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We prove that the Sierpiński curve admits a homeomorphism with strong mixing 
properties. We also prove that the constructed example does not have Bowen’s specification 
property.
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r é s u m é

Nous montrons que la courbe de Sierpiński admet un homéomorphisme ayant des 
propriétés de mélange fortes. Nous montrons également que l’application construite n’a 
pas la propriété de spécification de Bowen.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The aim of this note is to exhibit a homeomorphism of the Sierpiński curve (known as the planar universal curve or 
Sierpiński carpet) with some strong mixing properties. In 1993, Aarts and Oversteegen proved that the Sierpiński curve 
admits a transitive homeomorphism [1], answering a question of Gottschalk. They also showed that it does not admit a 
minimal one. Earlier, in 1991, Kato proved that the Sierpiński curve does not admit expansive homeomorphisms [13]. In [3], 
Biś, Nakayama and Walczak proved that the Sierpiński curve admits a homeomorphism with positive entropy. They also 
showed that it admits a minimal group action (by [1] it cannot be a Z-action). There has been quite a lot of interest in 
dynamical properties of the planar universal curve, also due to its occurrence as Julia sets of various complex maps (see, 
e.g., [9]). Nonetheless, we were unable to find any examples in the literature that would explicitly show homeomorphisms 
of the Sierpiński curve with chaosity beyond Devaney chaos. The writing of the note was also motivated by some recent 
questions. During the Workshop on Dynamical Systems and Continuum Theory, held at the University of Vienna in June 
2015, the following question was raised.
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Question 1.1. Suppose that a 1-dimensional continuum X admits a mixing homeomorphism. Must X be 1
n -indecomposable for some n?

Recall that a continuum X is 1
n -indecomposable if, given n mutually disjoint subcontinua of X , at least one of them must 

have empty interior in X . Note that the Sierpiński curve is not 1
n -indecomposable for any n ∈ N. This is because it is locally 

connected, so every point has an arbitrarily small connected neighborhood.

Theorem 1.2. The Sierpiński curve S admits a homeomorphism H : S → S such that:

(1) H has a fully supported measure μ, such that (H, μ) is Bernoulli,
(2) H has a dense set of periodic points,
(3) H does not have the specification property.

Since every Bernoulli measure is strongly mixing, and μ in Theorem 1.2 is fully supported, we immediately obtain the 
following result, answering Question 1.1 in the negative.

Corollary 1.3. The Sierpiński curve S admits a topologically mixing homeomorphism with dense set of periodic points.

Our example is quite simple; however, it relies on many nontrivial facts from topology and ergodic theory. In principle, 
the general strategy is very similar to the one in [1], but the starting point is a bit different. We start with an Anosov torus 
diffeomorphism, which allows us to say much more about the dynamics of the constructed map. By the arguments in the 
proof of Theorem 1.2, it seems very likely that the Aarts–Oversteegen technique [1], which we employ here, will never lead 
to a map with the specification property. This motivates the following natural question.

Question 1.4. Does the Sierpiński curve admit a homeomorphism with the specification property?

2. Preliminaries

By a dynamical system (X, T ) we mean a compact metric space (X, d) with a continuous map T : X → X . We identify 
T

2 with the quotient space R2/Z2.
A Sierpiński curve is any set of the form S2 \ ⋃∞

i=1 int Di where

(S1) each Di is a disc and Di ∩ D j = ∅ for i �= j,
(S2) {Di}∞i=1 is a null sequence, i.e. the diameters of Di tend to zero, as i → ∞,
(S3)

⋃∞
i=1 Di is dense in S2.

Whyburn [17] proved that Sierpiński’s curve does not depend on the choice of the sequence of discs {Di}∞i=1, that is, any 
two Sierpiński curves are homeomorphic.

2.1. Topological notions of mixing

A dynamical system (X, T ) is topologically mixing if, for any two nonempty open sets U , V , there is an N > 0 such that 
T n(U ) ∩ V �= ∅ for all n ≥ N . There are many different extensions of the above property to characterize stronger mixing in 
the system. From the point of view of our work, the following two are very important. It is not hard to see that they imply 
topological mixing.

