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We consider the free boundary compressible and incompressible Euler equations with 
surface tension. In both cases, we provide a priori estimates for the local existence with the 
initial velocity in H3, with the H3 condition on the density in the compressible case. An 
additional condition is required on the free boundary. Compared to the existing literature, 
both results lower the regularity of initial data for the Lagrangian Euler equation with 
surface tension.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous considérons les équations d’Euler compressibles et incompressibles avec frontière 
libre et tension de surface. Dans les deux cas, nous fournissons des estimations a priori
pour l’existence de solutions locales avec vitesse initiale dans H3 et la condition H3 sur 
la densité dans le cas compressible. Une condition supplémentaire est nécessaire sur la 
frontière libre. Par comparaison avec la littérature, les deux résultats abaissent la régularité 
des données initiales pour les équations d’Euler en coordonnées lagrangiennes, avec tension 
de surface.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this note, we address the water wave problem, which has been studied extensively. Our setting is rather general: 
we consider the Euler equations with a free surface and allow initial data to have nonzero curl, i.e. the initial data is 
rotational. The domain is assumed to be of finite depth, but the results can be easily adapted to the infinite depth as well. 
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We consider both the compressible and incompressible cases; for the compressible Euler equations, we assume that the 
density is bounded from below, i.e. we consider the case of a liquid.

Our aim in this note is to announce two recent results on the local existence with non-zero surface tension. In both 
main theorems (the compressible and incompressible cases, respectively), we assume that the initial data is of H3 regularity 
in the interior. This lowers the regularity of existing results for the compressible equations. In the incompressible setting, 
our result lowers the known regularity in Lagrangian coordinates, albeit it does not improve over what has been obtained 
in Eulerian coordinates.

The history of the Euler equations with free interface is rich—we refer the reader to [2,4,5] for a more complete ac-
count. We only mention a few important works dealing with non-zero surface tension. The first general well-posedness 
result for the incompressible free-boundary Euler equations with surface tension is [2], followed by [9,10] and [3]. Earlier, 
well-posedness had been established under the assumption that the initial vorticity vanishes on the boundary [8]. For the 
compressible equations with surface tension, the first result was [1].

In the first part of the note, we address the compressible Euler equations, while in the second part we treat the incom-
pressible version.

2. Compressible case

In the Lagrangian setting, the free-surface compressible Euler equations read

R∂t vα + aμα∂μq = 0 in [0, T ) × �, (1a)

∂t R + Raμα∂μvα = 0 in [0, T ) × �, (1b)

∂ta
αβ + aαγ ∂μvγ aμβ = 0 in [0, T ) × �, (1c)

q = q(R) in [0, T ) × �, (1d)

aμα Nμq + σ |aT N|�gη
α = 0 on [0, T ) × 
1, (1e)

vμNμ = 0 on [0, T ) × 
0, (1f)

η(0, ·) = id, R(0, ·) = �0, v(0, ·)= v0. (1g)

Above, v , R , and q denote the Lagrangian velocity, density, and the pressure, respectively; N is the unit outer normal to 
∂�, a is the inverse of ∇η, σ = constant > 0 is the coefficient of surface tension, and �g is the Laplacian of the metric gij
induced on ∂�(t) by the embedding η, i.e. gij = ∂iη · ∂ jη = ∂iη

μ∂ jημ .
We consider the domain �0 ≡ � = T

2 × (0, 1). We note that using the straightening map in [7, Remark 4.2], it is easy to 
modify the approach to consider a general curved domain �′ = R

2 × (0, h(x1, x2)). Applying the change of variable in [7], 
we get

R∂t vα + aμαbβ
μ∂βq = 0

instead of (1a); here b is the cofactor inverse matrix of the straightening map. The other equations in the system (1a)–(1g)
are modified similarly. The methods outlined here then easily carry over for the new system as well, provided �′ is at least 
H5 regular.

Denoting the coordinates on � by (x1, x2, x3), we have 
1 = T
2 × {x3 = 1} as the free boundary and 
0 = T

2 × {x3 = 0}
as the stationary one. On the pressure function, we assume(

q(R)

R

)′
≥ Aq = constant > 0, (2)

which is satisfied by a large class of equations of state.
We denote by � the canonical projection, on η(
1), from the tangent bundle of η(�) to its normal bundle, which is 

given by �α
β = δα

β − gkl∂kη
α∂lηβ . We recall that initial data for (2) is required to satisfy compatibility conditions (cf. [5]). 

