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We have recently introduced the trimming property for a complete Riemannian manifold 
Nn as a necessary and sufficient condition for bounded maps to be strongly dense in 
W 1,p(Bm; Nn) when p ∈ {1, . . . , m}. We prove in this note that, even under a weaker 
notion of approximation, namely the weak sequential convergence, the trimming property 
remains necessary for the approximation in terms of bounded maps. The argument involves 
the construction of a Sobolev map having infinitely many analytical singularities going to 
infinity.
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r é s u m é

Nous avons récemment introduit la propriété dite trimming property pour une variété 
riemanienne complète Nn : il s’agit d’une condition nécessaire et suffisante pour que 
les applications bornées soient fortement denses dans W 1,p(Bm; Nn) pour p ∈ {1, . . . , m}. 
Nous prouvons dans cette note que, même pour une notion de convergence plus faible, 
à savoir la convergence séquentielle faible, la trimming property reste nécessaire pour 
l’approximation en termes de fonctions bornées. La preuve repose sur la construction d’une 
application de Sobolev qui a une infinité de singularités hors de tout compact.
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1. Introduction and statement of the result

Given a Riemannian manifold Nn embedded in the Euclidean space Rν , the space W 1,p(Bm; Nn) of Sobolev maps from 
the unit ball Bm ⊂ R

m to Nn can be defined by

W 1,p(Bm; Nn) = {
u ∈ W 1,p(Bm;Rν) : u ∈ Nn almost everywhere in Bm}

.

This space arises in some geometrical settings (harmonic maps) and in some physical models (liquid crystals, gauge theories, 
elasticity).

One question concerning these spaces is whether and how Sobolev maps can be approximated by smooth maps. Due to 
the nonconvex character of the target manifold Nn , the usual convolution by a family of mollifiers fails in general. However, 
when the target manifold Nn is compact and p ≥ m, the class C∞(Bm; Nn) is strongly dense in W 1,p(Bm; Nn): for every 
map u ∈ W 1,p(Bm; Nn), there exists a sequence of smooth maps (u�)�∈N in C∞(Bm; Nn) that converges in measure to u on 
Bm and

lim
�→∞

∫
Bm

|Du� − Du|p = 0;

see [14]. When 1 ≤ p < m, this results holds if and only if the homotopy group of Nn of order �p	 (integer part of p) is 
trivial; see [2,12].

In a recent work [5], we have considered the question of what happens when the target manifold Nn is not compact, but 
merely complete. The starting observation is that the same homotopy assumption on Nn is necessary and sufficient for every 
map in (W 1,p ∩ L∞)(Bm; Nn) to be strongly approximated by smooth maps. Choosing a closed embedding of Nn into Rν , the 
boundedness of a measurable map u : Bm → Nn with respect to the Riemannian distance coincides with its boundedness as 
a map into Rν ; by L∞(Bm; Nn) we mean the class of such maps. Therefore, the problem of strong approximation by smooth 
maps is reduced to the approximation of Sobolev maps by bounded Sobolev maps when p ≤ m.

In [5], we prove the following theorem.

Theorem 1.1. If 1 ≤ p ≤ m is not an integer, then (W 1,p ∩ L∞)(Bm; Nn) is strongly dense in W 1,p(Bm; Nn).

When p ≤ m is an integer, a new obstruction, this time of analytical nature, arises. Indeed, even in the case p = m, where 
Sobolev maps cease to be continuous, but still have vanishing mean oscillation (VMO), there exist maps u ∈ W 1,p(B p; Nn)

for some complete manifolds Nn that cannot be strongly approximated by bounded maps [10,5]. A characteristic of those 
pathological target manifolds Nn is that their geometry degenerates at infinity, and the examples available can be realized 
as an m-dimensional infinite bottle in Rm+1 with a thin neck.

In order to identify the mechanism that is hidden in these examples, we have introduced the trimming property.

Definition 1.1. Given p ∈ N \ {0}, the manifold Nn satisfies the trimming property of dimension p whenever there exists a 
constant C > 0 such that every map f ∈ C∞(∂ B p; Nn) that has a Sobolev extension u ∈ W 1,p(B p; Nn) also has a smooth 
extension v ∈ C∞(B p; Nn) such that∫

B p

|Dv|p ≤ C

∫
B p

|Du|p.