In his seminal paper [4], Bowen introduced an important, strong version of mixing, called periodic specification property. 
Let T : X → X be a continuous onto map. Following Bowen (cf. [8]), we say that (X, T ) has the specification property if 
for any ε > 0, there is a positive integer N = N(ε) such that, for any integer s ≥ 2, any s points y1, . . . , ys ∈ X , and any 
sequence 0 = j1 ≤ k1 < j2 ≤ k2 < · · · < js ≤ ks of 2s integers with jm+1 − km ≥ N for m = 1, . . . , s − 1, there is a point x ∈ X
such that, for each positive integer m ≤ s, we have d(T i(x), T i(ym)) < ε for all jm ≤ i ≤ km . If, in addition, we can select x in 
such a way that T km− j1+N (x) = x then (X, T ) has the periodic specification property. Note that the problem of characterizing 
the relations between various types of mixing for maps in specified classes of one-dimensional continua is of high interest 
(e.g., see [11] and references therein).

2.2. Invariant measures

Let X be a compact metric space with metric d and let M(X) be the space of Borel probability measures on X equipped 
with the Lévy–Prokhorov metric ρ defined by

ρ(μ,ν) = inf{ε : μ(A) ≤ ν(Aε) + ε for all Borel subsets A ⊂ X},
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where Aδ = {x : dist(x, A) < δ}. While the formula defining ρ is not symmetric with respect to μ and ν , it is an old result 
of Strassen that ρ is in fact a symmetric function (see Section 2.3 in [12] and comments therein). The topology induced 
by ρ coincides with the weak∗-topology on M(X). It is also well known that (M(X), ρ) is a compact metric space. For a 
dynamical system (X, T ), we denote by MT (X) the set of all T -invariant measures from M(X). For more details on the 
Lévy–Prokhorov metric and the weak∗-topology, the reader is referred to [12], and basic properties related to invariant 
measures (ergodicity, strong mixing, Bernoulli shift) can be found in [16].

2.3. Quasi-hyperbolic toral automorphisms

Let A be a 2 × 2 matrix with integer entries such that | det A| = 1. Then A−1 also has integer entries, and so A in-
duces a homeomorphism of the 2-dimensional torus F : T2 → T

2 by F (x) = Ax(mod 1), e.g., see [6] for more details. Since 
|det A| = 1, every toral automorphism preserves the Lebesgue measure. It is known that the periodic points of an ergodic 
toral automorphism are exactly those with rational coordinates (see [8, Proposition 24.7]). It was first proved by Adler and 
Weiss for T2, and then extended by Katznelson to each Tn , that if a toral automorphism is ergodic with respect to the 
Lebesgue measure, then it is measure-theoretically conjugate to a Bernoulli shift (e.g., see [8, Theorem 24.6]). Following 
Lind [14], we say that F is quasi-hyperbolic if A does not have roots of unity as eigenvalues. In dimension 2, every quasi-
hyperbolic automorphism must be hyperbolic, that is, it does not have eigenvalues on the unit circle, and has periodic 
specification property [14].

2.4. Branched covering from T2 to S2

Take a quotient of T2 by the relation J , which identifies (x, y) with (−x, −y). The relation J induces a branched 
covering map π : T2 → S

2 (see, e.g., [16, p. 140]), which is 2-to-1 except at four branch points in T2 given by C =
{(0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2)}. Since the relation J is preserved by any toral automorphism, for every toral auto-
morphism F , we obtain a factor map G : S2 → S

2 such that G ◦ π = π ◦ F . Note that if x �∈ C ∪ F −1(C), then there is an open 
neighborhood U of x such that U has at most one element of any equivalence class of the relation J and the same holds 
for F (U ). Then, on U the factor map π is a local isometry.

