

### Contents lists available at ScienceDirect

## C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical analysis/Complex analysis

# Improved version of Bohr's inequality

Version améliorée de l'inégalité de Bohr

## Ilgiz R. Kayumov<sup>a</sup>, Saminathan Ponnusamy<sup>b</sup>

<sup>a</sup> Kazan Federal University, Kremlevskaya 18, 420 008 Kazan, Russia
 <sup>b</sup> Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India

### ARTICLE INFO

Article history: Received 5 July 2017 Accepted after revision 19 January 2018

Presented by the Editorial Board

## ABSTRACT

In this article, we prove several different improved versions of the classical Bohr's inequality. All the results are proved to be sharp.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## RÉSUMÉ

Nous montrons ici plusieurs améliorations de l'inégalité de Bohr classique. Nous montrons également que les constantes numériques dans nos résultats sont optimales.

 $\ensuremath{\mathbb{C}}$  2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## 1. Introduction and main results

The classical theorem of Bohr [3] (after subsequent improvements due to M. Riesz, I. Schur and F. Wiener) states that if f is a bounded analytic function on the unit disk  $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ , with the Taylor expansion  $\sum_{k=0}^{\infty} a_k z^k$ , and  $\|f\|_{\infty} := \sup_{z \in \mathbb{D}} |f(z)| < \infty$ , then

$$M_f(r) := \sum_{n=0}^{\infty} |a_n| r^n \le \|f\|_{\infty} \text{ for } 0 \le r \le 1/3$$
(1)

and the constant 1/3 is sharp. There are a number of articles that deal with Bohr's phenomenon. See, for example, [2,10], the recent survey on this topic by Abu-Muhanna et al. [1] and the references therein. Bombieri [4] considered the function m(r) defined by  $m(r) = \sup \{M_f(r)/\|f\|_{\infty}\}$ , where the supremum is taken over all nonzero bounded analytic functions, and proved that

$$m(r) = \frac{3 - \sqrt{8(1 - r^2)}}{r}$$
 for  $1/3 \le r \le 1/\sqrt{2}$ .

https://doi.org/10.1016/j.crma.2018.01.010





E-mail addresses: ikayumov@kpfu.ru (I.R. Kayumov), samy@iitm.ac.in, samy@isichennai.res.in (S. Ponnusamy).

<sup>1631-073</sup>X/© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Later Bombieri and Bourgain [5] studied the behaviour of m(r) as  $r \to 1$  (see also [6]) and proved the following result, which validated a question raised in [11, Remark 1] in the affirmative.

**Theorem A.** ([5, Theorem 1]) If  $r > 1/\sqrt{2}$ , then  $m(r) < 1/\sqrt{1-r^2}$ . With  $\alpha = 1/\sqrt{2}$ , the function  $\varphi_{\alpha}(z) = (\alpha - z)/(1 - \alpha z)$  is extremal, giving  $m(1/\sqrt{2}) = \sqrt{2}$ .

A lower estimate for m(r) as  $r \rightarrow 1$  is also obtained in [5, Theorem 2]. We are now ready to state several different improved versions of the classical Bohr inequality (1).

**Theorem 1.** Suppose that  $f(z) = \sum_{k=0}^{\infty} a_k z^k$  is analytic in  $\mathbb{D}$ ,  $|f(z)| \le 1$  in  $\mathbb{D}$ , and  $S_r$  denotes the area of the Riemann surface of the function  $f^{-1}$  defined on the image of the subdisk |z| < r under the mapping f. Then

$$B_1(r) := \sum_{k=0}^{\infty} |a_k| r^k + \frac{16}{9} \left(\frac{S_r}{\pi}\right) \le 1 \text{ for } r \le \frac{1}{3}$$
(2)

and the numbers 1/3 and 16/9 cannot be improved. Moreover,

$$B_2(r) := |a_0|^2 + \sum_{k=1}^{\infty} |a_k| r^k + \frac{9}{8} \left(\frac{S_r}{\pi}\right) \le 1 \text{ for } r \le \frac{1}{2}$$
(3)

and the constants 1/2 and 9/8 cannot be improved.

