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r é s u m é

Le but de cette note est d’établir un théorème de Cheeger–Müller pour un espace a 
singularités coniques isolées en généralisant la preuve de Bismut et Zhang. Les outils 
utilisés dans la preuve sont les techniques d’indice local et la déformation de Witten.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

An important comparison theorem in global analysis is the comparison of topological and analytic torsion for smooth 
compact manifolds equipped with a unitary flat vector bundle. It has been conjectured by Ray and Singer [14] and has 
been proved independently by Cheeger [2] and Müller [12]. In [1] Bismut and Zhang combined the Witten deformation 
and local index techniques to generalise the result of Cheeger and Müller to arbitrary flat vector bundles with arbitrary 
Hermitian metrics. The study of analytic and topological torsion for spaces with conical singularities has gained a lot of 
interest in recent years, being first addressed by A. Dar [5]. An approach to the Cheeger–Müller theorem for spaces with 
isolated conical singularities, though not yet completed, is to reduce the problem, via the gluing formula of Lesch [8] and 
Vishik [17], to a comparison of torsions on a truncated cone. The analytic torsion of a truncated cone has been studied in 
[16,13,7].
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The aim of this note is to approach the Cheeger–Müller theorem for singular spaces with isolated conical singularities 
following a different strategy, namely by generalising the approach of Bismut and Zhang to the singular situation. The 
approach in the present note relies on the Witten deformation for singular spaces developed in [9–11].

2. The Main Theorem

The setting of this note is the following: (X, gT X ) is a space with isolated conical singularities of dimension n ≥ 2, i.e.: 
X is a compact connected topological space containing a finite set of points Sing(X) ⊂ X , such that Xsm := X \ Sing(X) is a 
smooth manifold of dimension n. In the even-dimensional case, we assume in addition that Xsm is oriented; this assumption 
is needed in Theorem 4.5. The set Sing(X) is called the singular set of X . We denote by T X the tangent bundle of Xsm; gT X

is a Riemannian metric on Xsm. A neighbourhood of a singular point p ∈ Sing(X) in X can be identified with the cone over 
a smooth compact connected manifold Lp of dimension n − 1; Lp is called the link of X at p. Moreover, near a singularity 
p ∈ Sing(X), the metric gT X has the form dr2 + r2 gT Lp with r the radial coordinate and gT Lp a fixed Riemannian metric on 
the link manifold Lp .

Let (F , ∇ F , g F ) be a unitary flat vector bundle over Xsm with canonical flat connection ∇ F and flat Hermitian metric 
g F , i.e. the flat vector bundle is associated with a unitary representation of π1(Xsm). For p ∈ Sing(X), the restriction of 
(F , ∇ F , g F ) to the link Lp is a unitary flat vector bundle denoted by (F Lp , ∇ F L p , g F L p ). Moreover, in a punctured neighbour-
hood of p ∈ Sing(X), the unitary vector bundle (F , ∇ F , g F ) can be identified with the pull-back bundle of the unitary vector 
bundle (F Lp , ∇ F L p , g F L p ). We denote by F ∗ the dual bundle of F and by F ∗

Lp
, p ∈ Sing(X), its restriction to the link Lp .

For the whole note, we make the following assumptions: we assume that X is a Witt space, i.e. either n is even, or, in 
case n odd, H

n−1
2 (Lp, F Lp ) = 0 for p ∈ Sing(X). For Witt spaces, the intersection homology of X with upper and lower middle 

perversity (see [6]) do coincide. We moreover assume that the Laplacian acting on smooth compactly supported forms on 
Xsm with values in F is essentially self-adjoint. We denote its unique self-adjoint extension by �. For Witt spaces, this last 
condition can always be achieved, by a rescaling of the metrics gT Lp , p ∈ Sing(X), to cgT Lp , with c > 0 small enough.

