Mathematical analysis/Complex analysis

Improved version of Bohr's inequality

Version améliorée de l'inégalité de Bohr

Ilgiz R. Kayumov ${ }^{\text {a }}$, Saminathan Ponnusamy ${ }^{\text {b }}$
${ }^{\text {a }}$ Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
${ }^{\text {b }}$ Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India

A R T I C L E I N F O

Article history:

Received 5 July 2017
Accepted after revision 19 January 2018
Presented by the Editorial Board

Abstract

In this article, we prove several different improved versions of the classical Bohr's inequality. All the results are proved to be sharp.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Nous montrons ici plusieurs améliorations de l'inégalité de Bohr classique. Nous montrons également que les constantes numériques dans nos résultats sont optimales.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

The classical theorem of Bohr [3] (after subsequent improvements due to M. Riesz, I. Schur and F. Wiener) states that if f is a bounded analytic function on the unit disk $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$, with the Taylor expansion $\sum_{k=0}^{\infty} a_{k} z^{k}$, and $\|f\|_{\infty}:=\sup _{z \in \mathbb{D}}|f(z)|<\infty$, then

$$
\begin{equation*}
M_{f}(r):=\sum_{n=0}^{\infty}\left|a_{n}\right| r^{n} \leq\|f\|_{\infty} \text { for } 0 \leq r \leq 1 / 3 \tag{1}
\end{equation*}
$$

and the constant $1 / 3$ is sharp. There are a number of articles that deal with Bohr's phenomenon. See, for example, [2,10], the recent survey on this topic by Abu-Muhanna et al. [1] and the references therein. Bombieri [4] considered the function $m(r)$ defined by $m(r)=\sup \left\{M_{f}(r) /\|f\|_{\infty}\right\}$, where the supremum is taken over all nonzero bounded analytic functions, and proved that

$$
m(r)=\frac{3-\sqrt{8\left(1-r^{2}\right)}}{r} \text { for } 1 / 3 \leq r \leq 1 / \sqrt{2}
$$

[^0]Later Bombieri and Bourgain [5] studied the behaviour of $m(r)$ as $r \rightarrow 1$ (see also [6]) and proved the following result, which validated a question raised in [11, Remark 1] in the affirmative.

Theorem A. ([5, Theorem 1]) If $r>1 / \sqrt{2}$, then $m(r)<1 / \sqrt{1-r^{2}}$. With $\alpha=1 / \sqrt{2}$, the function $\varphi_{\alpha}(z)=(\alpha-z) /(1-\alpha z)$ is extremal, giving $m(1 / \sqrt{2})=\sqrt{2}$.

A lower estimate for $m(r)$ as $r \rightarrow 1$ is also obtained in [5, Theorem 2]. We are now ready to state several different improved versions of the classical Bohr inequality (1).

Theorem 1. Suppose that $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ is analytic in $\mathbb{D},|f(z)| \leq 1$ in \mathbb{D}, and S_{r} denotes the area of the Riemann surface of the function f^{-1} defined on the image of the subdisk $|z|<r$ under the mapping f. Then

$$
\begin{equation*}
B_{1}(r):=\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}+\frac{16}{9}\left(\frac{S_{r}}{\pi}\right) \leq 1 \text { for } r \leq \frac{1}{3} \tag{2}
\end{equation*}
$$

and the numbers $1 / 3$ and $16 / 9$ cannot be improved. Moreover,

$$
\begin{equation*}
B_{2}(r):=\left|a_{0}\right|^{2}+\sum_{k=1}^{\infty}\left|a_{k}\right| r^{k}+\frac{9}{8}\left(\frac{S_{r}}{\pi}\right) \leq 1 \text { for } r \leq \frac{1}{2} \tag{3}
\end{equation*}
$$

and the constants $1 / 2$ and $9 / 8$ cannot be improved.