**Remark 1.** Let us remark that if f is a univalent function then  $S_r$  is the area of the image of the subdisk |z| < r under the mapping f. In the case of multivalent function,  $S_r$  is greater than the area of the image of the subdisk |z| < r. This fact could be shown by noting that

$$S_r = \int_{f(\mathbb{D}_r)} |f'(z)|^2 \, \mathrm{d}A(w) = \int_{f(\mathbb{D}_r)} v_f(w) \, \mathrm{d}A(w) \ge \int_{f(\mathbb{D}_r)} \, \mathrm{d}A(w) = \operatorname{Area}(f(\mathbb{D}_r)),$$

where  $\mathbb{D}_r = \{z \in \mathbb{C} : |z| < r\}$  and  $\nu_f(w) = \sum_{f(z)=w} 1$  denotes the counting function of *f*.

**Theorem 2.** Suppose that  $f(z) = \sum_{k=0}^{\infty} a_k z^k$  is analytic in  $\mathbb{D}$  and  $|f(z)| \le 1$  in  $\mathbb{D}$ . Then

$$|a_0| + \sum_{k=1}^{\infty} \left( |a_k| + \frac{1}{2} |a_k|^2 \right) r^k \le 1 \text{ for } r \le \frac{1}{3}$$

$$\tag{4}$$

and the numbers 1/3 and 1/2 cannot be improved.

**Theorem 3.** Suppose that  $f(z) = \sum_{k=0}^{\infty} a_k z^k$  is analytic in  $\mathbb{D}$  and  $|f(z)| \le 1$  in  $\mathbb{D}$ . Then

$$\sum_{k=0}^{\infty} |a_k| r^k + |f(z) - a_0|^2 \le 1 \text{ for } r \le \frac{1}{3}$$

and the number 1/3 cannot be improved.

Finally, we also prove the following sharp inequality.

**Theorem 4.** Suppose that  $f(z) = \sum_{k=0}^{\infty} a_k z^k$  is analytic in  $\mathbb{D}$  and  $|f(z)| \le 1$  in  $\mathbb{D}$ . Then

$$|f(z)|^2 + \sum_{k=1}^{\infty} |a_k|^2 r^{2k} \le 1$$
 for  $r \le \sqrt{\frac{11}{27}} = 0.63828...$ 

and this number cannot be improved.

### 2. Proofs of Theorems 1, 2, 3 and 4

If *f* and *g* are analytic in  $\mathbb{D}$ , then *g* is *subordinate* to *f*, written  $g \prec f$  or  $g(z) \prec f(z)$ , if there exists a function  $\omega$  analytic in  $\mathbb{D}$  satisfying  $\omega(0) = 0$ ,  $|\omega(z)| < 1$  and  $g(z) = f(\omega(z))$  for  $z \in \mathbb{D}$ . If *f* is univalent in  $\mathbb{D}$ , then  $g \prec f$  if and only if g(0) = f(0) and  $g(\mathbb{D}) \subset f(\mathbb{D})$  (see [7, p. 190 and p. 253] and [1,8]).

For the proof of Theorem 1, we need the following lemma, especially when  $0 < r \le 1/2$ .

**Lemma 1.** Let  $|b_0| < 1$  and  $0 < r \le 1/\sqrt{2}$ . If  $g(z) = \sum_{k=0}^{\infty} b_k z^k$  is analytic and satisfies the inequality |g(z)| < 1 in  $\mathbb{D}$ , then the following sharp inequality holds:

$$\sum_{k=1}^{\infty} k|b_k|^2 r^{2k} \le r^2 \frac{(1-|b_0|^2)^2}{(1-|b_0|^2 r^2)^2}.$$
(5)

**Proof.** Let  $b_0 = a$ . Then, it is easy to see that the condition on g can be rewritten in terms of subordination as

$$g(z) = \sum_{k=0}^{\infty} b_k z^k \prec \varphi_a(z) = \frac{a-z}{1-\overline{a}z} = a - (1-|a|^2) \sum_{k=1}^{\infty} (\overline{a})^{k-1} z^k, \quad z \in \mathbb{D},$$
(6)

where  $\prec$  denotes the subordination. Note that  $\varphi_a$  is analytic in  $\mathbb{D}$  and  $|\varphi_a(z)| < 1$  for  $z \in \mathbb{D}$ . The subordination relation (6) gives

$$\sum_{k=1}^{\infty} k|b_k|^2 r^{2k} \le (1-|a|^2)^2 \sum_{k=1}^{\infty} k|a|^{2(k-1)} r^{2k} = r^2 \frac{(1-|a|^2)^2}{(1-|a|^2 r^2)^2}$$

from which we arrive at the inequality (5), which proves Lemma 1. For  $0 < r \le 1/\sqrt{2}$ , it is important to note here that the sequence  $\{kr^{2k}\}$  is non-increasing for all  $k \ge 1$ , so that we were able to apply the classical Goluzin's inequality [8] (see also [7, Theorem 6.3]), which extends the classical Rogosinski inequality.