3. Proof of Theorem 1.2

Start with “Arnold’s cat map” F : T2 → T
2 on the torus given by

F (x, y) = (2x + y, x + y)(mod 1). (1)

Clearly F is hyperbolic with eigenvalues λ1 = 3+√
5

2 and λ2 = −√
5−1
2 , hence it has the periodic specification property.

Denote the Lebesgue measure on T2 by λ. F has a dense set of periodic points and (T2, F , λ) is measure-theoretically 
conjugate to Bernoulli shift. Let π : T2 → S

2 be the quotient map from Section 2.4 and let G be the induced homeomorphism 
of S2. Since G is a factor of F , (S2, G, μ) is Bernoulli with respect to a fully supported measure μ which is a push-forward 
of λ by π (see [16, Theorem 4.29(ii)]).

Fix any x ∈ T
2 \ (C ∪ F −1(C)) and identify it with x ∈ [−1/2, 1/2]2 in the universal cover. For each v from the unit 

circle, denote the corresponding radial line emerging from x by Lx
v = {x + tv : t > 0} ⊂ R

2. If we view F as a linear map 
on the universal cover, then we clearly have that F (Lx

v ) =LF (x)
w for w = F (v)/||F (v)||. Therefore, for sufficiently small open 

neighborhoods V , W ⊂ T
2 of x and F (x) there is no ambiguity in writing F (Lx

v ∩ V ) =LF (x)
w ∩ W . In other words, F locally 

preserves radial lines on T2 for points outside C ∪ F −1(C). But π is locally invertible on a small neighborhood of these 
points, hence also G preserves the radial lines locally on S2.

Fix a dense set of periodic points O ⊂ Per(G) and such that G(O) = O, O ∩ π(C) = ∅ and that Per(G) \ ⋃
O is dense 

in S
2. We decompose O into a union of pn-periodic orbits O n; i.e. O = ⋃

n∈N O n . We will modify G inductively, blowing 
up consecutive periodic orbits from O. Since G is differentiable, this can be done by a standard procedure in differ-
entiable dynamics (see, e.g., [5], p. 234), or topologically adopting [1] as follows. Take the periodic obit O 1 ⊂ O, say 
O 1 = {c, G(c), . . . , G p1−1(c)}. Since π−1(O 1) ∩ C = ∅, there are open discs D0, . . . , D p1−1 such that π(Di) ∩ π(D j) = ∅ for 
i �= j and π is 1–1 on each Di . Let Ui = π(Di). By the discussion above, we have a natural decomposition of Ui into radial 
lines (induced locally from Di ) centered at Gi(c), such that if L ⊂ Ui is a sufficiently short radial line emerging from Gi(c)
then G(L) ∩ Ui+1 is contained in the corresponding line.

Making this formal, let Ui be a small neighborhood of Gi(c), and Fi = {LGi(c)
v ∩ Ui : v ∈ S

1} be the family of lines 
emanating from the point Gi(c) such that 

⋃
Fi = Ui \ Gi(c). We remove O 1 and compactify each cl Ui \ {Gi(c)} by a 

topological copy Si
c of the unit circle S1, adding, for each index i and v ∈ S

1 ∼= Si
c , a point θ i

v ∈ Si
c compactifying the radial 

line LGi(c)
v ∩ Ui . That way, we obtain a p1-punctured sphere S1. We may easily extend G to a continuous map H1 : S1 → S1

by setting H1(θ
i
v ) = θ

j
w , where j ≡ i + 1(mod p1) and w = F (v)/||F (v)||. Clearly, H1 defined that way is invertible with a 

continuous inverse, so H1 is a homeomorphism of S1. We also have a projection π1 : S1 → S0 given by π1(Si
c) = Gi(c) for 

each i = 0, . . . , p1 −1 and π1 is the identity on S1 \⋃p1 Si
c up to natural identification of points outside of O 1. Observe that 
i=0
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Fig. 1. Phase portrait for a hyperbolic point before and after a “blow-up”.

