

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

A characterization of b_e -critical trees

Une caractérisation des arbres b_e-critiques

Amel Bendali-Braham^a, Noureddine Ikhlef-Eschouf^b, Mostafa Blidia^c

^a Laboratory of Mechanics, Physics and Mathematical Modeling, Faculty of Sciences, University of Médéa, Algeria

^b Department of Mathematics and Computer Science, Faculty of Sciences, University of Médéa, Algeria

^c Laboratory LAMDA-RO, Department of Mathematics, University of Blida 1, B.P. 270, Blida, Algeria

ARTICLE INFO

Article history: Received 20 November 2016 Accepted after revision 15 January 2018

Presented by Vladimir Nikiforov

ABSTRACT

The *b*-chromatic number of a graph *G* is the largest integer *k* such that *G* admits a proper coloring with *k* colors for which each color class contains a vertex that has at least one neighbor in all the other k - 1 color classes. A graph *G* is called *b_e*-*critical* if the contraction of any edge *e* of *G* decreases the *b*-chromatic number of *G*. The purpose of this paper is the characterization of all *b_e*-*critical* trees.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Le nombre *b*-chromatique d'un graphe *G* est le plus grand entier *k* tel que *G* admette une coloration propre avec *k* couleurs, pour laquelle toute classe de couleur contient un sommet qui a au moins un voisin dans toutes les autres k - 1 classes de couleur. Un graphe *G* est appelé b_e -critique si la contraction de toute arête *e* de *G* fait diminuer le nombre *b*-chromatique de *G*. Le but de cet article est la caractérisation de tous les arbres b_e -critiques.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

All graphs in this paper are finite and simple. For the terminology and the notations not defined here we refer to [2]. Let G = (V(G), E(G)) be a graph. For a non-empty set $A \subseteq V(G)$, we denote by G[A] the subgraph of G induced by A, and by $G \setminus A$ the subgraph induced by $V(G) \setminus A$. If $A = \{v\}$ we may write $G \setminus v$ instead of $G \setminus \{v\}$. For a vertex v of G, the open neighborhood of v is $N_G(v) = \{u \in V(G) : uv \in E(G)\}$ and the degree of v, denoted by $d_G(v)$, is $|N_G(v)|$. By $\Delta(G)$ and $d_G(u, v)$, we denote the maximum degree of the graph G and the distance between u and v in G, respectively. A tree is a connected graph without induced cycle. A rooted tree is a tree with a special vertex, called the root of the tree. A vertex of degree one is called a *leaf*, and its neighbor is called a *support* vertex. An edge incident with a leaf is called a *pendant edge*.

https://doi.org/10.1016/j.crma.2018.01.006

E-mail addresses: bendali-braham@hotmail.fr (A. Bendali-Braham), nour_echouf@yahoo.fr (N. Ikhlef-Eschouf), m_blidia@yahoo.fr (M. Blidia).

¹⁶³¹⁻⁰⁷³X/© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

A tree *T* is a *double star* $S_{p,q}$ ($p \ge q \ge 1$) if it contains exactly two vertices *x*, *y* (called central vertices) that are not leaves such that $d_T(x) = p + 1$ and $d_T(y) = q + 1$. We let P_n and $K_{1,n-1}$ denote the *path* and *star* on *n* vertices, respectively.

A proper coloring of *G* is an assignment of colors (represented by natural numbers) to the vertices of *G* such that any two adjacent vertices have different colors. The minimum number $\chi(G)$ for which there exists a proper coloring (with $\chi(G)$ colors) is called the *chromatic number* of a graph *G*. A *b*-coloring of a graph by *k* colors is a proper coloring with the property that each color class contains a vertex that has at least one neighbor in all the other k - 1 color classes. We call any such vertex a *b*-vertex. The *b*-chromatic number b(G) of a graph *G* is the largest number *k* such that *G* has a *b*-coloring with *k* colors. This parameter has been defined by Irving and Manlove [7,10]. It is obvious that $\chi(G) \le b(G) \le \Delta(G) + 1$. For arbitrary graphs, the problem of determining b(G) is NP-complete [7,10], even when restricted to bipartite graphs [9]. For the special case of trees, Irving and Manlove [7,10] presented a linear time algorithm. A recent survey on the *b*-coloring in graphs can be found in [8].