The use of C∞ maps is not essential, and other classes like Lipschitz maps or continuous Sobolev maps (W 1,p ∩ C0) 
yield equivalent definitions of the trimming property; see, e.g., Proposition 6.1 in [5]. The condition above allows one to 
characterize the target manifolds Nn for which every map has a strong approximation by bounded Sobolev maps.

Theorem 1.2. For every p ∈ {1, . . . , m}, the set (W 1,p ∩ L∞)(Bm; Nn) is strongly dense in W 1,p(Bm; Nn) if and only if Nn satisfies 
the trimming property of dimension p.

The trimming property can be seen to be always satisfied when p = 1 by taking as v a shortest geodesic joining the 
points f (−1) and f (1). We focus therefore on the case where p ≥ 2 and the trimming property fails. One may hope 
to approximate every map in W 1,p(Bm; Nn) by bounded maps using some weaker topology. In this note, we address the 
question of whether this is true for the weak sequential approximation: given u ∈ W 1,p(Bm; Nn), to find a sequence of maps 
(u�)�∈N in (W 1,p ∩ L∞)(Bm; Nn) which converges in measure to u and satisfies

sup
�∈N

∫
Bm

|Du�|p < +∞.

This notion of convergence is also known as weak-bounded convergence [15].
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An inspection of the explicit examples from [10,5] of maps u ∈ W 1,p(B p; Nn) that have no strong approximation by 
bounded maps shows that they have nevertheless a weak sequential approximation by bounded maps; see Remark 1 below. 
Using a more subtle construction that involves infinitely many analytical singularities, we prove that the trimming property 
is still necessary for the weak sequential approximation.

Theorem 1.3. Let Nn be a connected closed embedded Riemannian manifold in Rν and p ∈ {2, . . . , m}. Every map u ∈ W 1,p(Bm; Nn)

has a sequence in (W 1,p ∩ L∞)(Bm; Nn) that converges weakly to u if and only if Nn satisfies the trimming property of dimension p.

This settles the question of weak sequential approximation by bounded Sobolev maps. The counterpart of the weak 
sequential approximation by smooth maps is still open, even for compact manifolds Nn , except when p = 1 and p = 2, or 
when Nn is (p − 1)-connected, in which cases the weak sequential approximation always has an affirmative answer [11,13,
9]; a recent counterexample by F. Bethuel [3] gives a surprising negative answer in W 1,3(B4; S2). His proof involves a map 
with infinitely many topological singularities, which are modeled after the Hopf map from S3 onto S2.

2. Proof of the main result

Our proof of Theorem 1.3 relies on a counterexample obtained by gluing together maps for which the trimming property 
degenerates. To perform this, we first need to ensure that the trimming property fails on maps with a small Sobolev norm.

We shall say that a map u : B p → Nn is semi-homogeneous if u(x) = f (x/|x|) for |x| ≥ 1/2 and some function 
f : ∂ B p → Nn; by abuse of notation, we write f = u. The following property is a consequence of Lemma 6.4 in [5].

Lemma 2.1. Let p ∈N \ {0}, β > 0 and C > 0. Assume that for every semi-homogeneous map u ∈ W 1,p(B p; Nn) such that∫
B p

|Du|p ≤ β,

there exists a map v ∈ (W 1,p ∩ L∞)(B p; Nn) such that v = u on B p \ B p
1/2 and∫

B p

|Dv|p ≤ C

∫
B p

|Du|p.

Then, the manifold Nn has the trimming property.