the dynamics of all points outside O 1 under H1 in S1 is exactly the same as that of G on S2. Hence we can repeat the above 
procedure, puncturing S1 and obtaining S2 by replacing a periodic orbit O 2 ⊂O of length p2 (in S1) by a periodic sequence 
of circles. Proceeding inductively, we obtain a sequence of punctured spheres Sn with (

∑n
i=1 pi)-holes, homeomorphisms 

Hn : Sn → Sn , and factor maps πn : Sn → Sn−1 that collapse newly introduced circles back to points of O n , where again 
S0 = S

2 and H0 = G . In other words, πn reverts the modification made in step n and is defined analogously to π1. Clearly, 
each πn is a continuous onto map and πn ◦ Hn = Hn−1 ◦ πn . By the choice of the set O, we have 

⋃
n∈N O n = S

2.
Embed each Sn in S2 in a natural way, and extend πn to a map ηn : S2 → S

2 in the following way. If D is an open disc 
bounded by Sn in S2, then we have two possibilities. If πn(∂ D) is a single point, then we fix any y ∈ ∂ D ∩ Sn and define 
ηn(x) = πn(y) for every x ∈ D . In the second case, πn|∂ D is the identity, so we can extend it to identity map on D . Now we 
shall define a 2-sphere Q ∞ , and a Sierpiński curve S∞ ⊆ Q ∞ . Denote by S∞ the inverse limit of spaces Sn with bonding 
maps πn and by Q ∞ the inverse limit of spheres S2 with ηn as bonding maps; i.e.

Q ∞ = {(z0, z1, . . .) : ηn(zn) = zn−1},
S∞ = {(z0, z1, . . .) : πn(zn) = zn−1} ⊂ Q ∞.

Since each ηn is a monotone map on a 2-manifold, and nondegenerate fibers of ηn are all closed disks, a result of Brown 
[7, Theorem 4] implies that Q ∞ is homeomorphic to S2. Observe that if we fix any z ∈ O n , for some n, then the set B of all 
inverse sequences in Q ∞ with z on the first coordinate is homeomorphic to a disc. Simply, after dropping n first coordinates, 
we see that B is an inverse limit of a disk D with the identity as a unique bonding map. Therefore, S∞ is obtained from 
Q ∞ by removing the interior of each element of a sequence of discs. But 

⋃
n∈N O n = S

2, hence S∞ satisfies the conditions 
(S1)–(S3), and so it is a Sierpiński curve. Observe that if we put H = H1 × H2 × . . . × Hn × . . . then H(S∞) = S∞ , therefore 
H is a homeomorphism of the Sierpiński curve. Let M = S

2 \ ⋃∞
n=1 O n and M∞ = {(z0, z1, . . .) ∈ S∞ : z0 ∈ M} be the set 

of all inverse sequences in S∞ with the first coordinate in M . It follows directly from the construction that we can view 
z ∈ M∞ as z = (x, x, x . . .) for some x ∈ M , and H(z) = (G(x), G(x), . . .). Since periodic points of G in M are dense in S2, 
it is not hard to see that H has a dense set of periodic points. The set M∞ is Borel, so for any Borel set U ∈ S∞ we can 
view U ∩ M∞ as a Borel subset of M (by projection onto the first coordinate) and so we obtain a well-defined H-invariant 
Borel probability measure ν by putting ν(U ) = μ(U ∩ M∞). The measure μ is ergodic, so we have μ(S2 \ M∞) = 0, hence 
also ν(S∞ \ M∞) = 0, and so ν and μ are isomorphic, in particular (S∞, H, ν) is measure-theoretically conjugate to a 
Bernoulli shift. Take any open set U in S∞ . We claim that ν(U ) > 0. Indeed, the basic open sets in S∞ are given by 
U∞ = (η1 ◦ · · · ◦ ηi−1(Ui), . . . , ηi−1(Ui), Ui, η−1

i (Ui), . . .), where Ui ⊆ Si is open, for some i ∈ N (see, e.g., Theorem 3 on 
p. 79 in [10]). Since Si is a sphere with a finite number of holes, the Lebesgue measure of Ui in Si is positive and ν(U∞) =
ν(U∞ ∩ M∞) = μ(Ui ∩ M); therefore, U∞ has positive product measure. This shows that ν has full support, which completes 
the proof of Theorem 1.2(1).