It was observed in [7,10] that if a graph *G* admits a *b*-coloring with ℓ colors, *G* must have at least ℓ vertices with degree at least $\ell - 1$. The *m*-degree of a graph *G*, denoted *m*(*G*), is the largest integer ℓ such that *G* has ℓ vertices of degree at least $\ell - 1$. Clearly, $m(G) \le \Delta(G) + 1$. Irving and Manlove [7,10] show that this parameter bounds the *b*-chromatic number. So, every graph satisfies $b(G) \le m(G)$. A vertex of *G* with degree at least m(G) - 1 is called a *dense vertex*. A *pivoted tree* is a tree *T* in which one vertex *v* of degree less than m(G) - 1 is distinguished and called the *pivot*.

Definition 1. [7,10] A tree *T* is pivoted if *T* has exactly m(T) dense vertices and *T* contains a vertex *v* such that *v* is not dense and every dense vertex is adjacent either to *v* or to a neighbor of *v* of degree m(T) - 1.

The following observation is straightforward.

Observation 2. Every non-dense vertex of a pivoted tree T, except the pivot, may be adjacent to at most one dense vertex of T.

D.F. Manlove and R.W. Iring [7,10] have proved that, for trees, the *b*-chromatic number can be computed as follows.

Theorem 3. [7] If *T* is a pivoted tree, then b(T) = m(T) - 1; else, b(T) = m(T).

The concept of critical graphs with respect to the *b*-chromatic number has received more attention in recent years. The graphs for which the *b*-chromatic number decreases on the deletion of any edge were first studied in [4,6]. Further, a characterization of all such graphs is given in [1]. On the other hand, the authors of [3] characterized the trees whose *b*-chromatic number decreases when any vertex is removed. The graphs for which the *b*-chromatic number increases upon the removal of any edge (or vertex) were explored in [5].

In this paper, we study those graphs where the *b*-chromatic number decreases on the contraction of any edge. Before stating our results, we need some definitions and notation. For a given graph *G*, the *contraction* of an edge e = uv means removing *u* and *v* from the vertex-set *V*(*G*) and replacing it by a new vertex *z* and attaching *z* to all vertices that are adjacent to *u* or *v* in *G*. We denote by *G*_e the graph obtained from *G* by contracting the edge *e*.

Definition 4. A graph is called *b_e*-critical if the *b*-chromatic number decreases upon the contraction of any edge.

More precisely, we say that a graph G is b_e -critical if $b(G_e) < b(G)$ holds for every edge e in G. The aim of the paper is to characterize all b_e -critical trees.

2. Preliminary results

This section presents some results that will be useful in the characterization of b_e -critical trees.

Observation 5. Let e be an edge of a b_e -critical tree T and let T_e be the tree obtained from T by contracting e. Then,

(i) $m(T_e) \le m(T)$, with equality if e is a non-pendant edge such that one of its endpoints is a non-dense vertex. (ii) If T_e is not a pivoted tree, then $m(T_e) \le m(T) - 1$.

Proof. (*i*) If the first part is not true, then Theorem 3 yields $b(T_e) \ge m(T_e) - 1 \ge m(T) \ge b(T)$, which is a contradiction. The second part follows immediately because contracting such edge does not decrease the *m*-degree of *T*. (*ii*) Using again Theorem 3, we get $m(T_e) = b(T_e) \le b(T) - 1 = m(T) - 1$. \Box

For the remainder of this paper, we denote by *D* and *L*, respectively, the set of dense vertices and the set of leaves in *T*. Denote also by D_e and L_e , respectively, the set of dense vertices and the set of leaves in T_e .