Proof. We recall that Lemma 6.4 in [5] asserts that the manifold Nn has the trimming property whenever there ex-
ist α > 0 and C ′ > 0 such that for every map ũ ∈ W 1,p(B p; Nn) (not necessarily semi-homogeneous) which satisfies 
ũ ∈ W 1,p(∂ B p; Nn) and∫

B p

|Dũ|p +
∫

∂ B p

|Dũ|p ≤ α, (1)

there exists a map ṽ ∈ (W 1,p ∩ L∞)(B p; Nn) such that ṽ = ũ on ∂ B p and∫
B p

|Dṽ|p ≤ C ′
(∫

B p

|Dũ|p +
∫

∂ B p

|Dũ|p
)

. (2)

But, in this case, one can take u : B p → Nn defined by

u(x) =
{

ũ(2x) if |x| ≤ 1/2,

ũ(x/|x|) if |x| > 1/2,

which is semi-homogeneous, also belongs to W 1,p(B p; Nn) and satisfies∫
B p

|Du|p ≤
∫
B p

|Dũ|p + C1

∫
∂ B p

|Dũ|p ≤ max {1, C1}α,

where the constant C1 > 0 only depends on p.
We thus have that, for every map ũ satisfying the estimate (1) with α = β/ max {1, C1}, the semi-homogeneous map u

defined above satisfies the assumptions of Lemma 2.1, and thus there exists a map v as in the statement. The inequality 
(2) is thus verified with ṽ = v and C ′ = C max {1, C1}, hence by Lemma 6.4 in [5], the manifold Nn satisfies the trimming 
property. �
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We now quantify the behavior of the p-Dirichlet energy for the weak sequential approximation of a given map u in 
terms of bounded extensions of u|∂ B p , which are related to the trimming property.

Lemma 2.2. Let p ∈N \ {0}. If u ∈ W 1,p(B p; Nn) is semi-homogeneous and if (u�)�∈N is a sequence of maps in (W 1,p ∩ L∞)(B p; Nn)

that converges in measure to u, then

lim inf
�→∞

∫
B p

|Du�|p ≥ c inf

{∫
B p

|Dv|p : v ∈ (W 1,p ∩ L∞)(B p; Nn) and u = v in B p \ B p
1/2

}
.

Proof. We first recall that smooth maps are strongly dense in (W 1,p ∩ L∞)(B p; Nn); see Proposition 3.2 in [5], in the spirit 
of [14]. By a diagonalization argument, we can thus assume that, for every � ∈ N, u� ∈ C∞(B p; Nn). We may further restrict 
our attention to the case where the sequence (Du�)�∈N is bounded in Lp(B p; Rν×p). Since the sequence (u�)�∈N converges 
in measure to u, it then follows that (u�)�∈N converges strongly to u in Lp(B p; Nn).

Indeed, the function (|u� − u| − 1)+ vanishes on a set of measure greater than |B p |/2 for every � sufficiently large. 
Applying to this function the Sobolev–Poincaré inequality

‖ f ‖Lq(B p) ≤ C1‖D f ‖L p(B p)

valid for 1 ≤ q < +∞ and f ∈ W 1,p(B p) that vanishes on a set of measure greater than |B p |/2 (see p. 177 in [16]), we 
deduce that (u�)�∈N is bounded in Lq(B p; Nn) for q > p. The strong convergence of (u�)�∈N in Lp(Bm; Nn) now follows from 
its convergence in measure and Vitali’s convergence theorem for uniformly integrable sequences of functions.

By the integration formula in polar coordinates and the Chebyshev inequality, there exists a radius r� ∈ [1/2, 1] such that∫
∂ B p

r�

|Du�|p ≤ 5
∫

B p\B p
1/2

|Du�|p and
∫

∂ B p
r�

|u� − u|p ≤ 5
∫

B p\B p
1/2

|u� − u|p . (3)

We then define the map v� : B p → R
ν for x ∈ B p by

v�(x) =

⎧⎪⎨
⎪⎩

u�(4r�x) if |x| ≤ 1/4,

(2 − 4|x|)u�(r�x/|x|) + (4|x| − 1)u(x/|x|) if 1/4 ≤ |x| ≤ 1/2,

u(x) if |x| ≥ 1/2.

By the semi-homogeneity of u, we have v� ∈ (W 1,p ∩ L∞)(B p; Rν), and then by the estimates of Eq. (3),∫
B p

|Dv�|p ≤ C2

(∫
B p

|Du�|p +
∫

B p\B p
1/2

|Du|p +
∫

B p\B p
1/2

|u� − u|p
)

.