We denote by H•
(2)

(X, F ) the L2-cohomology of X . The L2-metric 〈 , 〉 on the space of sections of �(T ∗ X) ⊗ F , induced 
from gT X , g F , restricts to a metric on the space of L2-harmonic forms H•

(2)(X, F ) := ker�. Using the L2-Hodge isomor-

phism H•
(2)(X, F ) 
 H•(X, F ) (see [3, Section 1 and Theorem 5.1]), we get an induced metric | |RS

det H•
(2)

(X,F )
on the line 

det H•
(2)

(X, F ). We denote by �⊥ the restriction of � to 
(

ker�
)⊥

and by N the number operator acting on sections of 
�(T ∗ X) ⊗ F by multiplication with the form degree. We denote by Trs the supertrace of an operator. For s ∈ C, �(s) > n

2 , 
set θ(s) := −Trs

[
N(�⊥)−s

]
. By a result of A. Dar [5, Section 4], the function θ extends to a meromorphic function on the 

whole complex plane, which is holomorphic at s = 0. The Ray–Singer metric ‖ ‖RS
det H•

(2)
(X,F )

on the line det H•
(2)

(X, F ) is 
defined as

‖ ‖RS
det H•

(2)
(X,F ) := | |RS

det H•
(2)

(X,F ) exp

(
1

2
θ ′(0)

)
. (2.1)

Let Y be a standard anti-radial gradient-like Morse–Smale vector field on Xsm, i.e. outside a neighbourhood of Sing(X)

it is a smooth gradient-like Morse–Smale vector field (see [15, p. 199]), with its standard form near its singular points 
(see [10, Definition 2.7]); in a neighbourhood of Sing(X), we have Y = −r∂r , where again r denotes the radial co-
ordinate. For p ∈ Sing(X), we denote by o(T Lp) the orientation bundle of the link manifold Lp . For p ∈ Sing(X) and 
k ≥ n

2 + 1, let �n−k
p be a set of closed forms on Lp with values in F ∗

Lp
⊗ o(T Lp), whose cohomology classes form a basis of 

Hn−k(Lp, F ∗
Lp

⊗o(T Lp)), hence span�n−k
p 
 Hn−k(Lp, F ∗

Lp
⊗o(T Lp)). Let Crit(Y ) ⊂ Xsm denote the set of singular points of the 

vector field Y . Using the flow induced by the vector field −Y , one can construct a geometric complex (C•(W u, F ∗), ∂•), with 
C•(W u, F ∗) :=

(⊕
p∈Crit(Y )

〈[W u(p)]〉⊗ F ∗
p

)⊕(⊕
p∈Sing(X),k≥n/2+1 span�n−k

p

)
(see [9, Section 6] and [10]). Let (C sm• , ∂•) de-

note the subcomplex of (C•(W u, F ∗), ∂•) generated by Crit(Y ). There is a short exact sequence of complexes

0 → (C sm• , ∂•) → (C•(W u, F ∗), ∂•) → ((C(W u, F ∗)/C sm)•, ∂•) → 0. (2.2)

For p ∈ Sing(X) we denote by cLp the infinite cone over Lp and by Z p the infinite cone with the cone tip removed. 
The unitary flat vector bundle (F Lp , ∇ F L p , g F L p ) can be extended in a trivial way to a unitary flat vector bundle over Z p , 
which we still denote by F . Similarly we still denote by F ∗ the extension of the flat dual bundle F ∗

Lp
to Z p . We de-

note by I H•(cLp, Lp, F ∗) the relative intersection homology of the cone cLp with middle perversity and coefficients in 
F ∗ . Using the local calculation for intersection homology [6, Section 2.4] and Poincaré duality on the link manifold Lp , 
we have H•((C(W u, F ∗)/C sm)•, ∂•) 
 ⊕p∈Sing(X) I H•(cLp, Lp, F ∗). Moreover, a straightforward generalisation of [10, Theo-
rem 6.2] shows that the complex (C•(W u, F ∗), ∂•) computes the intersection homology of X with middle perversity and 
coefficients in F ∗ , I H•(X, F ∗). Hence, from the exact sequence of complexes (2.2), we get natural isomorphisms

det H•(C sm• , ∂•) ⊗ det(⊕p∈Sing(X) I H•(cLp, Lp, F )) 
 det H•(C•(W u, F ∗), ∂•)

 det I H (X, F ∗).

