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The b-chromatic number of a graph G is the largest integer k such that G admits a proper 
coloring with k colors for which each color class contains a vertex that has at least one 
neighbor in all the other k −1 color classes. A graph G is called be-critical if the contraction 
of any edge e of G decreases the b-chromatic number of G . The purpose of this paper is 
the characterization of all be-critical trees.
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r é s u m é

Le nombre b-chromatique d’un graphe G est le plus grand entier k tel que G admette 
une coloration propre avec k couleurs, pour laquelle toute classe de couleur contient un 
sommet qui a au moins un voisin dans toutes les autres k − 1 classes de couleur. Un 
graphe G est appelé be-critique si la contraction de toute arête e de G fait diminuer le 
nombre b-chromatique de G . Le but de cet article est la caractérisation de tous les arbres 
be-critiques.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

All graphs in this paper are finite and simple. For the terminology and the notations not defined here we refer to [2]. 
Let G = (V (G), E(G)) be a graph. For a non-empty set A ⊆ V (G), we denote by G [A] the subgraph of G induced by A, and 
by G�A the subgraph induced by V (G)�A. If A = {v} we may write G�v instead of G� {v}. For a vertex v of G , the 
open neighborhood of v is NG (v) = {u ∈ V (G) : uv ∈ E(G)} and the degree of v , denoted by dG (v), is |NG (v)|. By � (G) and 
dG (u, v), we denote the maximum degree of the graph G and the distance between u and v in G , respectively. A tree is a 
connected graph without induced cycle. A rooted tree is a tree with a special vertex, called the root of the tree. A vertex of 
degree one is called a leaf, and its neighbor is called a support vertex. An edge incident with a leaf is called a pendant edge. 
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A tree T is a double star S p,q (p ≥ q ≥ 1) if it contains exactly two vertices x, y (called central vertices) that are not leaves 
such that dT (x) = p + 1 and dT (y) = q + 1. We let Pn and K1,n−1 denote the path and star on n vertices, respectively.

A proper coloring of G is an assignment of colors (represented by natural numbers) to the vertices of G such that any 
two adjacent vertices have different colors. The minimum number χ (G) for which there exists a proper coloring (with 
χ (G) colors) is called the chromatic number of a graph G . A b-coloring of a graph by k colors is a proper coloring with the 
property that each color class contains a vertex that has at least one neighbor in all the other k − 1 color classes. We call 
any such vertex a b-vertex. The b-chromatic number b (G) of a graph G is the largest number k such that G has a b-coloring 
with k colors. This parameter has been defined by Irving and Manlove [7,10]. It is obvious that χ(G) ≤ b(G) ≤ �(G) + 1. For 
arbitrary graphs, the problem of determining b(G) is NP-complete [7,10], even when restricted to bipartite graphs [9]. For 
the special case of trees, Irving and Manlove [7,10] presented a linear time algorithm. A recent survey on the b-coloring in 
graphs can be found in [8].

It was observed in [7,10] that if a graph G admits a b-coloring with � colors, G must have at least � vertices with degree 
at least � − 1. The m-degree of a graph G , denoted m (G), is the largest integer � such that G has � vertices of degree at 
least � − 1. Clearly, m (G) ≤ �(G) + 1. Irving and Manlove [7,10] show that this parameter bounds the b-chromatic number. 
So, every graph satisfies b (G) ≤ m (G). A vertex of G with degree at least m (G) − 1 is called a dense vertex. A pivoted tree is 
a tree T in which one vertex v of degree less than m(G) − 1 is distinguished and called the pivot.

Definition 1. [7,10] A tree T is pivoted if T has exactly m(T ) dense vertices and T contains a vertex v such that v is not 
dense and every dense vertex is adjacent either to v or to a neighbor of v of degree m(T ) − 1.

The following observation is straightforward.

Observation 2. Every non-dense vertex of a pivoted tree T , except the pivot, may be adjacent to at most one dense vertex of T .

D.F. Manlove and R.W. Iring [7,10] have proved that, for trees, the b-chromatic number can be computed as follows.

Theorem 3. [7] If T is a pivoted tree, then b (T ) = m (T ) − 1; else, b (T ) = m (T ).