Theorem 6. Let T = (V, E) be a b_e -critical tree, B be the set of all b-vertices of a b-coloring c of T with b(T) colors, S be the set of all support vertices of T and D be the set of dense vertices in T. Then:

- (*i*) *T* is not a pivoted tree;
- (ii) $S \subseteq B$. Moreover, there are no two neighbors of a support vertex s with the same color such that one of them is a leaf;
- (iii) there are no two *b*-vertices of the same color. So, |B| = b(T);
- (*iv*) $b(T) = \Delta(T) + 1$;
- (v) D = B.

Proof. Set b(T) = k. When k = 2, it is easy to see that $T = P_2$ and the theorem holds. So, we can assume that $k \ge 3$. Let e be any edge of T and let T_e denote the tree obtained from T by contracting the edge e in a new vertex v_e

(*i*) Suppose on the contrary that *T* is a pivoted tree with pivot *v*. So, Theorem 3 gives b(T) = m(T) - 1. Let *u* be a dense vertex adjacent to *v*. Pick e = uv. Observation 5 (*i*) yields $m(T_e) = m(T)$. Therefore, Theorem 3 implies that $b(T_e) \ge m(T_e) - 1 \ge m(T) - 1 = b(T)$, which is a contradiction.

(*ii*) If any part of (*ii*) does not hold, then contracting of some pendant edge incident to a support vertex s does not decrease the b-chromatic number.

(*iii*) Let x and y be two b-vertices of c such that c(x) = c(y). Neither x nor y is a support vertex, because if not, contracting of some pendant edge incident to x or y does not decrease the b-chromatic number. Let us root T at vertex x. Let $u_1, u_2, ..., u_h$ be the neighbors of x. Since x is a b-vertex $h \ge k - 1$. For each $i \in \{1, 2, ..., h\}$, let T_i be the component of $T \setminus \{x\}$ that contains u_i . As x is not a support vertex, T_i has a support z_i for each $i \in \{1, 2, ..., h\}$. The first part of (*ii*) implies that z_i is a b-vertex of c. Thereby, z_i is the only b-vertex of c of color $c(z_i)$ in T (in particular, $c(z_i) \ne c(x)$), otherwise contracting of some pendant edge incident to z_i does not decrease the b-chromatic number. Therefore T contains exactly k - 1 support b-vertices $z_1, z_2, ..., z_h$ of distinct colors. So, h = k - 1 and for each $i \in \{1, 2, ..., k - 1\}$, T_i contains exactly one support vertex z_i . Let u be any vertex in $V(T) \setminus \{x, z_1, z_2, ..., z_{k-1}\}$. Assume that $u \in T_i$ for some integer i in $\{1, 2, ..., k - 1\}$. The degree of u is at most 2, because if not, T_i has two support vertices of T, which is a contradiction. So, $d_T(u) \le 2$; in particular, we have also $d_T(y) \le 2$. Consequently, k = 3. This means that $d_T(u) = d_T(y) = d_T(x) = 2$. Also, by the second part of (*ii*), we have $d_T(z_1) = d_T(z_2) = 2$. Hence, T is a path. Since T contains at least 4 b-vertices such that two of them (x and y) are non-support vertices of the same color, it follows that T is a path of at least 7 vertices. But in this case, T is not b_e -critical, which is a contradiction.

(*iv*) The upper bound trivially holds for any graph, so let us prove the lower bound. To do this, we claim that each vertex $x \in V(T)$ with $d_T(x) \ge 3$ satisfies the following,

if $d_T(x) \ge 3$, then every two neighbors of x have distinct colors.