Since (u�)�∈N is bounded in W 1,p(B p; Nn) and converges in measure to u, by weak lower semi-continuity of the L p norm 
we obtain∫

B p

|Du|p ≤ lim inf
�→∞

∫
B p

|Du�|p .

Hence, by the strong convergence of (u�)�∈N to u in Lp(B p; Nn), we get

lim inf
�→∞

∫
B p

|Dv�|p ≤ 2C2 lim inf
�→∞

∫
B p

|Du�|p .

Recalling that the manifold Nn is embedded into Rν , there exists an open set U ⊃ Nn and a retraction π ∈ C1(U ; Nn)

such that ‖Dπ‖L∞(U ) ≤ 2 and π|Nn = id. By the second inequality in (3), the sequence (u�(r� ·))�∈N converges to u(r� ·) = u
in Lp(∂ B p; Nn). By the Morrey embedding, this convergence is also uniform on ∂ B p , and u(∂ B p) is a compact subset of Nn . 
Hence, for � large enough, we have v�(B p) ⊂ U , and we can thus take v = π ◦ v� to reach the conclusion; see e.g. Lemma 2.2 
in [5]. �

Two maps in W 1,p(B p; Nn) may not be glued to each other because they could have different boundary values. We 
remedy to this problem by first gluing together two copies of the same map with reversed orientations, and then extending 
the resulting map to achieve a new map which is constant on B p \ B p

1/2 (in particular semi-homogeneous), in the spirit of 
the dipole construction [6,7,1].
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Lemma 2.3. Let p ∈N \ {0}. For every u ∈ W 1,p(B p; Nn), there exists a map v ∈ W 1,p(B p; Nn) such that

(i) the map v is constant on B p \ B p
1/2 ,

(ii) for every x ∈ B p
1/8 , v(x) = u(8x),

(iii)
∫
B p

|Dv|p ≤ C

∫
B p

|Du|p .

Proof. We first apply the opening construction to the map u around 0; see Proposition 2.2 in [4] (the opening technique has 
been introduced in [8]). This gives a map ũ ∈ W 1,p(B p; Nn) such that ũ is constant on B p

1/2, agrees with u in a neighborhood 
of ∂ B p and satisfies ‖Dũ‖Lp(B p) ≤ C1‖Du‖Lp(B p) . We then introduce the map v : B p → Nn defined by

v(x) =
{

u(8x) if |x| < 1/8,

ũ
(
16x/(1 + (8|x|)2)

)
if |x| ≥ 1/8.

Since u = ũ on ∂ B p in the sense of traces, the map v belongs to W 1,p(B p; Nn). Moreover, the fact that ũ is constant on 
B p

1/2 implies that v is constant on B p \ B p
1/2 and thus∫

B p

|Dv|p =
∫

B p
1/2

|Dv|p ≤
∫
B p

|Du|p + C2

∫
B p

|Dũ|p ≤ C3

∫
B p

|Du|p .

The proof is complete. �
Here is a geometric interpretation of the above proof: we consider two copies of u on the two hemispheres of the 

sphere S
p , which coincide on the equator. We then open the map u in a neighborhood of the north pole. Using a stereo-

graphic projection centered at the north pole which maps Sp onto Rp , we then get a map defined on the whole Rp , which 
agrees with u on B p and which is constant outside a larger ball. Then, by scaling, we obtain the desired map v .

We now modify a Sobolev map which is constant near the boundary into a new map with a prescribed constant value 
near the boundary.

Lemma 2.4. Let p ∈ N \ {0, 1}, Nn be a connected manifold, and y0 ∈ Nn. For every ε > 0 and every map u ∈ W 1,p(B p; Nn) which 
is constant on B p \ B p

1/2 , there exist σ ∈ (0, 1/2) and a smooth function ζ : [σ , 1] → Nn such that ζ = y0 on [1/2, 1] and the map 
w : B p → Nn defined by

w(x) =
{

u(x/σ ) if |x| < σ ,

ζ(|x|) if |x| ≥ σ ,

belongs to W 1,p(B p; Nn) and satisfies∫
B p

|Dw|p ≤
∫
B p

|Du|p + ε.