(2.3)

•
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We now explain the construction of a metric on det H•(Hom((C•(W u, F ∗), ∂•), C)): for p ∈ Sing(X), we equip Z p with 
the conic metric. In view of our assumptions, the Laplacian acting on smooth compactly supported sections of �(T ∗ Z p) ⊗ F
admits a unique closed self-adjoint extension �p . The model Witten Laplacian at p ∈ Sing(X) is the operator defined as 
�

p
T := �p − T (2N − n) + T 2r2, T > 0. By [11] the model Witten Laplacian is a discrete operator. By [9, Theorem 4.2], we 

have ker�
p
T 
 I H•(cLp, Lp, F ∗)∗ . The L2-metric on sections of �(T ∗ Z p) ⊗ F restricts to a metric on ker�

p
T . We denote 

the induced metric on the line det I H•(cLp, Lp, F ∗)∗ by | |RS
det I H•(cLp ,Lp ,F ∗)∗,T . We denote by �p,⊥

T the restriction of �p
T

to (ker�
p
T )⊥ . By [11, Theorem I], for �(s) > n

2 , the zeta function s �→ ζ
p
T (s) := −Trs[N(�

p,⊥
T )−s] is a well-defined holo-

morphic function. Moreover, ζ p
T extends to a meromorphic function on the whole complex plane, which is holomorphic 

at s = 0. For p ∈ Sing(X), set ζp := ζ
p

1 and | |RS
det I H•(cLp ,Lp ,F ∗)∗ := | |RS

det I H•(cLp ,Lp ,F ∗)∗,1. The Ray–Singer metric on the line 
det I H•(cLp, Lp, F ∗)∗ is defined as

‖ ‖RS
det I H•(cL p ,L p ,F ∗)∗ := | |RS

det I H•(cL p ,L p ,F ∗)∗ exp

(
1

2
ζ ′

p(0)

)
. (2.4)

The metrics g F p on the fibre F p , p ∈ Crit(Y ), induce a metric on det H•(Hom((C sm• , ∂•), C)) (see [1, Section 1 (d)]). Via 
the natural isomorphism (2.3) the metric on det H•(Hom((C sm• , ∂•), C)) and the Ray–Singer metrics ‖ ‖RS

det I H•(cLp ,Lp ,F ∗)∗ , 

p ∈ Sing(X), induce a metric on det I H•(X, F ∗)∗ . We denote by ‖ ‖Y ,g
det H•

(2)
(X,F )

the metric on the line det H•
(2)(X, F ) induced 

via the natural de Rham isomorphism I H•(X, F ∗)∗ 
 H•
(2)(X, F ). The superscript g indicates that, by construction, the metric 

‖ ‖Y ,g
det H•

(2)
(X,F )

does depend on the metrics (gT Lp , g F L p ), p ∈ Sing(X), and on g F
|Crit(Y )

.

Note that in case that Lp is the standard sphere, i.e. for a smooth point, the metric ‖ ‖RS
det I H•(cLp ,Lp ,F ∗)∗ is trivial. Hence 

the definition of the metric ‖ ‖Y ,g
det H•

(2)
(X,F )

is consistent with the definition of the smooth Milnor metric.

Main Theorem. The following identity holds: ‖ ‖RS
det H•

(2)
(X,F )

= ‖ ‖Y ,g
det H•

(2)
(X,F )

.

In case of a smooth compact manifold, the statement of the Main Theorem is equivalent to the smooth Cheeger–Müller 
theorem. In case of an even-dimensional oriented space with isolated conical singularities, ‖ ‖Y ,g

det H•
(2)

(X,F )
is equal to the 

intersection Reidemeister metric, and we recover the equality between Ray–Singer metric and intersection Reidemeister 
metric proved by A. Dar (see [5, Theorem 2.17 and Theorem 4.5], both metrics are trivial in this case).

3. Strategy of proof

The proof of the Main Theorem follows closely the proof of the extension of the Cheeger–Müller theorem given by 
Bismut and Zhang [1]. The proof can be reduced to the case, where the standard anti-radial gradient-like Morse–Smale 
vector field Y is the gradient vector field of an anti-radial Morse function f : X →R (as defined in [9]).

From now on we assume that f : X → R is an anti-radial Morse function and Y = ∇gT X f =: ∇ f is a standard anti-radial 
Morse–Smale vector field. This means, in particular, that the metric gT X is flat in a neighbourhood of the smooth critical 
points of f . We denote by δ the adjoint of the outer differential d with respect to 〈 , 〉. Let D := d + δ. For T ≥ 0, let 〈 , 〉T

be the twisted L2-metric 〈α, β〉T := ∫
X 〈α, β〉�(T ∗ X)⊗F e−2T f (x)dvolX (x). Let δ′