The concept of critical graphs with respect to the b-chromatic number has received more attention in recent years. 
The graphs for which the b-chromatic number decreases on the deletion of any edge were first studied in [4,6]. Further, 
a characterization of all such graphs is given in [1]. On the other hand, the authors of [3] characterized the trees whose 
b-chromatic number decreases when any vertex is removed. The graphs for which the b-chromatic number increases upon 
the removal of any edge (or vertex) were explored in [5].

In this paper, we study those graphs where the b-chromatic number decreases on the contraction of any edge. Before 
stating our results, we need some definitions and notation. For a given graph G , the contraction of an edge e = uv means 
removing u and v from the vertex-set V (G) and replacing it by a new vertex z and attaching z to all vertices that are 
adjacent to u or v in G . We denote by Ge the graph obtained from G by contracting the edge e.

Definition 4. A graph is called be-critical if the b-chromatic number decreases upon the contraction of any edge.

More precisely, we say that a graph G is be-critical if b(Ge) < b(G) holds for every edge e in G . The aim of the paper is 
to characterize all be-critical trees.

2. Preliminary results

This section presents some results that will be useful in the characterization of be -critical trees.

Observation 5. Let e be an edge of a be-critical tree T and let Te be the tree obtained from T by contracting e. Then,

(i) m(Te) ≤ m(T ), with equality if e is a non-pendant edge such that one of its endpoints is a non-dense vertex.
(ii) If Te is not a pivoted tree, then m(Te) ≤ m(T ) − 1.

Proof. (i) If the first part is not true, then Theorem 3 yields b(Te) ≥ m(Te) − 1 ≥ m(T ) ≥ b(T ), which is a contradiction. The 
second part follows immediately because contracting such edge does not decrease the m-degree of T .

(ii) Using again Theorem 3, we get m(Te) = b(Te) ≤ b(T ) − 1 = m(T ) − 1. �
For the remainder of this paper, we denote by D and L, respectively, the set of dense vertices and the set of leaves in T . 

Denote also by De and Le , respectively, the set of dense vertices and the set of leaves in Te .
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Theorem 6. Let T = (V , E) be a be-critical tree, B be the set of all b-vertices of a b-coloring c of T with b (T ) colors, S be the set of all 
support vertices of T and D be the set of dense vertices in T . Then:

(i) T is not a pivoted tree;
(ii) S ⊆ B. Moreover, there are no two neighbors of a support vertex s with the same color such that one of them is a leaf;

(iii) there are no two b-vertices of the same color. So, |B| = b (T );
(iv) b (T ) = � (T ) + 1;
(v) D = B.

Proof. Set b (T ) = k. When k = 2, it is easy to see that T = P2 and the theorem holds. So, we can assume that k ≥ 3. Let e
be any edge of T and let Te denote the tree obtained from T by contracting the edge e in a new vertex ve

(i) Suppose on the contrary that T is a pivoted tree with pivot v . So, Theorem 3 gives b (T ) = m (T ) − 1. Let u be a 
dense vertex adjacent to v . Pick e = uv . Observation 5 (i) yields m (Te) = m (T ). Therefore, Theorem 3 implies that b (Te) ≥
m (Te) − 1 ≥ m (T ) − 1 = b (T ), which is a contradiction.

(ii) If any part of (ii) does not hold, then contracting of some pendant edge incident to a support vertex s does not 
decrease the b-chromatic number.

(iii) Let x and y be two b-vertices of c such that c (x) = c (y). Neither x nor y is a support vertex, because if not, 
contracting of some pendant edge incident to x or y does not decrease the b-chromatic number. Let us root T at vertex x. 
Let u1, u2, ..., uh be the neighbors of x. Since x is a b-vertex h ≥ k − 1. For each i ∈ {1,2, ...,h}, let Ti be the component of 
T� {x} that contains ui . As x is not a support vertex, Ti has a support zi for each i ∈ {1,2, ...,h}. The first part of (ii) implies 
that zi is a b-vertex of c. Thereby, zi is the only b-vertex of c of color c(zi) in T (in particular, c (zi) �= c (x)), otherwise 
contracting of some pendant edge incident to zi does not decrease the b-chromatic number. Therefore T contains exactly 
k − 1 support b-vertices z1, z2, ..., zh of distinct colors. So, h = k − 1 and for each i ∈ {1,2, ...,k − 1}, Ti contains exactly one 
support vertex zi . Let u be any vertex in V (T )� 

{
x, z1, z2, ..., zk−1

}
. Assume that u ∈ Ti for some integer i in {1,2, ...,k − 1}. 