Remark 1. Let us remark that if f is a univalent function then S_{r} is the area of the image of the subdisk $|z|<r$ under the mapping f. In the case of multivalent function, S_{r} is greater than the area of the image of the subdisk $|z|<r$. This fact could be shown by noting that

$$
S_{r}=\int_{f\left(\mathbb{D}_{r}\right)}\left|f^{\prime}(z)\right|^{2} \mathrm{~d} A(w)=\int_{f\left(\mathbb{D}_{r}\right)} v_{f}(w) \mathrm{d} A(w) \geq \int_{f\left(\mathbb{D}_{r}\right)} \mathrm{d} A(w)=\operatorname{Area}\left(f\left(\mathbb{D}_{r}\right)\right)
$$

where $\mathbb{D}_{r}=\{z \in \mathbb{C}:|z|<r\}$ and $v_{f}(w)=\sum_{f(z)=w} 1$ denotes the counting function of f.

Theorem 2. Suppose that $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ is analytic in \mathbb{D} and $|f(z)| \leq 1$ in \mathbb{D}. Then

$$
\begin{equation*}
\left|a_{0}\right|+\sum_{k=1}^{\infty}\left(\left|a_{k}\right|+\frac{1}{2}\left|a_{k}\right|^{2}\right) r^{k} \leq 1 \text { for } r \leq \frac{1}{3} \tag{4}
\end{equation*}
$$

and the numbers $1 / 3$ and $1 / 2$ cannot be improved.

Theorem 3. Suppose that $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ is analytic in \mathbb{D} and $|f(z)| \leq 1$ in \mathbb{D}. Then

$$
\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}+\left|f(z)-a_{0}\right|^{2} \leq 1 \text { for } r \leq \frac{1}{3}
$$

and the number $1 / 3$ cannot be improved.

Finally, we also prove the following sharp inequality.

Theorem 4. Suppose that $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ is analytic in \mathbb{D} and $|f(z)| \leq 1$ in \mathbb{D}. Then

$$
|f(z)|^{2}+\sum_{k=1}^{\infty}\left|a_{k}\right|^{2} r^{2 k} \leq 1 \text { for } r \leq \sqrt{\frac{11}{27}}=0.63828 \ldots
$$

and this number cannot be improved.

2. Proofs of Theorems $1,2,3$ and 4

If f and g are analytic in \mathbb{D}, then g is subordinate to f, written $g \prec f$ or $g(z) \prec f(z)$, if there exists a function ω analytic in \mathbb{D} satisfying $\omega(0)=0,|\omega(z)|<1$ and $g(z)=f(\omega(z))$ for $z \in \mathbb{D}$. If f is univalent in \mathbb{D}, then $g \prec f$ if and only if $g(0)=f(0)$ and $g(\mathbb{D}) \subset f(\mathbb{D})$ (see [7, p. 190 and p. 253] and $[1,8]$).

For the proof of Theorem 1, we need the following lemma, especially when $0<r \leq 1 / 2$.
Lemma 1. Let $\left|b_{0}\right|<1$ and $0<r \leq 1 / \sqrt{2}$. If $g(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$ is analytic and satisfies the inequality $|g(z)|<1$ in \mathbb{D}, then the following sharp inequality holds:

$$
\begin{equation*}
\sum_{k=1}^{\infty} k\left|b_{k}\right|^{2} r^{2 k} \leq r^{2} \frac{\left(1-\left|b_{0}\right|^{2}\right)^{2}}{\left(1-\left|b_{0}\right|^{2} r^{2}\right)^{2}} \tag{5}
\end{equation*}
$$

Proof. Let $b_{0}=a$. Then, it is easy to see that the condition on g can be rewritten in terms of subordination as

$$
\begin{equation*}
g(z)=\sum_{k=0}^{\infty} b_{k} z^{k} \prec \varphi_{a}(z)=\frac{a-z}{1-\bar{a} z}=a-\left(1-|a|^{2}\right) \sum_{k=1}^{\infty}(\bar{a})^{k-1} z^{k}, \quad z \in \mathbb{D}, \tag{6}
\end{equation*}
$$

where \prec denotes the subordination. Note that φ_{a} is analytic in \mathbb{D} and $\left|\varphi_{a}(z)\right|<1$ for $z \in \mathbb{D}$. The subordination relation (6) gives