Proof. Let y1 ∈ Nn be such that u = y1 on B p \ B p
1/2. Since the manifold Nn is connected, there exists a smooth curve 

γ ∈ C∞([0, 1]; Nn) such that γ (0) = y0 and γ (1) = y1. For σ ∈ (0, 1/2) and x ∈ B p , we then define

wσ (x) =
{

u(x/σ ) if |x| < σ,

γ
(
log|x|/logσ

)
if |x| ≥ σ .

We compute that

∫
B p

|Dwσ |p =
∫
B p

|Du|p +
∫

B p\B p
σ

∣∣γ ′( log|x|
log σ

)∣∣p

|logσ |p|x|p
dx ≤

∫
B p

|Du|p + C1‖γ ′‖p
L∞

|logσ |p−1 .

Since p > 1, we can take σ < 1/2 small enough so that the last term is smaller than ε . �
Proof of Theorem 1.3. If Nn satisfies the trimming property, then the sequence can be constructed to converge strongly to u, 
and in particular weakly, by Theorem 1.2. To prove the direct implication, we assume by contradiction that the manifold Nn
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does not satisfy the trimming property, and in this case we construct a map u ∈ W 1,p(Bm; Nn) that does not have a weak 
sequential approximation.

We first consider the case m = p. In view of Lemma 2.1 with β = 1/2 j and C = 2 j , where j ∈ N, by contradiction 
assumption there exists a semi-homogeneous map z j ∈ W 1,p(B p; Nn) such that∫

B p

|Dz j|p ≤ 1

2 j
,

and for every v ∈ (W 1,p ∩ L∞)(B p; Nn) such that v = z j on B p \ B p
1/2, we have∫

B p

|Dv|p > 2 j
∫
B p

|Dz j|p . (4)

We then take an integer k j ≥ 1 such that

1

2 j+1
≤ k j

∫
B p

|Dz j|p ≤ 1

2 j
. (5)

By Lemma 2.3, we next replace z j by a map v j which is constant on B p \ B p
1/2, agrees with z j(8x) for x ∈ B p

1/8, and 
satisfies ‖Dv j‖p

Lp(B p) ≤ C‖Dz j‖p
Lp(B p) . By Lemma 2.4, we may further replace v j by a map w j which equals some fixed value 

y0 ∈ Nn on B p \ B p
1/2, satisfies

w j(x) = v j(x/σ j) = z j(8x/σ j) on B p
σ j/8

for some σ j ∈ (0, 12 ), and is such that∫
B p

|Dw j|p ≤
∫
B p

|Dv j|p + ε j ≤ C

∫
B p

|Dz j|p + ε j . (6)

Here ε j > 0 is chosen so that the sequence (k jε j) j∈N is summable.
For j ∈N and i ∈ {1, . . . , k j}, we now choose points ai, j ∈R

p and radii ri, j > 0 such that the balls B p
ri, j

(ai, j) are contained 
in B p

1/2 and are mutually disjoint with respect to i and j. We then define the map u : B p → Nn by

u(x) =
{

w j
( x−ai, j

ri, j

)
if x ∈ B p

ri, j
(ai, j),

y0 otherwise.

Observe that u ∈ W 1,p(B p; Nn) and, by estimates (6) and (5),

∫
B p

|Du|p =
∑
j∈N

k j∑
i=1

∫
B p

ri, j
(ai, j)

1

r p
i, j

∣∣Dw j
( x−ai, j

ri, j

)∣∣p
dx =

∑
j∈N

k j

∫
B p

|Dw j|p ≤
∑
j∈N

k j

(
C

∫
B p

|Dz j|p + ε j

)
≤ 2C +

∑
j∈N

k jε j .

We now prove that u cannot be weakly approximated by a sequence of bounded Sobolev maps. For this purpose, let 
(u�)�∈N be a sequence in (W 1,p ∩ L∞)(B p; Nn) that converges in measure to u. For every j ∈ N and i ∈ {1, . . . , k j}, it also 
converges in measure on the ball B p

ri, jσ j/8(ai, j), where we have

u(x) = z j

( 8

ri, jσ j
(x − ai, j)

)
.