The degree of u is at most 2, because if not, Ti has two support vertices of T , which is a contradiction. So, dT (u) ≤ 2; in 
particular, we have also dT (y) ≤ 2. Consequently, k = 3. This means that dT (u) = dT (y) = dT (x) = 2. Also, by the second 
part of (ii), we have dT (z1) = dT (z2) = 2. Hence, T is a path. Since T contains at least 4 b-vertices such that two of them 
(x and y) are non-support vertices of the same color, it follows that T is a path of at least 7 vertices. But in this case, T is 
not be-critical, which is a contradiction.

(iv) The upper bound trivially holds for any graph, so let us prove the lower bound. To do this, we claim that each vertex 
x ∈ V (T ) with dT (x) ≥ 3 satisfies the following,

if dT (x) ≥ 3, then every two neighbors of x have distinct colors. (1)

Suppose, on the contrary, that x has two neighbors of the same color. Let u1, u2, ..., up (p ≥ 3) be the neighbors of x. 
Assume, without loss of generality, that u1 and u2 have the same color t , and that u3 has color �. Let us root T at x. Let Ti
be the component of T�x that contains ui for each i ∈ {1, ..., p}. So, there are two cases to consider; in such cases, our goal 
is to modify the b-coloring c and extend it to a b-coloring of Te with k colors. To do this, we first interchange two colors of 
c in some of components of T . This might make c improper coloring. In this case, if two adjacent vertices x and y have the 
same color, the edge xy is called a conflicting edge.
Case 1: x is not a b-vertex.

We distinguish between two subcases.
Case 1.1: � = t .

Then one of T1, T2, T3, say T1 has no b-vertex of colors c (x) and t . In this case, we interchange colors t and c(x) in 
the component T1, all other vertices of T keep their color. We obtain an improper coloring c′ of T with k colors such 
that e = u1x is the unique conflicting edge (since u1 and x are colored the same). Let ce be the coloring c′ restricted to 
T�{u1, x}. Since T�{u1, x} is an induced subgraph of Te , ce can be extended to a proper coloring of Te by assigning color 
c(x) to ve . It is easy to check that ce yields a b-coloring of Te with k colors, a contradiction.
Case 1.2: � �= t .

If one of T1, T2 has no b-vertex of colors c (x) and t , then we have a contradiction as in Case 1.1. So, assume that T1
contains the b-vertex of color c(x). Thereby, the b-vertex of color t belongs to T2. If T3 has no b-vertex of color �, then 
we interchange colors � and c(x) in T3; otherwise we interchange colors � and c(x) in T1 ∪ T3. In both cases, we obtain 
an improper coloring of T with k colors such u3 and x have the same color c(x). Proceeding as in Case 1.1 above, taking 
e = u3x, we get again a contradiction.
Case 2: x is a b-vertex.

Note that, by the second part of (ii), u1 and u2 are not leaves in T . Therefore, by (iii), one of T1 or T2, say T1, has no 
b-vertex of colors t and c(x). In this case, we can interchange colors t and c(x) in T1 and all other vertices of T keep their 
color. We obtain an improper coloring of T with k colors such that u1 and x are colored the same. By taking e = u1x and 
proceeding as in Case 1.1, we obtain a contradiction.

In each case, we have a contradiction; thus Claim (1) is proved. As a consequence, each vertex x in T has at most k − 1
neighbors, because if not, x has two neighbors of the same color with dT (x) ≥ k ≥ 3, which contradicts Claim (1). Hence, 
dT (x) ≤ k − 1 for every vertex x in T , and in particular, we have � (G) ≤ k − 1.
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(v) It is obvious that B ⊂ D . Let x ∈ D . As, by (i) and (vi), m(T ) = �(T ) + 1, it follows that dT (x) = �(T ) = k − 1. If k = 3, 
then T = P5 and then (v) holds. So, assume that dT (x) = k − 1 ≥ 3. Therefore, by Claim (1), all neighbors of x have distinct 
colors. This means that x ∈ B . Thus D = B . This concludes the proof. �

In the rest of this section, we denote by D = V (T )�D , the set of non-dense vertices in T ; and by De = V (Te)�De the 
set of non-dense vertices in Te .

