac{2}{3}}$. If $12<x \leq 35$, then $I_{p}(x)-(p-$ 1) $\leq 6 \leq 2 x^{\frac{2}{3}}$.

This completes the proof of Theorem 1.2.

Acknowledgements

We would like to thank the referee for his/her comments.

References

[1] D.W. Boyd, A p-adic study of the partial sums of the harmonic series, Exp. Math. 3 (4) (1994) 287-302.
[2] A. Eswarathasan, E. Levine, p-integral harmonic sums, Discrete Math. 91 (3) (1991) 249-257.
[3] C. Sanna, On the p-adic valuation of harmonic numbers, J. Number Theory 166 (2016) 41-46.
[4] P. Shiu, The denominators of harmonic numbers, arXiv:1607.02863v1.
[5] B.-L. Wu, Y.-G. Chen, On certain properties of harmonic numbers, J. Number Theory 175 (2017) 66-86.

[^0]: th This work was supported by the National Natural Science Foundation of China (No. 11771211) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

 E-mail addresses: $390712592 @ q q . c o m ~(B .-L . W u), ~ y g c h e n @ n j n u . e d u . c n ~(Y .-G . ~ C h e n) . ~$