T be the adjoint of d with respect to 〈 , 〉T . Let 
DT := d + δ′

T and �T := D2
T . Since for l ∈ N and T ≥ 0, dom(Dl) = dom(Dl

T ), one can proceed as in [1, Theorem 5.6] to 
prove that the form ω := dt

2t Trs[N exp(−t D2
T )] − dT Trs[ f exp(−t D2

T )] is a closed form on R≥0 ×R>0 � (T , t).
Let ε, A, T0 ∈ R with 0 < ε < A < ∞, 0 < T0 < ∞. Let  be the boundary of the rectangle {(T , t) | 0 ≤ T ≤ T0, ε ≤ t ≤

A} ⊂R≥0 ×R>0 oriented anti-clockwise. Denote by

1 := {(T , t) | T = T0, ε ≤ t ≤ A}, 2 := {(T , t) | 0 ≤ T ≤ T0, t = A},
3 := {(T , t) | T = 0, ε ≤ t ≤ A}, 4 := {(T , t) | 0 ≤ T ≤ T0, t = ε},

the oriented faces of the rectangle. For k = 1, . . . , 4, set Ik := ∫
k

ω. Since the form ω is closed,

4∑
k=1

Ik = 0. (3.1)

As in [1, Section 7], we study each Ik (k = 1, . . . , 4) individually, by taking in succession the limits A → ∞, T0 → ∞ and 
ε → 0. The Main Theorem follows from (3.1), and the nine intermediary results of the next section.
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4. The nine intermediary results

Denote by Crit( f |Xsm ) the set of critical points of the smooth Morse function f |Xsm and by ck( f |Xsm ) the number of critical 
points of f |Xsm of index k. For k = 0, . . . , n − 1, we denote by bk(Lp, F Lp ) := dim Hk(Lp, F Lp ). Set

ck( f ) := ck( f , F ) :=
⎧⎨⎩ rk(F ) · ck( f |Xsm) +

∑
p∈Sing(X)

bk−1(Lp, F L p ) for k ≥ n
2 + 1,

rk(F ) · ck( f |Xsm) else.

For k = 0, . . . , n, we denote by bk
(2)(X, F ) := dim Hk

(2)(X, F ). We denote the L2-Euler characteristic of X with coefficients 
in F by χ := χ(2)(X, F ) := ∑n

k=0(−1)kbk
(2)(X, F ). By the spectral gap theorem for the Witten Laplacian ([9, Theorem I]) 

χ =∑n
k=0(−1)kck( f ). Set

χ̃ ′ := χ̃ ′(X, F ) :=
n∑

k=0

(−1)kkck( f ),

Trs[ f , F ] := rk(F )
∑

p∈Crit( f |Xsm )

(−1)ind(p) f (p) +
∑

p∈Sing(X)

f (p) ·
n∑

k≥ n
2 +1

(−1)kbk−1(Lp, F L p ),

χsm := rk(F )

n∑
k=0

(−1)kck( f |Xsm), χ̃ ′
sm := rk(F )

n∑
k=0

(−1)kkck( f |Xsm).

For T ≥ 0, we denote by (S•
T , d, 〈 , 〉T ) the complex generated by the eigenforms of the Laplacian �T = D2

T to eigenvalues 
in [0, 1]. We denote by P [0,1]

T the orthogonal projection to S•
T w.r.t. 〈 , 〉T . Set P ]1,∞[

T = 1 − P [0,1]
T . We denote by D2, ]0,1]

T

(resp. D2,[0,1]
T ) the restriction of �T to the eigenspace of �T associated with eigenvalues in the interval ]0, 1] (resp. in the 

interval [0, 1]). The twisted L2-metric 〈 , 〉T restricted to ker�
(k)
T 
 Hk

(2)(X, F ) induces a metric on the line det H•
(2)(X, F ), 

which we denote by | |RS
det H•

(2)
(X,F ),T .

The following nine intermediary results are the analogues of [1, Theorem 7.6–7.14].

Theorem 4.1. The following identity holds, for T → ∞,

Trs

[
N log

(
D2, ]0,1]

T

)]
− log

⎛⎝ ‖ ‖∇ f ,g
det H•

(2)
(X,F )

| |RS
det H•

(2)
(X,F ),T

⎞⎠2

+ 2T Trs[ f , F ] +
(n

2
χ − χ̃ ′) log(T )

−
(n

2
χsm − χ̃ ′

sm

)
log(π) +

∑
p∈Sing(X)

ζ ′
p(0) = O(exp(−cT )).

Theorem 4.2. Given ε , A with 0 < ε < A < ∞, there exists C > 0 such that if t ∈ [ε, A], T ≥ 1, then 
∣∣Trs[N exp(−t D2

T )] − χ̃ ′∣∣≤ C√
T

.