Suppose, on the contrary, that *x* has two neighbors of the same color. Let $u_1, u_2, ..., u_p$ $(p \ge 3)$ be the neighbors of *x*. Assume, without loss of generality, that u_1 and u_2 have the same color *t*, and that u_3 has color ℓ . Let us root *T* at *x*. Let T_i be the component of $T \setminus x$ that contains u_i for each $i \in \{1, ..., p\}$. So, there are two cases to consider; in such cases, our goal is to modify the *b*-coloring *c* and extend it to a *b*-coloring of T_e with *k* colors. To do this, we first interchange two colors of *c* in some of components of *T*. This might make *c* improper coloring. In this case, if two adjacent vertices *x* and *y* have the same color, the edge *xy* is called a conflicting edge.

Case 1: *x* is not a *b*-vertex.

We distinguish between two subcases.

Case 1.1: $\ell = t$.

Then one of T_1, T_2, T_3 , say T_1 has no *b*-vertex of colors c(x) and *t*. In this case, we interchange colors *t* and c(x) in the component T_1 , all other vertices of *T* keep their color. We obtain an improper coloring c' of *T* with *k* colors such that $e = u_1 x$ is the unique conflicting edge (since u_1 and *x* are colored the same). Let c_e be the coloring c' restricted to $T \setminus \{u_1, x\}$. Since $T \setminus \{u_1, x\}$ is an induced subgraph of T_e , c_e can be extended to a proper coloring of T_e by assigning color c(x) to v_e . It is easy to check that c_e yields a *b*-coloring of T_e with *k* colors, a contradiction. **Case 1.2**: $\ell \neq t$.

If one of T_1 , T_2 has no *b*-vertex of colors c(x) and t, then we have a contradiction as in Case 1.1. So, assume that T_1 contains the *b*-vertex of color c(x). Thereby, the *b*-vertex of color t belongs to T_2 . If T_3 has no *b*-vertex of color ℓ , then we interchange colors ℓ and c(x) in T_3 ; otherwise we interchange colors ℓ and c(x) in $T_1 \cup T_3$. In both cases, we obtain an improper coloring of T with k colors such u_3 and x have the same color c(x). Proceeding as in Case 1.1 above, taking $e = u_3 x$, we get again a contradiction.

Case 2: *x* is a *b*-vertex.

Note that, by the second part of (*ii*), u_1 and u_2 are not leaves in *T*. Therefore, by (*iii*), one of T_1 or T_2 , say T_1 , has no *b*-vertex of colors *t* and c(x). In this case, we can interchange colors *t* and c(x) in T_1 and all other vertices of *T* keep their color. We obtain an improper coloring of *T* with *k* colors such that u_1 and *x* are colored the same. By taking $e = u_1 x$ and proceeding as in Case 1.1, we obtain a contradiction.

In each case, we have a contradiction; thus Claim (1) is proved. As a consequence, each vertex x in T has at most k - 1 neighbors, because if not, x has two neighbors of the same color with $d_T(x) \ge k \ge 3$, which contradicts Claim (1). Hence, $d_T(x) \le k - 1$ for every vertex x in T, and in particular, we have $\Delta(G) \le k - 1$.

(*v*) It is obvious that $B \subset D$. Let $x \in D$. As, by (*i*) and (*vi*), $m(T) = \Delta(T) + 1$, it follows that $d_T(x) = \Delta(T) = k - 1$. If k = 3, then $T = P_5$ and then (*v*) holds. So, assume that $d_T(x) = k - 1 \ge 3$. Therefore, by Claim (1), all neighbors of x have distinct colors. This means that $x \in B$. Thus D = B. This concludes the proof. \Box

In the rest of this section, we denote by $\overline{D} = V(T) \setminus D$, the set of non-dense vertices in *T*; and by $\overline{D}_e = V(T_e) \setminus D_e$ the set of non-dense vertices in T_e .

We next proceed to characterize all b_e -critical trees. For this purpose, we prove the following lemmas.

Lemma 7. Let T be a b_e -critical tree and $v \in \overline{D}$. Then v is not a support vertex and has at least one neighbor in D.