**Proof of Theorem 1.** Since the left-hand side of (2) is an increasing function of *r*, it is enough to prove it for r = 1/3. Therefore, we set r = 1/3. Moreover, the present authors in the proof of Theorem 1 in [9] proved the following inequalities:

$$\sum_{k=1}^{\infty} |a_k| r^k \le \begin{cases} A(r) := r \frac{1 - |a_0|^2}{1 - r|a_0|} & \text{for } |a_0| \ge r \\ B(r) := r \frac{\sqrt{1 - |a_0|^2}}{\sqrt{1 - r^2}} & \text{for } |a_0| < r. \end{cases}$$
(7)

Note that  $|a_k| \le 1 - |a_0|^2$  for  $k \ge 1$  and, from the definition of  $S_r$ , we see that

$$\frac{S_r}{\pi} = \frac{1}{\pi} \int \int_{|z| < r} |f'(z)|^2 \, \mathrm{d}x \, \mathrm{d}y = \sum_{k=1}^{\infty} k |a_k|^2 r^{2k}$$
$$\leq (1 - |a_0|^2)^2 \sum_{k=1}^{\infty} k r^{2k} = (1 - |a_0|^2)^2 \frac{r^2}{(1 - r^2)^2}.$$
(8)

At first, we consider the case  $|a_0| \ge r = 1/3$ . In this case, using (7) and (8), we have

$$\begin{split} B_1(r) &= |a_0| + \sum_{k=1}^{\infty} |a_k| r^k + \frac{16}{9\pi} S_r \le |a_0| + A(1/3) + \frac{16}{9\pi} S_{1/3} \\ &\le |a_0| + \frac{1 - |a_0|^2}{3 - |a_0|} + \frac{(1 - |a_0|^2)^2}{4} \\ &= 1 - \frac{(1 - |a_0|)^3 (5 - |a_0|^2)}{4(3 - |a_0|)} \le 1. \end{split}$$

Next we consider the case  $|a_0| < r = 1/3$ . Again, using (7) and (8), we deduce that

$$B_1(r) = \sum_{k=0}^{\infty} |a_k| r^k + \frac{16}{9\pi} S_r \le |a_0| + B(1/3) + \frac{16}{9\pi} S_{1/3}$$

$$\leq |a_0| + \frac{\sqrt{1 - |a_0|^2}}{\sqrt{8}} + \frac{(1 - |a_0|^2)^2}{4}$$
$$\leq \frac{1}{3} + \frac{1}{\sqrt{8}} + \frac{1}{4} < 1 \quad (\text{since } |a_0| < 1/3)$$

and the desired inequality (2) follows.

To prove that the constant  $16/(9\pi)$  is sharp, we consider the function  $f = \varphi_a$  given by

$$\varphi_a(z) = \frac{a-z}{1-az} = a - (1-a^2) \sum_{k=1}^{\infty} a^{k-1} z^k, \quad z \in \mathbb{D},$$

where  $a \in (0, 1)$ . For this function, straightforward calculations show that

$$\sum_{k=0}^{\infty} |a_k| r^k + \frac{\lambda}{\pi} S_r = a + r \frac{1-a^2}{1-ra} + \lambda (1-a^2)^2 \frac{r^2}{(1-a^2r^2)^2}.$$

In the case r = 1/3, the last expression becomes

$$a + \frac{1 - a^2}{3 - a} + 9\lambda \frac{(1 - a^2)^2}{(9 - a^2)^2} = 1 - \frac{2(1 - a)^3(19 + 12a + a^2)}{(a^2 - 9)^2} + (9\lambda - 16)\frac{(1 - a^2)^2}{(9 - a^2)^2}$$

which is obviously bigger than 1 in case  $\lambda > 16/9$  and  $a \rightarrow 1$ . The proof of the first part of Theorem 1 is complete.