We next proceed to characterize all be-critical trees. For this purpose, we prove the following lemmas.

Lemma 7. Let T be a be-critical tree and v ∈ D. Then v is not a support vertex and has at least one neighbor in D.

Proof. Consider a b-coloring c of T with b(T ) colors. Observe first that if v is a leaf, then v is adjacent to a support vertex 
which belongs to D by Theorem 6 (ii) and (v). Hence, we can suppose that v is not a leaf. Also, Theorem 6 (v) implies 
that v is not a b-vertex of c. So, v is not a support vertex in T by Theorem 6 (ii). Suppose that v has no neighbor in D . 
We root T at vertex v . Let v1 and v2 two neighbors of v , and let Ti (i = 1, 2) be the component of T�v that contains vi . 
Since v is not a support vertex, dT (vi) ≥ 2. This means that each component Ti has at least one support vertex zi . Then, by 
Theorem 6 (ii) and (v), zi is a dense vertex in T . Let Te be the tree obtained from T by contracting the edge e = v v1 in a 
new vertex ve . Clearly, zi remains a support vertex in Te . Thus, by Observation 5 (i) and (ii), we have m(Te) = m(T ), and 
Te is a pivoted tree. Let w be the unique pivot of Te . Then w = ve or v2, for otherwise w would be a pivot of T , which 
contradicts Theorem 6 (i). In this case, one of z1, z2 is not adjacent to w or to a dense vertex adjacent to w , this contradicts 
Definition 1. Thus Te is not a pivoted tree, a contradiction again. �
Lemma 8. Let T be a be-critical tree with b(T ) = k ≥ 3. Then D�L is either an empty-set, or has exactly two non-support vertices, 
each of degree 2, and at distance at most 2, and k ≥ 4.

Proof. Consider a b-coloring c of T with k colors. Suppose first that D�L is an empty set. Then each vertex of V (T ) is 
either a dense vertex or a leaf. It is clear that the contraction of any edge of T decreases the m-degree of T , and so its 
b-chromatic number. Hence such tree exists. Assume now that D�L is a non-empty set. If k = 3, Theorem 6 (iv) implies 
that each vertex in D has degree 2. Therefore, each vertex in D ∪ (D�L) is a dense vertex, which is a contradiction. Thus 
k ≥ 4. Let v1 ∈ D�L. In view of Lemma 7, v1 is not a support vertex, and has a neighbor u ∈ D . Let e be any edge of T and 
let Te be the tree obtained from T by contracting e in a new vertex ve . Pick e = uv1. Obviously, ve ∈ De and Le = L. Since 
e is not a pendant edge in T , Observation 5 (i) and (ii) imply that

m(Te) = m(T ) and Te is a pivoted tree. (2)

As ve ∈ De and each dense vertex in T different from u remains a dense vertex in Te , it follows that De = (D ∪ {ve})�u
and De = D�v1. If v1 is the unique vertex of D�L, then De�Le = ∅ (each non-dense vertex in Te is a leaf). This implies, 
by Definition 1, that Te is not a pivoted tree, which contradicts (2). Hence,

∣∣D�L
∣∣ ≥ 2. (3)

Let v2 �= v1 be a vertex of D�L. Then v2 ∈ De�Le . Assume, without loss of generality, that v2 is the pivot of Te . Then ve is 
adjacent to v2 or to a dense vertex adjacent to v2. Denote by D1 the set of dense vertices in Te that are adjacent to v2, and 
by D2 the remaining dense vertices in Te . So D1 ∪ D2 = De . As Te is a pivoted tree, Definition 1 implies that Di (i = 1, 2) 
is a stable set. Also, each vertex in D2 is adjacent to exactly one vertex in D1 and not to v2. Suppose that 