Proof. Consider a *b*-coloring *c* of *T* with b(T) colors. Observe first that if *v* is a leaf, then *v* is adjacent to a support vertex which belongs to *D* by Theorem 6 (*ii*) and (*v*). Hence, we can suppose that *v* is not a leaf. Also, Theorem 6 (*v*) implies that *v* is not a *b*-vertex of *c*. So, *v* is not a support vertex in *T* by Theorem 6 (*ii*). Suppose that *v* has no neighbor in *D*. We root *T* at vertex *v*. Let v_1 and v_2 two neighbors of *v*, and let T_i (*i* = 1, 2) be the component of $T \setminus v$ that contains v_i . Since *v* is not a support vertex, $d_T(v_i) \ge 2$. This means that each component T_i has at least one support vertex z_i . Then, by Theorem 6 (*ii*) and (*v*), z_i is a dense vertex in *T*. Let T_e be the tree obtained from *T* by contracting the edge $e = vv_1$ in a new vertex v_e . Clearly, z_i remains a support vertex in T_e . Thus, by Observation 5 (*i*) and (*ii*), we have $m(T_e) = m(T)$, and T_e is a pivoted tree. Let *w* be the unique pivot of T_e . Then $w = v_e$ or v_2 , for otherwise *w* would be a pivot of *T*, which contradicts Theorem 6 (*i*). In this case, one of z_1 , z_2 is not adjacent to *w* or to a dense vertex adjacent to *w*, this contradicts Definition 1. Thus T_e is not a pivoted tree, a contradiction again. \Box

Lemma 8. Let *T* be a b_e -critical tree with $b(T) = k \ge 3$. Then $\overline{D} \setminus L$ is either an empty-set, or has exactly two non-support vertices, each of degree 2, and at distance at most 2, and $k \ge 4$.

Proof. Consider a *b*-coloring *c* of *T* with *k* colors. Suppose first that $\overline{D} \setminus L$ is an empty set. Then each vertex of V(T) is either a dense vertex or a leaf. It is clear that the contraction of any edge of *T* decreases the *m*-degree of *T*, and so its *b*-chromatic number. Hence such tree exists. Assume now that $\overline{D} \setminus L$ is a non-empty set. If k = 3, Theorem 6 (*iv*) implies that each vertex in *D* has degree 2. Therefore, each vertex in $D \cup (\overline{D} \setminus L)$ is a dense vertex, which is a contradiction. Thus $k \ge 4$. Let $v_1 \in \overline{D} \setminus L$. In view of Lemma 7, v_1 is not a support vertex, and has a neighbor $u \in D$. Let *e* be any edge of *T* and let T_e be the tree obtained from *T* by contracting *e* in a new vertex v_e . Pick $e = uv_1$. Obviously, $v_e \in D_e$ and $L_e = L$. Since *e* is not a pendant edge in *T*, Observation 5 (*i*) and (*ii*) imply that

$$m(T_e) = m(T)$$
 and T_e is a pivoted tree.

As $v_e \in D_e$ and each dense vertex in T different from u remains a dense vertex in T_e , it follows that $D_e = (D \cup \{v_e\}) \setminus u$ and $\overline{D}_e = \overline{D} \setminus v_1$. If v_1 is the unique vertex of $\overline{D} \setminus L$, then $\overline{D}_e \setminus L_e = \emptyset$ (each non-dense vertex in T_e is a leaf). This implies, by Definition 1, that T_e is not a pivoted tree, which contradicts (2). Hence,

$$\left|\overline{D}\setminus L\right| \ge 2.$$
 (3)