Theorem 4.3. For any t > 0, limT →∞ Trs

[
N exp(−t D2

T )P ]1,∞[
T

]
= 0. Moreover there exist c > 0, C > 0 such that for t ≥ 1, T ≥ 0: ∣∣∣Trs

[
N exp(−t D2

T )P ]1,∞[
T

]∣∣∣≤ C exp(−ct).

Theorem 4.4. For T > 0 large enough and k = 0, . . . , n: dimSk
T = ck( f ). Moreover, lim

T →∞ Tr
[

D2,[0,1]
T

]
= 0.

Let e1, . . . , en be an orthonormal basis of T X , e1, . . . , en the corresponding dual basis of the cotangent bundle 
T ∗ X . Let ∇T X denote the Levi-Civita connection of (X, gT X ). We denote by Ṙ T X it curvature seen as a section of 
�2(T ∗ X)⊗̂�2(T ∗ X). We decorate elements in the second factor of �2(T ∗ X)⊗̂�2(T ∗ X) with a ̂ . Let W be the smooth 
section of �(T ∗ X)⊗̂�(T ∗ X) defined by W := 1

2

∑n
i=1 ei ∧ êi . We denote by o(T X) the orientation bundle of X . The Berezin 

integral formalism yields a map 
∫ B from sections of �(T ∗ X)⊗̂�(T ∗ X) to section of �(T ∗ X) ⊗ o(T X) (see [1, Section 3]).
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Theorem 4.5. As t ↘ 0, the following asymptotic expansion holds, in case n is odd,

Trs
[
N exp(−t D2)

]= rk(F )√
t

∫
X

B∫
W exp

(
− Ṙ T X

2

)
+ n

2
· χ(2)(X, F ) +O(

√
t).

In case n is even, X oriented, for t > 0: Trs
[
N exp(−t D2)

]= n
2 · χ(2)(X, F ).

Theorem 4.6. Let 0 < t < 1 be small enough. Then there exists c > 0 such that, as T → ∞,

Trs
[

f exp(−t D2
T )
]= Trs[ f , F ] +

(
n

4
χ − 1

2
χ̃ ′
)

1

T
+O(exp(−cT )).

For t > 0 and p ∈ Sing(X), we denote by Q p
t (x, x′), x, x′ ∈ Z p , the kernel of the operator exp

(− t�p
)

with respect to 
dvolZ p . The integral γp(F ) := 1

2

∫∞
0

dt
t

∫
L Trs

[
Q p

t ((1, y), (1, y))
]

dvolLp is well defined (see [4]). For T ≥ 0, let BT be the 

smooth section of �(T ∗ X)⊗̂�(T ∗ X) defined by BT := Ṙ T X

2 +√
T
∑n

i=1 ei ∧∇̂T X
ei

∇ f + T |d f |2. We denote by ̂c( f ) the Clifford 
multiplication operator, ̂c( f ) = d f ∧ +ι∇ f .

Theorem 4.7. For any d > 0, there exists C > 0 such that for 0 < t ≤ 1, 0 ≤ T ≤ d
t ,

∣∣∣Trs

[
f exp

(
− (

t D + T ĉ(∇ f )
)2
)]

− rk(F )

∫
X

f

B∫
exp(−BT 2) −

∑
p∈Sing(X)

f (p)γp(F )

∣∣∣≤ Ct2.

Theorem 4.8. For any T > 0, the following identity holds,

lim
t→0

1

t2

{
Trs

[
f exp

(
−
(

t D + T

t
ĉ(∇ f )

)2
)]

− Trs[ f , F ]
}

=
(

n

4
χsm − 1

2
χ̃ ′

sm

)
1

T tanh(T )

− 1

2T

∑
p∈Sing(X)

⎛⎝Trs[N exp(−�
p,⊥
T )] −

∑
k≥ n

2 +1

(−1)kbk−1(Lp, F L p )
(n

2
− k

)⎞⎠ .

Theorem 4.9. There exist constants t0, c, C > 0, such that for t ∈]0, t0] and T ≥ 1,∣∣∣∣∣ 1

t2

{
Trs

[
f exp

(
−
(

t D + T

t
ĉ(∇ f )

)2
)]

− Trs[ f , F ] − t2

T

(
n

4
χ − 1

2
χ̃ ′
)}∣∣∣∣∣ ≤ C exp(−cT ).
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