Let us now verify the inequality (3). To do it we will use the method presented above and Lemma 1 for  $r \le 1/2$ . From Lemma 1, it follows that

$$\frac{S_r}{\pi} \le (1 - |a_0|^2)^2 \frac{r^2}{(1 - |a_0|^2 r^2)^2}, \quad r \le 1/2.$$
(9)

Let  $r \le 1/2$  and we first consider the case  $|a_0| \ge 1/2$ . Then, using (7) and (9), we obtain that

$$\begin{split} B_2(r) &= |a_0|^2 + \sum_{k=1}^{\infty} |a_k| r^k + \frac{9}{8\pi} S_r \le |a_0|^2 + A(1/2) + \frac{9}{8\pi} S_{1/2} \\ &\le |a_0|^2 + \frac{1 - |a_0|^2}{2 - |a_0|} + \frac{4(1 - |a_0|^2)^2}{(4 - |a_0|^2)^2} \\ &= 1 - \frac{(1 - |a_0|)^3 (1 + |a_0|) (7 + 6|a_0| + 2|a_0|^2)}{2(4 - |a_0|^2)^2} \le 1. \end{split}$$

Now we consider the case  $|a_0| < 1/2$ . In this case, using (7) and (9), we have

$$\begin{split} B_2(r) &\leq |a_0|^2 + B(1/2) + \frac{9}{8\pi} S_{1/2} \\ &\leq |a_0|^2 + \frac{\sqrt{1 - |a_0|^2}}{\sqrt{3}} + \frac{4(1 - |a_0|^2)^2}{(4 - |a_0|^2)^2} \\ &\leq \frac{1}{\sqrt{3}} + |a_0|^2 + \frac{4(1 - |a_0|^2)^2}{(4 - |a_0|^2)^2} \\ &\leq \frac{1}{\sqrt{3}} + \frac{41}{100} - \frac{(1 - 4|a_0|^2)(256 - 104|a_0|^2 + 25|a_0|^4)}{100(|a_0|^2 - 4)^2} \end{split}$$

which is less than 1. The sharpness of the constant 9/8 can be established as in the previous case and thus, we omit the details. The proof of the theorem is complete.  $\Box$ 

**Proof of Theorem 2.** Let A(r) and B(r) be defined as in (7). Furthermore, the present authors in [9] demonstrated the following inequality for the coefficients of f:

$$\sum_{k=1}^{\infty} |a_k|^2 r^k \le \frac{r(1-|a_0|^2)^2}{1-|a_0|^2 r}.$$
(10)

Also, it is worth pointing out that the inequality (10) for  $0 < r \le 1/\sqrt{2}$  follows from (5) by integrating it. As remarked in the proof of earlier theorems, it suffices to prove the inequality (4) for r = 1/3, and thus we may set r = 1/3 in the proof below. At first, we consider the case  $|a_0| \ge 1/3$  so that, by (7) and (10),

I.R. Kayumov, S. Ponnusamy / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 272-277

$$\begin{split} \sum_{k=0}^{\infty} |a_k| r^k + \frac{1}{2} \sum_{k=1}^{\infty} |a_k|^2 r^k &\leq |a_0| + A(1/3) + \frac{(1 - |a_0|^2)^2}{6 - 2|a_0|^2} \\ &= |a_0| + \frac{1 - |a_0|^2}{3 - |a_0|} + \frac{(1 - |a_0|^2)^2}{6 - 2|a_0|^2} \\ &= 1 - \frac{(1 - |a_0|)^2}{2} \leq 1 \quad \text{(since } |a_0| \leq 1) \end{split}$$

Similarly, for the case  $|a_0| < 1/3$ , we have, by (7) and (10),

$$\begin{split} \sum_{k=0}^{\infty} |a_k| r^k + \frac{1}{2} \sum_{k=1}^{\infty} |a_k|^2 r^k &\leq |a_0| + B(1/3) + \frac{(1 - |a_0|^2)^2}{6 - 2|a_0|^2} \\ &\leq |a_0| + \frac{\sqrt{1 - |a_0|^2}}{\sqrt{8}} + \frac{(1 - |a_0|^2)^2}{6 - 2|a_0|^2} \\ &\leq \frac{1}{3} + \frac{1}{\sqrt{8}} + \frac{1}{6} < 1, \end{split}$$

which concludes the proof of Theorem 2 since the proof of sharpness follows similarly.  $\Box$ 