$$
\sum_{k=1}^{\infty} k\left|b_{k}\right|^{2} r^{2 k} \leq\left(1-|a|^{2}\right)^{2} \sum_{k=1}^{\infty} k|a|^{2(k-1)} r^{2 k}=r^{2} \frac{\left(1-|a|^{2}\right)^{2}}{\left(1-|a|^{2} r^{2}\right)^{2}}
$$

from which we arrive at the inequality (5), which proves Lemma 1 . For $0<r \leq 1 / \sqrt{2}$, it is important to note here that the sequence $\left\{k r^{2 k}\right\}$ is non-increasing for all $k \geq 1$, so that we were able to apply the classical Goluzin's inequality [8] (see also [7, Theorem 6.3]), which extends the classical Rogosinski inequality.

Proof of Theorem 1. Since the left-hand side of (2) is an increasing function of r, it is enough to prove it for $r=1 / 3$. Therefore, we set $r=1 / 3$. Moreover, the present authors in the proof of Theorem 1 in [9] proved the following inequalities:

$$
\sum_{k=1}^{\infty}\left|a_{k}\right| r^{k} \leq \begin{cases}A(r):=r \frac{1-\left|a_{0}\right|^{2}}{1-r\left|a_{0}\right|} & \text { for }\left|a_{0}\right| \geq r \tag{7}\\ B(r):=r \frac{\sqrt{1-\left|a_{0}\right|^{2}}}{\sqrt{1-r^{2}}} & \text { for }\left|a_{0}\right|<r\end{cases}
$$

Note that $\left|a_{k}\right| \leq 1-\left|a_{0}\right|^{2}$ for $k \geq 1$ and, from the definition of S_{r}, we see that

$$
\begin{align*}
\frac{S_{r}}{\pi} & =\frac{1}{\pi} \iint_{|z|<r}\left|f^{\prime}(z)\right|^{2} \mathrm{~d} x \mathrm{~d} y=\sum_{k=1}^{\infty} k\left|a_{k}\right|^{2} r^{2 k} \\
& \leq\left(1-\left|a_{0}\right|^{2}\right)^{2} \sum_{k=1}^{\infty} k r^{2 k}=\left(1-\left|a_{0}\right|^{2}\right)^{2} \frac{r^{2}}{\left(1-r^{2}\right)^{2}} \tag{8}
\end{align*}
$$

At first, we consider the case $\left|a_{0}\right| \geq r=1 / 3$. In this case, using (7) and (8), we have

$$
\begin{aligned}
B_{1}(r)=\left|a_{0}\right|+\sum_{k=1}^{\infty}\left|a_{k}\right| r^{k}+\frac{16}{9 \pi} S_{r} & \leq\left|a_{0}\right|+A(1 / 3)+\frac{16}{9 \pi} S_{1 / 3} \\
& \leq\left|a_{0}\right|+\frac{1-\left|a_{0}\right|^{2}}{3-\left|a_{0}\right|}+\frac{\left(1-\left|a_{0}\right|^{2}\right)^{2}}{4} \\
& =1-\frac{\left(1-\left|a_{0}\right|\right)^{3}\left(5-\left|a_{0}\right|^{2}\right)}{4\left(3-\left|a_{0}\right|\right)} \leq 1
\end{aligned}
$$

Next we consider the case $\left|a_{0}\right|<r=1 / 3$. Again, using (7) and (8), we deduce that

$$
B_{1}(r)=\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}+\frac{16}{9 \pi} S_{r} \leq\left|a_{0}\right|+B(1 / 3)+\frac{16}{9 \pi} S_{1 / 3}
$$

$$
\begin{aligned}
& \leq\left|a_{0}\right|+\frac{\sqrt{1-\left|a_{0}\right|^{2}}}{\sqrt{8}}+\frac{\left(1-\left|a_{0}\right|^{2}\right)^{2}}{4} \\
& \leq \frac{1}{3}+\frac{1}{\sqrt{8}}+\frac{1}{4}<1 \quad\left(\text { since }\left|a_{0}\right|<1 / 3\right)
\end{aligned}
$$

and the desired inequality (2) follows.
To prove that the constant $16 /(9 \pi)$ is sharp, we consider the function $f=\varphi_{a}$ given by