Let $v_2 \neq v_1$ be a vertex of $\overline{D} \setminus L$. Then $v_2 \in \overline{D_e} \setminus L_e$. Assume, without loss of generality, that v_2 is the pivot of T_e . Then v_e is adjacent to v_2 or to a dense vertex adjacent to v_2 . Denote by D_1 the set of dense vertices in T_e that are adjacent to v_2 , and by D_2 the remaining dense vertices in T_e . So $D_1 \cup D_2 = D_e$. As T_e is a pivoted tree, Definition 1 implies that D_i (i = 1, 2) is a stable set. Also, each vertex in D_2 is adjacent to exactly one vertex in D_1 and not to v_2 . Suppose that $|\overline{D} \setminus L| \geq 3$. Let $v_3 \neq v_1, v_2$ be a vertex of $\overline{D} \setminus L$. So $v_3 \in \overline{D_e} \setminus L_e$. By Lemma 7 and Observation 2, v_3 has exactly one neighbor, say x_1 in D, and so in D_e . As, v_3 is not a leaf in T (and in T_e), it has a neighbor v_4 in $\overline{D_e} \setminus L_e$. Then again, Lemma 7 and Observation 2 imply that v_4 has exactly one neighbor, say x_2 in D and so in D_e . Clearly, $x_2 \neq x_1$. Vertices x_1, x_2 cannot be both in D_1 , for otherwise v_3, v_4, x_2, v_2, x_1 induce a cycle of length 5 in T_e . Likewise, x_1, x_2 cannot both be in D_2 . Indeed, if x_1 and x_2 have a common neighbor y in D_1 , then v_3, v_4, x_2, y, x_1 induce a cycle of length 5 in T_e . If x_i (i = 1, 2) belongs to D_i , then x_1, v_3, v_4, v_2 together with x_2 and its neighbor in D_1 induce a cycle of length 6 in T_e , a contradiction. Thus $|\overline{D} \setminus L| \leq 2$. This means, by (3), that $\overline{D} \setminus L$ contains exactly two non-support vertices v_1, v_2 .

Now, we shall show that both v_1 and v_2 have degree 2. Since v_1 is not a leaf in T (and in T_e), it has a neighbor $u' \neq u$. Then u' must be adjacent to v_e in T_e . Suppose that $u' \in D_e \setminus v_e$. In this case, v_e and u' cannot both be in D_i (i = 1, 2), because it is a stable set. This implies that either $u' = v_2$ or exactly one of v_e , u', say u' belongs to D_1 . In each case, v_1 can not has an other neighbor, which is in D, because $|\overline{D} \setminus L| = 2$, for otherwise, let $u'' \in D$ be the third neighbor of v_1 . In the first one, we have $v_e \in D_1$ and $u'' \in D_2$, hence v_e is adjacent to the pivot and to the dense vertex u'', but $d_{T_e}(v_e) \ge m(T_e)$, which contradicts Definition 1. In the last one, $v_e \in D_2$, as D_i is a stable set (for i = 1, 2) $u'' \in D_1$, so v_e has two neighbors in D_1 , a contradiction with the fact that each vertex in D_2 is adjacent to exactly one vertex in D_1 . Therefore, v_1 has degree 2 in T. Similarly, v_2 has degree equal to 2 in T. Proceeding similarly as above, we conclude that $d_T(v_2) = 2$.

Fig. 3. The tree T_0^4 .

Finally, it remains to prove that $d_T(v_1, v_2) \le 2$. If this is not true, then v_e (dense vertex in T_e) would not be adjacent to the pivot v_2 of T_e , or to a dense vertex adjacent to v_2 , which contradicts (2). Hence, $d_T(v_1, v_2) \le 2$.

Now we are ready to characterize all b_{ρ} -critical trees.