It remains to prove (3). Assume, on the contrary, that H has the specification property. Since the specification property 
is preserved under higher iterations, H p1 has the specification property, where p1 is the period of O 1. For simplicity of 
notation, replace H p1 by H and Ap1 by A. By [15, Theorem 2.1] the specification property implies that, for every invariant 
measure μ ∈ MT (S∞), there exists a sequence of ergodic measures such that μn → μ, when n → ∞, in the Lévy–Prokhorov 
metric. Since we blew up a hyperbolic periodic point c in O 1 in the first step of our construction, after passing from 
A to the coordinates giving its diagonalization, we have locally a phase portrait (for G and H) as in Fig. 1. Let us start 
with the following observation. Consider the hyperbolic linear map f (x, y) = (ax, by), where 0 < a < 1 < b and ab = 1. Let 
D = [−ε, ε]2 for some small ε > 0. Now let z = (p, q) ∈ D with |p| ≥ |q| and assume that the trajectory of z is not fully 
contained in D . Then there exists a minimal m ≥ 1 such that am|p| ≥ bm|q| and am+1|p| < bm+1|q|. Observe that b2m|q| < ε
as otherwise ε ≤ b2m|q| = a−mbm|q| ≤ |p| and so (p, q) �∈ D , which is a contradiction. Now, let v be a compactification of the 
line representing the stable direction for the hyperbolic point c, and take a small neighborhood U of v . Let U ′ = π(U ), where 
π is the natural factor map π : (S∞, H) → (S2, G). If U is sufficiently small, then π(U ) ⊂ D and furthermore, if (p, q) ∈ π(U )

then |p| ≥ |q|, see Fig. 1.
Fix any periodic point u ∈ S∞ , say of period s, and consider the invariant measure μ̂ = (1 − α)δc + α

s

∑s−1
i=0 δHi(u) with a 

small α, say α < 1 . Assume also that π(u) �∈ D . Take 0 < γ < α/2s small enough, so that dist(c, {u, H(u), . . . , H s−1(u)}) >
10
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3γ and denote W = B(u, 2γ ). We may also assume that U and γ are such small that W ∩ U = ∅, π(W ) ∩ D = ∅, and 
B(c, 4γ ) ⊂ U . Denote V = B(c, 2γ ).

By the results of [15] mentioned earlier, there exists an ergodic measure ν̂ such that ρ(ν̂, μ̂) < γ . This implies that

ν̂(U ) ≥ ν̂(V γ ) ≥ μ̂(V ) − γ ≥ (1 − α) − γ > 4/5

and

ν̂(W ) ≥ ν̂({u}2γ ) ≥ μ̂({u}γ ) − γ > 0.

By the Birkhoff ergodic theorem, there exists x ∈ S∞ such that limn→∞ 1
n |{ j < n : H j(x) ∈ U }| = ν̂(U ) and limn→∞ 1

n |{ j <
n : H j(x) ∈ W }| = ν̂(W ). Since ν̂(W ) > 0 there exists an increasing sequence ki such that Hki (x) ∈ W for every i. Let 
us estimate the number of iterations ki ≤ j < ki+1 such that H j(x) ∈ U . Observe that π(Hki (x)) �∈ D and π(Hki+1 (x)) �∈ D; 
therefore, by the earlier analysis, we see that no more than half of iterations H j(x) for j = ki + 1, ..., ki+1 can visit U . This 
implies that lim supi→∞ 1

ki
|{ j < ki : H j(x) ∈ U }| ≤ 1/2. By the choice of x, we obtain that ν̂(U ) ≤ 1/2 < 4/5 < ν̂(U ), which is 

a contradiction. This shows that (S∞, H) does not have the specification property, completing the proof.

Remark 1. Similar construction works also if we start with other orientable closed surfaces, as any of them admits a 
branched covering onto S2 [2].
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