$$
\varphi_{a}(z)=\frac{a-z}{1-a z}=a-\left(1-a^{2}\right) \sum_{k=1}^{\infty} a^{k-1} z^{k}, \quad z \in \mathbb{D}
$$

where $a \in(0,1)$. For this function, straightforward calculations show that

$$
\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}+\frac{\lambda}{\pi} S_{r}=a+r \frac{1-a^{2}}{1-r a}+\lambda\left(1-a^{2}\right)^{2} \frac{r^{2}}{\left(1-a^{2} r^{2}\right)^{2}}
$$

In the case $r=1 / 3$, the last expression becomes

$$
a+\frac{1-a^{2}}{3-a}+9 \lambda \frac{\left(1-a^{2}\right)^{2}}{\left(9-a^{2}\right)^{2}}=1-\frac{2(1-a)^{3}\left(19+12 a+a^{2}\right)}{\left(a^{2}-9\right)^{2}}+(9 \lambda-16) \frac{\left(1-a^{2}\right)^{2}}{\left(9-a^{2}\right)^{2}}
$$

which is obviously bigger than 1 in case $\lambda>16 / 9$ and $a \rightarrow 1$. The proof of the first part of Theorem 1 is complete.
Let us now verify the inequality (3). To do it we will use the method presented above and Lemma 1 for $r \leq 1 / 2$. From Lemma 1, it follows that

$$
\begin{equation*}
\frac{S_{r}}{\pi} \leq\left(1-\left|a_{0}\right|^{2}\right)^{2} \frac{r^{2}}{\left(1-\left|a_{0}\right|^{2} r^{2}\right)^{2}}, \quad r \leq 1 / 2 \tag{9}
\end{equation*}
$$

Let $r \leq 1 / 2$ and we first consider the case $\left|a_{0}\right| \geq 1 / 2$. Then, using (7) and (9), we obtain that

$$
\begin{aligned}
B_{2}(r)=\left|a_{0}\right|^{2}+\sum_{k=1}^{\infty}\left|a_{k}\right| r^{k}+\frac{9}{8 \pi} S_{r} & \leq\left|a_{0}\right|^{2}+A(1 / 2)+\frac{9}{8 \pi} S_{1 / 2} \\
& \leq\left|a_{0}\right|^{2}+\frac{1-\left|a_{0}\right|^{2}}{2-\left|a_{0}\right|}+\frac{4\left(1-\left|a_{0}\right|^{2}\right)^{2}}{\left(4-\left|a_{0}\right|^{2}\right)^{2}} \\
& =1-\frac{\left(1-\left|a_{0}\right|\right)^{3}\left(1+\left|a_{0}\right|\right)\left(7+6\left|a_{0}\right|+2\left|a_{0}\right|^{2}\right)}{2\left(4-\left|a_{0}\right|^{2}\right)^{2}} \leq 1
\end{aligned}
$$

Now we consider the case $\left|a_{0}\right|<1 / 2$. In this case, using (7) and (9), we have

$$
\begin{aligned}
B_{2}(r) & \leq\left|a_{0}\right|^{2}+B(1 / 2)+\frac{9}{8 \pi} S_{1 / 2} \\
& \leq\left|a_{0}\right|^{2}+\frac{\sqrt{1-\left|a_{0}\right|^{2}}}{\sqrt{3}}+\frac{4\left(1-\left|a_{0}\right|^{2}\right)^{2}}{\left(4-\left|a_{0}\right|^{2}\right)^{2}} \\
& \leq \frac{1}{\sqrt{3}}+\left|a_{0}\right|^{2}+\frac{4\left(1-\left|a_{0}\right|^{2}\right)^{2}}{\left(4-\left|a_{0}\right|^{2}\right)^{2}} \\
& \leq \frac{1}{\sqrt{3}}+\frac{41}{100}-\frac{\left(1-4\left|a_{0}\right|^{2}\right)\left(256-104\left|a_{0}\right|^{2}+25\left|a_{0}\right|^{4}\right)}{100\left(\left|a_{0}\right|^{2}-4\right)^{2}}
\end{aligned}
$$

which is less than 1 . The sharpness of the constant $9 / 8$ can be established as in the previous case and thus, we omit the details. The proof of the theorem is complete.