**Proof of Theorem 3.** Let A(r) and B(r) be defined as in (7). Also, we may let r = 1/3. Accordingly, we first consider the case  $|a_0| \ge 1/3$ , so that

$$\begin{split} \sum_{k=0}^{\infty} |a_k| r^k + |f(z) - a_0|^2 &\leq |a_0| + A(1/3) + A(1/3)^2 \\ &= |a_0| + \frac{1 - |a_0|^2}{3 - |a_0|} + \frac{(1 - |a_0|^2)^2}{(3 - |a_0|)^2} \\ &= 1 - \frac{(1 - |a_0|)^3 (5 + |a_0|)}{(3 - |a_0|)^2} \leq 1 \quad \text{(since } |a_0| \leq 1\text{)}. \end{split}$$

Next, we consider the case  $|a_0| < 1/3$  so that

$$\begin{split} \sum_{k=0}^{\infty} |a_k| r^k + |f(z) - a_0|^2 &\leq |a_0| + B(1/3) + B(1/3)^2 \\ &= |a_0| + \frac{\sqrt{1 - |a_0|^2}}{\sqrt{8}} + \frac{1 - |a_0|^2}{8} \\ &\leq \frac{1}{3} + \frac{1}{\sqrt{8}} + \frac{1}{8} < 1. \end{split}$$

This concludes the proof of Theorem 2 and the sharpness follows similarly.  $\hfill\square$ 

**Proof of Theorem 4.** Using (10) (see [9, Lemma 1]) and the classical inequality for |f(z)|, we have

$$|f(z)|^2 + \sum_{k=1}^{\infty} |a_k|^2 r^{2k} \le \left(\frac{r+|a_0|}{1+r|a_0|}\right)^2 + \frac{r^2(1-|a_0|^2)^2}{1-|a_0|^2 r^2}.$$

For  $r = \sqrt{11/27}$ , the last expression on the right gives

$$1 - \frac{3(1 - |a_0|^2)}{(9 + \sqrt{33}|a_0|)^2(27 - 11|a_0|^2)}(135 - 66\sqrt{33}|a_0| + 66\sqrt{33}|a_0|^3 + 121|a_0|^4),$$

and straightforward calculations show that this expression is less than or equal to 1 for all  $|a_0| \le 1$ . The example

$$f(z) = \frac{z+a}{1+az}$$

with  $a = \sqrt{3/11}$  shows that  $r = \sqrt{11/27}$  is sharp. This completes the proof.  $\Box$ 

276

## Acknowledgements

The research of the first author was supported by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities (1.9773.2017/8.9) and by the Russian Foundation for basic research, Project 17-01-00282, and the research of the second author was supported by the project RUS/RFBR/P-163 under Department of Science & Technology (India). The second author is currently at Indian Statistical Institute (ISI), Chennai Centre, Chennai, India. The authors thank the referee for his/her helpful comments.

#### References

- R.M. Ali, Y. Abu-Muhanna, S. Ponnusamy, On the Bohr inequality, in: N.K. Govil, et al. (Eds.), Progress in Approximation Theory and Applicable Complex Analysis, in: Springer Optimization and Its Applications, vol. 117, 2016, pp. 265–295.
- [2] C. Bénéteau, A. Dahlner, D. Khavinson, Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory 4 (1) (2004) 1–19.
- [3] H. Bohr, A theorem concerning power series, Proc. Lond. Math. Soc. 13 (2) (1914) 1-5.
- [4] E. Bombieri, Sopra un teorema di H. Bohr e G. Ricci sulle funzioni maggioranti delle serie di potenze, Boll. Unione Mat. Ital. 17 (1962) 276–282.
- [5] E. Bombieri, J. Bourgain, A remark on Bohr's inequality, Int. Math. Res. Not. IMRN 80 (2004) 4307–4330.
   [6] P.B. Djakov, M.S. Ramanujan, A remark on Bohr's theorem and its generalizations, J. Anal. 8 (2000) 65–77.
- [7] P.L. Duren, Univalent Functions, Springer, New York, 1983.
- [8] G.M. Goluzin, On subordinate univalent functions, Tr. Mat. Inst. Steklova 38 (1951) 68–71 (in Russian).
- [9] I.R. Kayumov, S. Ponnusamy, Bohr inequality for odd analytic functions, Comput. Methods Funct. Theory 17 (2017) 679-688.
- [10] P. Lassère, E. Mazzilli, Bohr's phenomenon on a regular condenser in the complex plane, Comput. Methods Funct. Theory 12 (1) (2012) 31-43.
- [11] V.I. Paulsen, G. Popescu, D. Singh, On Bohr's inequality, Proc. Lond. Math. Soc. 85 (2) (2002) 493-512.