∣∣D�L
∣∣ ≥ 3. Let 

v3 �= v1, v2 be a vertex of D�L. So v3 ∈ De�Le . By Lemma 7 and Observation 2, v3 has exactly one neighbor, say x1 in D , 
and so in De . As, v3 is not a leaf in T (and in Te), it has a neighbor v4 in De�Le . Then again, Lemma 7 and Observation 2
imply that v4 has exactly one neighbor, say x2 in D and so in De . Clearly, x2 �= x1. Vertices x1, x2 cannot be both in D1, for 
otherwise v3, v4, x2, v2, x1 induce a cycle of length 5 in Te . Likewise, x1, x2 cannot both be in D2. Indeed, if x1 and x2 have 
a common neighbor y in D1, then v3, v4, x2, y, x1 induce a cycle of length 5 in Te; otherwise, x1, v3, v4, x2 together with 
v2 and the two neighbors of x1, x2 in D1 induce a cycle of length 7 in Te . If xi (i = 1, 2) belongs to Di , then x1, v3, v4, v2
together with x2 and its neighbor in D1 induce a cycle of length 6 in Te , a contradiction. Thus 

∣∣D�L
∣∣ ≤ 2. This means, 

by (3), that D�L contains exactly two non-support vertices v1, v2.
Now, we shall show that both v1 and v2 have degree 2. Since v1 is not a leaf in T (and in Te), it has a neighbor u′ �= u. 

Then u′ must be adjacent to ve in Te . Suppose that u′ ∈ De�ve . In this case, ve and u′ cannot both be in Di (i = 1,2), 
because it is a stable set. This implies that either u′ = v2 or exactly one of ve , u′ , say u′ belongs to D1. In each case, v1 can 
not has an other neighbor, which is in D , because 

∣∣D�L
∣∣ = 2, for otherwise, let u′′ ∈ D be the third neighbor of v1. In the 

first one, we have ve ∈ D1 and u′′ ∈ D2, hence ve is adjacent to the pivot and to the dense vertex u′′ , but dTe (ve) ≥ m (Te), 
which contradicts Definition 1. In the last one, ve ∈ D2, as Di is a stable set (for i = 1,2) u′′ ∈ D1, so ve has two neighbors 
in D1, a contradiction with the fact that each vertex in D2 is adjacent to exactly one vertex in D1. Therefore, v1 has 
degree 2 in T . Similarly, v2 has degree equal to 2 in T . Proceeding similarly as above, we conclude that dT (v2) = 2.
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Fig. 1. Examples of trees that belong to T 4
1 .

Fig. 2. Examples of trees which belong to T 4
2 .

Fig. 3. The tree T 4
0 .

Finally, it remains to prove that dT (v1, v2) ≤ 2. If this is not true, then ve (dense vertex in Te) would not be adjacent to 
the pivot v2 of Te , or to a dense vertex adjacent to v2, which contradicts (2). Hence, dT (v1, v2) ≤ 2. �

Now we are ready to characterize all be-critical trees.

3. Characterization of be-critical trees

The main result of this section is a characterization of trees for which contracting any edge decreases its b-chromatic 
number. For this purpose, we define two families of trees T k

1 , T k
2 and a special tree T k

0 as follows. Let k be a positive integer. 
A tree T is in the family T k

1 (with k ≥ 3) if it has k vertices each of degree k − 1, and the other vertices are leaves. A tree 
T is in the family T k

2 (with k ≥ 4) if it can be obtained from a double star Sk−2,k−2 with central vertices w1 and w2 and 
subdividing the edge w1 w2 twice by inserting two new vertices z1 and z2 (i.e. adding two new vertices z1, z2 and edges 
w1z1, z1z2 and z2 w2 in G − w1 w2) and attaching k − 2 new vertices to each of the k − 2 leaves of Sk−2,k−2. We define T k

0
(with k ≥ 4) to be the tree obtained from k − 1 disjoint stars with central vertices w1, w2, ..., wk−1, each of order k − 1, by 
adding a new vertex z attached to wi for each i ∈ {1, ..., k − 1} and for i = 1, 2 subdividing the edge zwi once by inserting 
one vertex zi .

Note that each tree T in {T k
1 , k ≥ 3} ∪ {T k

2 ∪ {
T k

0

}
, k ≥ 4} has exactly k vertices, each of degree k − 1, but no vertex of T

is a pivot. This means that |D| = k and T is not pivoted. So, by Theorem 3, we have b(T ) = k.
Put T ={T k

1 , k ≥ 3} ∪ {T k
2 ∪ {

T k
0

}
, k ≥ 4} with k = b(T ). Notice that the only tree which belongs to T with k = 3 is P5.