Proof of Theorem 2. Let $A(r)$ and $B(r)$ be defined as in (7). Furthermore, the present authors in [9] demonstrated the following inequality for the coefficients of f :

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|a_{k}\right|^{2} r^{k} \leq \frac{r\left(1-\left|a_{0}\right|^{2}\right)^{2}}{1-\left|a_{0}\right|^{2} r} \tag{10}
\end{equation*}
$$

Also, it is worth pointing out that the inequality (10) for $0<r \leq 1 / \sqrt{2}$ follows from (5) by integrating it. As remarked in the proof of earlier theorems, it suffices to prove the inequality (4) for $r=1 / 3$, and thus we may set $r=1 / 3$ in the proof below. At first, we consider the case $\left|a_{0}\right| \geq 1 / 3$ so that, by (7) and (10),

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}+\frac{1}{2} \sum_{k=1}^{\infty}\left|a_{k}\right|^{2} r^{k} & \leq\left|a_{0}\right|+A(1 / 3)+\frac{\left(1-\left|a_{0}\right|^{2}\right)^{2}}{6-2\left|a_{0}\right|^{2}} \\
& =\left|a_{0}\right|+\frac{1-\left|a_{0}\right|^{2}}{3-\left|a_{0}\right|}+\frac{\left(1-\left|a_{0}\right|^{2}\right)^{2}}{6-2\left|a_{0}\right|^{2}} \\
& \left.=1-\frac{\left(1-\left|a_{0}\right|\right)^{2}}{2} \leq 1 \quad \text { (since }\left|a_{0}\right| \leq 1\right) .
\end{aligned}
$$

Similarly, for the case $\left|a_{0}\right|<1 / 3$, we have, by (7) and (10),

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}+\frac{1}{2} \sum_{k=1}^{\infty}\left|a_{k}\right|^{2} r^{k} & \leq\left|a_{0}\right|+B(1 / 3)+\frac{\left(1-\left|a_{0}\right|^{2}\right)^{2}}{6-2\left|a_{0}\right|^{2}} \\
& \leq\left|a_{0}\right|+\frac{\sqrt{1-\left|a_{0}\right|^{2}}}{\sqrt{8}}+\frac{\left(1-\left|a_{0}\right|^{2}\right)^{2}}{6-2\left|a_{0}\right|^{2}} \\
& \leq \frac{1}{3}+\frac{1}{\sqrt{8}}+\frac{1}{6}<1,
\end{aligned}
$$

which concludes the proof of Theorem 2 since the proof of sharpness follows similarly.
Proof of Theorem 3. Let $A(r)$ and $B(r)$ be defined as in (7). Also, we may let $r=1 / 3$. Accordingly, we first consider the case $\left|a_{0}\right| \geq 1 / 3$, so that

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}+\left|f(z)-a_{0}\right|^{2} & \leq\left|a_{0}\right|+A(1 / 3)+A(1 / 3)^{2} \\
& =\left|a_{0}\right|+\frac{1-\left|a_{0}\right|^{2}}{3-\left|a_{0}\right|}+\frac{\left(1-\left|a_{0}\right|^{2}\right)^{2}}{\left(3-\left|a_{0}\right|\right)^{2}} \\
& =1-\frac{\left(1-\left|a_{0}\right|\right)^{3}\left(5+\left|a_{0}\right|\right)}{\left(3-\left|a_{0}\right|\right)^{2}} \leq 1 \quad\left(\text { since }\left|a_{0}\right| \leq 1\right) .
\end{aligned}
$$

Next, we consider the case $\left|a_{0}\right|<1 / 3$ so that

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}+\left|f(z)-a_{0}\right|^{2} & \leq\left|a_{0}\right|+B(1 / 3)+B(1 / 3)^{2} \\
& =\left|a_{0}\right|+\frac{\sqrt{1-\left|a_{0}\right|^{2}}}{\sqrt{8}}+\frac{1-\left|a_{0}\right|^{2}}{8} \\
& \leq \frac{1}{3}+\frac{1}{\sqrt{8}}+\frac{1}{8}<1
\end{aligned}
$$