By the scaling invariance of the p-Dirichlet energy in Rp and Eq. (4), we deduce from Lemma 2.2 that

lim inf
�→∞

∫
B p

ri, j
(ai, j)

|Du�|p ≥ c 2 j
∫
B p

|Dz j|p .

Hence, by Fatou’s lemma for sums of series and the first inequality in Eq. (5), we get

lim inf
�→∞

∫
B p

|Du�|p ≥
∑
j∈N

k j∑
i=1

lim inf
�→∞

∫
B p

r (ai, j)

|Du�|p ≥ c
∑
j∈N

k j2
j
∫
B p

|Dz j|p ≥ c
∑
j∈N

1

2
= +∞,
i, j
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which yields a contradiction and completes the proof when p = m.
When p < m, we construct a counterexample u ∈ W 1,p(Bm; Nn) to the weak sequential density that satisfies the addi-

tional property to be constant on Bm \ Bm
1/2. We proceed as follows: we first take a counterexample ũ ∈ W 1,p(B p; Nn) which 

equals y0 ∈ Nn on B p \ B p
1/2. We then set, for x = (x′, x′′) ∈ R

p−1 ×R,

ū(x) =
{

ũ(2x′,2x′′ − 1) if |x′|2 + (x′′ − 1/2)2 ≤ 1/16,

y0 otherwise.

This map ū, which is obtained from ũ by translation and dilation, is still a legitimate counterexample in Rp .
We next perform a rotation of the upper-half subspace Rp−1 × (0, ∞) × {0m−p} ⊂ R

m around the axis Rp−1 × {0m−p+1}
to define the desired map u : Rm → Nn for x = (x′, x′′) ∈ R

p−1 ×R
m−p+1 by

u(x) = ū(x′, |x′′|).
Geometrically, on every slice of the set{

x ∈R
m : |x′|2 + (|x′′| − 1/2)2 ≤ 1/16

}
by a p-dimensional plane containing Rp−1 ×{0m−p+1}, u is obtained by gluing two copies of ũ on balls of radii 1/2, having 
opposite orientations.

We conclude by observing that u ∈ W 1,p(Bm; Nn) is also a counterexample to the weak sequential density. Indeed, if 
there were some weak sequential approximation of u by bounded Sobolev maps, then, by slicing Rm with p-dimensional 
planes containing Rp−1 × {0m−p+1} and using a Fubini-type argument, we would have a weak sequential approximation of 
ũ by bounded Sobolev maps in dimension p. By the choice of ũ , this is not possible. �
Remark 1. The map provided by the counterexample above has infinitely many singularities. In the presence of only finitely 
many analytical singularities, one shows that the problem of weak approximation by a sequence of bounded Sobolev maps 
has an affirmative answer. We justify below this observation in the case of one singularity at a = 0 and for a map u ∈
C∞(B p \ {0}; Nn) whose restriction u|∂ B p is homotopic to a constant in C0(∂ B p; Nn); the latter property is always satisfied 
when the homotopy group πp−1(Nn) is trivial.

We proceed as follows: given a sequence of numbers (r�)�∈N in (0, 1) that converges to 0, for each � ∈ N take the map 
u� : B p → Nn defined by

u�(x) =

⎧⎪⎨
⎪⎩

u(x) if |x| ≥ r�,

u(r2
� x/|x|2) if r2

� ≤ |x| < r�,

H(|x|/r2
� , x/|x|) if |x| < r2

� ,

where H : [0, 1] × ∂ B p → Nn is a smooth homotopy such that H(1, ·) = u|∂ B p and H(t, ·) = y0 for t ≤ 1/2, and y0 ∈ Nn is 
some given point. Observe that such a map u� is defined through a Kelvin transform that sends the annulus B p

r� \ B p
r2
�

onto 

B p
1 \ B p

r� and preserves the p-Dirichlet energy. One then verifies that∫
B p

|Du�|p ≤ 2
∫
B p

|Du|p + C‖D H‖p
L∞([0,1]×∂ B p).

Since u� = u on B p \ B p
r� , the sequence (u�)�∈N converges in measure to the map u.
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