In Figs. 1–3, we give examples of trees belonging to T 4
1 , T 4

2 , or {T 4
0 }.

Theorem 9. A graph T is be-critical if and only if T is a P2 or T ∈ T .

Proof. To establish the theorem, we will first prove the sufficiency condition. Let T be a member of T , with the same 
notation as above. It is obvious that P2 is be-critical, so we can assume that T �= P2. By the remark before the Theorem, 
b(T ) = m(T ) = k ≥ 3. Let Te be the tree obtained from T by contracting the edge e of T . If T ∈ T k

1 , then contracting e
decreases the m-degree of T by one. Therefore m(Te) = k − 1, implying that b(Te) ≤ k − 1 < k = b(T ). Assume now that 
k ≥ 4 and T ∈ T k

2 ∪ {
T k

0

}
. If one of the endpoints of e is z1 or z2, then the contraction of e does not decrease the m-degree 

of T , and Te is a pivoted tree. Then m(Te) = k, which means by Theorem 3 that b(Te) = k − 1 < k = b(T ). If the endpoints 
of e are dense vertices or one of them is a leaf, then the contraction of e decreases the m-degree of T by one. Therefore 
m(Te) = k − 1 and b(Te) ≤ k − 1 < k = b(T ). Hence T is a be-critical tree.
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To prove the necessity, let T be a be-critical tree with k = b(G). Consider a b-coloring c of T with k colors. Let B, D
denote, respectively, the set of all b-vertices of c and the set of all dense vertices of T . According to clauses (iii) and 
(iv) of Theorem 6, we have |B| = k = � (T ) + 1, and each vertex of B has degree k − 1. If k ∈ {2, 3}, then � (T ) ∈ {1, 2}, 
and it is easy to verify that T = P2 or T = P5 ∈ T 3

1 . So, assume that k ≥ 4. Clause (v) of Theorem 6 yields D = B . Let 
D = {x1, x2, ..., xk} and D = V�D . In view of Lemma 8, either D�L is empty, which means that each vertex of T is either 
a leaf or has degree equal to k − 1, thus T ∈ T k

1 ; or D�L has two non-support vertices v1 and v2, both of degree 2. In this 
case, V = D ∪ L ∪ {v1, v2}, and by Lemma 8, we have two cases to consider.
Case 1: dT (v1, v2) = 2.

As v1 and v2 are non-support vertices, their neighbors are in D . Therefore, since dT (v1, v2) = 2, we can assume, without 
loss of generality, that NT (v1) ∩ NT (v2) = {x3} and for i = 1, 2, vi ∈ NT (xi). We claim that, for each t ∈ {4, ...,k}, xt has no 
neighbor in {x1, x2}. Suppose, on the contrary, that xt is adjacent to x1. Pick e = v1x3. Let Te be the tree obtained from T by 
contracting the edge e. Observe that each vertex in Te , except v2, is either a leaf or a dense vertex. Since e is not a pendant 
edge in T , clauses (i) and (ii) of Observation 5 imply that m(Te) = m(T ) and Te is a pivoted tree with pivot v2 (since v2 is 
the unique non-dense vertex that is not a leaf in Te ). But, in this case, xt is not adjacent to v2 or to a dense vertex adjacent 
to v2, leading to contradicting the fact that Te is a pivoted tree. Consequently, x1 is not adjacent to xt in Te , and thus in T . 
Likewise, x2 is not adjacent to xt in T . In this case, Definition 1 implies that xt must be adjacent to x3 in Te , and thus in T . 
Hence T is isomorphic to T k

0.
Case 2: dT (v1, v2) = 1.

For i = 1, 2, let xi be the unique dense vertex adjacent to vi in T . Pick e = v1 v2, and let Te be the tree obtained from T
by contracting edge e in a new vertex ve . Using a similar argument as in Case 1, we conclude that Te is a pivoted tree with 
pivot ve (since each other vertex in Te is either a dense vertex or a leaf). Therefore, each dense vertex in Te (and so in T ) 
different from x1 and x2 is either adjacent to x1 or to x2. So T ∈ T k

2 . �
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