3. Characterization of b_e-critical trees

The main result of this section is a characterization of trees for which contracting any edge decreases its b-chromatic number. For this purpose, we define two families of trees \mathcal{T}_1^k , \mathcal{T}_2^k and a special tree \mathcal{T}_0^k as follows. Let k be a positive integer. A tree *T* is in the family \mathcal{T}_1^k (with $k \ge 3$) if it has *k* vertices each of degree k - 1, and the other vertices are leaves. A tree *T* is in the family \mathcal{T}_2^k (with $k \ge 4$) if it can be obtained from a double star $S_{k-2,k-2}$ with central vertices w_1 and w_2 and subdividing the edge w_1w_2 twice by inserting two new vertices z_1 and z_2 (i.e. adding two new vertices z_1, z_2 and edges w_1z_1 , z_1z_2 and z_2w_2 in $G - w_1w_2$) and attaching k - 2 new vertices to each of the k - 2 leaves of $S_{k-2,k-2}$. We define T_0^k (with $k \ge 4$) to be the tree obtained from k - 1 disjoint stars with central vertices $w_1, w_2, ..., w_{k-1}$, each of order k - 1, by adding a new vertex z attached to w_i for each $i \in \{1, ..., k-1\}$ and for i = 1, 2 subdividing the edge zw_i once by inserting one vertex z_i .

Note that each tree *T* in $\{\mathcal{T}_1^k, k \ge 3\} \cup \{\mathcal{T}_2^k \cup \{\mathcal{T}_0^k\}, k \ge 4\}$ has exactly *k* vertices, each of degree k - 1, but no vertex of *T* is a pivot. This means that |D| = k and *T* is not pivoted. So, by Theorem 3, we have b(T) = k. Put $\mathcal{T} = \{\mathcal{T}_1^k, k \ge 3\} \cup \{\mathcal{T}_2^k \cup \{\mathcal{T}_0^k\}, k \ge 4\}$ with k = b(T). Notice that the only tree which belongs to \mathcal{T} with k = 3 is P_5 .

In Figs. 1–3, we give examples of trees belonging to $\mathcal{T}_1^4, \mathcal{T}_2^4$, or $\{T_0^4\}$.

Theorem 9. A graph T is b_e -critical if and only if T is a P_2 or $T \in \mathcal{T}$.

Proof. To establish the theorem, we will first prove the sufficiency condition. Let T be a member of \mathcal{T} , with the same notation as above. It is obvious that P_2 is b_e -critical, so we can assume that $T \neq P_2$. By the remark before the Theorem, $b(T) = m(T) = k \ge 3$. Let T_e be the tree obtained from T by contracting the edge e of T. If $T \in \mathcal{T}_1^k$, then contracting e decreases the *m*-degree of *T* by one. Therefore $m(T_e) = k - 1$, implying that $b(T_e) \le k - 1 < k = b(T)$. Assume now that $k \ge 4$ and $T \in \mathcal{T}_2^k \cup \{T_0^k\}$. If one of the endpoints of *e* is z_1 or z_2 , then the contraction of *e* does not decrease the *m*-degree of T, and T_e is a pivoted tree. Then $m(T_e) = k$, which means by Theorem 3 that $b(T_e) = k - 1 < k = b(T)$. If the endpoints of e are dense vertices or one of them is a leaf, then the contraction of e decreases the m-degree of T by one. Therefore $m(T_e) = k - 1$ and $b(T_e) \le k - 1 < k = b(T)$. Hence T is a b_e -critical tree.

To prove the necessity, let *T* be a b_e -critical tree with k = b(G). Consider a *b*-coloring *c* of *T* with *k* colors. Let *B*, *D* denote, respectively, the set of all *b*-vertices of *c* and the set of all dense vertices of *T*. According to clauses (*iii*) and (*iv*) of Theorem 6, we have $|B| = k = \Delta(T) + 1$, and each vertex of *B* has degree k - 1. If $k \in \{2, 3\}$, then $\Delta(T) \in \{1, 2\}$, and it is easy to verify that $T = P_2$ or $T = P_5 \in \mathcal{T}_1^3$. So, assume that $k \ge 4$. Clause (*v*) of Theorem 6 yields D = B. Let $D = \{x_1, x_2, ..., x_k\}$ and $\overline{D} = V \setminus D$. In view of Lemma 8, either $\overline{D} \setminus L$ is empty, which means that each vertex of *T* is either a leaf or has degree equal to k - 1, thus $T \in \mathcal{T}_1^k$; or $\overline{D} \setminus L$ has two non-support vertices v_1 and v_2 , both of degree 2. In this case, $V = D \cup L \cup \{v_1, v_2\}$, and by Lemma 8, we have two cases to consider. **Case 1:** $d_T(v_1, v_2) = 2$.