This concludes the proof of Theorem 2 and the sharpness follows similarly.
Proof of Theorem 4. Using (10) (see [9, Lemma 1]) and the classical inequality for $|f(z)|$, we have

$$
|f(z)|^{2}+\sum_{k=1}^{\infty}\left|a_{k}\right|^{2} r^{2 k} \leq\left(\frac{r+\left|a_{0}\right|}{1+r\left|a_{0}\right|}\right)^{2}+\frac{r^{2}\left(1-\left|a_{0}\right|^{2}\right)^{2}}{1-\left|a_{0}\right|^{2} r^{2}} .
$$

For $r=\sqrt{11 / 27}$, the last expression on the right gives

$$
1-\frac{3\left(1-\left|a_{0}\right|^{2}\right)}{\left(9+\sqrt{33}\left|a_{0}\right|\right)^{2}\left(27-11\left|a_{0}\right|^{2}\right)}\left(135-66 \sqrt{33}\left|a_{0}\right|+66 \sqrt{33}\left|a_{0}\right|^{3}+121\left|a_{0}\right|^{4}\right),
$$

and straightforward calculations show that this expression is less than or equal to 1 for all $\left|a_{0}\right| \leq 1$. The example

$$
f(z)=\frac{z+a}{1+a z}
$$

with $a=\sqrt{3 / 11}$ shows that $r=\sqrt{11 / 27}$ is sharp. This completes the proof.

Acknowledgements

The research of the first author was supported by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities (1.9773.2017/8.9) and by the Russian Foundation for basic research, Project 17-01-00282, and the research of the second author was supported by the project RUS/RFBR/P-163 under Department of Science \& Technology (India). The second author is currently at Indian Statistical Institute (ISI), Chennai Centre, Chennai, India. The authors thank the referee for his/her helpful comments.

References

[1] R.M. Ali, Y. Abu-Muhanna, S. Ponnusamy, On the Bohr inequality, in: N.K. Govil, et al. (Eds.), Progress in Approximation Theory and Applicable Complex Analysis, in: Springer Optimization and Its Applications, vol. 117, 2016, pp. 265-295.
[2] C. Bénéteau, A. Dahlner, D. Khavinson, Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory 4 (1) (2004) 1-19.
[3] H. Bohr, A theorem concerning power series, Proc. Lond. Math. Soc. 13 (2) (1914) 1-5.
[4] E. Bombieri, Sopra un teorema di H. Bohr e G. Ricci sulle funzioni maggioranti delle serie di potenze, Boll. Unione Mat. Ital. 17 (1962) $276-282$.
[5] E. Bombieri, J. Bourgain, A remark on Bohr's inequality, Int. Math. Res. Not. IMRN 80 (2004) 4307-4330.
[6] P.B. Djakov, M.S. Ramanujan, A remark on Bohr's theorem and its generalizations, J. Anal. 8 (2000) 65-77.
[7] P.L. Duren, Univalent Functions, Springer, New York, 1983.
[8] G.M. Goluzin, On subordinate univalent functions, Tr. Mat. Inst. Steklova 38 (1951) 68-71 (in Russian).
[9] I.R. Kayumov, S. Ponnusamy, Bohr inequality for odd analytic functions, Comput. Methods Funct. Theory 17 (2017) 679-688.
[10] P. Lassère, E. Mazzilli, Bohr's phenomenon on a regular condenser in the complex plane, Comput. Methods Funct. Theory 12 (1) (2012) $31-43$.
[11] V.I. Paulsen, G. Popescu, D. Singh, On Bohr's inequality, Proc. Lond. Math. Soc. 85 (2) (2002) 493-512.

[^0]: E-mail addresses: ikayumov@kpfu.ru (I.R. Kayumov), samy@iitm.ac.in, samy@isichennai.res.in (S. Ponnusamy).
 https://doi.org/10.1016/j.crma.2018.01.010
 1631-073X/© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