As v_1 and v_2 are non-support vertices, their neighbors are in *D*. Therefore, since $d_T(v_1, v_2) = 2$, we can assume, without loss of generality, that $N_T(v_1) \cap N_T(v_2) = \{x_3\}$ and for $i = 1, 2, v_i \in N_T(x_i)$. We claim that, for each $t \in \{4, ..., k\}$, x_t has no neighbor in $\{x_1, x_2\}$. Suppose, on the contrary, that x_t is adjacent to x_1 . Pick $e = v_1x_3$. Let T_e be the tree obtained from *T* by contracting the edge *e*. Observe that each vertex in T_e , except v_2 , is either a leaf or a dense vertex. Since *e* is not a pendant edge in *T*, clauses (*i*) and (*ii*) of Observation 5 imply that $m(T_e) = m(T)$ and T_e is a pivoted tree with pivot v_2 (since v_2 is the unique non-dense vertex that is not a leaf in T_e). But, in this case, x_t is not adjacent to v_2 or to a dense vertex adjacent to v_2 , leading to contradicting the fact that T_e is a pivoted tree. Consequently, x_1 is not adjacent to x_t in T_e , and thus in *T*. Likewise, x_2 is not adjacent to x_t in *T*. In this case, Definition 1 implies that x_t must be adjacent to x_3 in T_e , and thus in *T*. Hence *T* is isomorphic to T_0^k .

Case 2: $d_T(v_1, v_2) = 1$.

For i = 1, 2, let x_i be the unique dense vertex adjacent to v_i in T. Pick $e = v_1 v_2$, and let T_e be the tree obtained from T by contracting edge e in a new vertex v_e . Using a similar argument as in Case 1, we conclude that T_e is a pivoted tree with pivot v_e (since each other vertex in T_e is either a dense vertex or a leaf). Therefore, each dense vertex in T_e (and so in T) different from x_1 and x_2 is either adjacent to x_1 or to x_2 . So $T \in T_2^k$. \Box

References

- A. Bendali-Braham, N. Ikhlef-Eschouf, M. Blidia, A characterization of edge b-critical graphs, Discrete Appl. Math. (2018), https://doi.org/10.1016/j.dam. 2017.12.003.
- [2] C. Berge, Graphs, North Holland, 1985.
- [3] M. Blidia, N. Ikhlef Eschouf, F. Maffray, On vertex b-critical trees, Opusc. Math. 33 (1) (2013) 19–28.
- [4] N. Ikhlef Eschouf, Characterization of some b-chromatic edge b-critical graphs, Australas. J. Comb. 47 (2010) 21-35.
- [5] N. Ikhlef Eschouf, M. Blidia, On *b*-vertex and *b*-edge critical graphs, Opusc. Math. 35 (2) (2015) 171–180.
- [6] N. Ikhlef Eschouf, M. Blidia, F. Maffray, On edge b-critical graphs, Discrete Appl. Math. 180 (2015) 176-180.
- [7] R.W. Iring, D.F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math. 91 (1999) 127-141.
- [8] M. Jakovac, I. Peterin, The *b*-chromatic number and related topics—a survey, Discrete Appl. Math. 235 (2018) 184–201.
- [9] J. Kratochvíl, Z. Tuza, M. Voigt, On the b-chromatic number of graphs, in: Lecture Notes in Comput. Sci., vol. 2573, 2002, pp. 310–320.
- [10] D.F. Manlove, Minimaximal and Maximinimal Optimization Problems: a Partial Order-Based Approach, PhD thesis, technical report tr-1998-27, Department of Computing Science, University of Glasgow, UK, 1998.