The following is the main result in the compressible case.

Theorem 2.1. Let v0 be a smooth vector field on � and �0 a smooth positive function on � bounded away from zero from below. 
Assume that v0 and �0 satisfy the compatibility conditions. Let q : (0, ∞) → (0, ∞) be a smooth function satisfying (2) in a neigh-
borhood of �0 . Then, there exist a T∗ > 0 and a constant C∗ , depending only on σ > 0, ‖v0‖3 , ‖v0‖3,
1 , ‖�0‖3 , ‖�0‖3,
1 , and 
‖(� div v0)�
1‖−1,
1 such that any smooth solution (v, R) to (1), with initial condition (v0, �0) and defined on the time interval 
[0, T∗), satisfies

N (t) = ‖v‖2
3 + ‖∂t v‖2

2 + ‖∂2
t v‖2

1 + ‖∂3
t v‖2

0 + ‖R‖2
3 + ‖∂t R‖2

2

+ ‖∂2
t R‖2

1 + ‖∂3
t R‖2

0 + ‖�∂∂2
t v‖2

0,
1
+ ‖�∂2∂t v‖2

0,
1
≤ C∗,

(3)

where ∂ stands for the tangential derivative.
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Next, we describe the strategy of the proof and discuss the treatment of difficult terms. The main part is based on the 
energy estimate for three time derivatives,

1

2

d

dt

∫
�

R(0)∂3
t vβ∂3

t vβ + 1

2

d

dt

∫
�

R(0)

R
q̄′(R)(∂3

t R)2 +
∫

1

∂3
t ( Jaαβq)∂3

t vβ Nα

= −
∫
�

R(0)

R

(
∂3

t (Raαβ∂α vβ) − Raαβ∂3
t ∂α vβ

)
∂3

t

( q

R

)

+
∫
�

R(0)
(
∂3

t

(
aαβ q

R

)
− aαβ∂3

t

( q

R

))
∂3

t ∂α vβ

− 3
∫
�

R(0)
q̄′′(R)

R
∂4

t R∂2
t R∂t R −

∫
�

R(0)
q̄′′′(R)

R
∂4

t R(∂t R)3

+ 1

2

∫
�

R(0)∂t

(
q̄′(R)

R

)
(∂3

t R)2

(4)

where

q̄(R) = q(R)

R

and J = det(∇η). The first two terms on the left provide a coercive term ‖∂3
t v‖2

0 + ‖∂3
t R‖2

0. In the third term I1 =∫

1

∂3
t ( Jaαβq)∂3

t vβ Nα on the left side of (4), we use (1e) for the pressure, leading to I1 = ∫ t
0

∫

1

∂3
t (

√
g�gη

α)∂3
t vα , where 

we set σ = 1 for simplicity. This may be rewritten as

I1 = −
t∫

0

∫

1

√
g gij�α

μ∂ j∂
2
t vμ∂i∂

3
t vα −

t∫
0

∫

1

∂i(
√

g gij�α
μ)∂ j∂

2
t vμ∂3

t vα

= −1

2

∫

1

√
g gij�α

μ∂ j∂
2
t vμ∂i∂

2
t vα + 1

2

t∫
0

∫

1

∂t
(√

g gij�α
μ

)
∂ j∂

2
t vμ∂i∂

2
t vα

−
t∫

0

∫

1

∂i(
√

g gij�α
μ)∂ j∂

2
t vμ∂3

t vα + 1

2

∫

1

√
g gij�α

μ∂ j∂
2
t vμ∂i∂

2
t vα|0

= I11 + I12 + I13 + I14.

(5)

The integral I11 leads to a coercive term 1
4 ‖�∂∂2

t v‖2
0,
1

. The highest-order term results when ∂i falls on 
√

g gij , which gives 
the integral

I131 = −
t∫

0

∫

1

∂i(
√

g gij)n̂αn̂μ∂ j∂
2
t vμ∂3

t vα,

for which we need to explore its special structure. Note that we used the identity �α
μ = n̂αn̂μ , n̂ being the unit outer normal 

to the moving boundary. It turns out that this integral cancels a part of the integral resulting from I14 (cf. [5] for complete 
details).

It remains to discuss the treatment of the right side of (4). Denote the terms on the right side of (4) by J1–J5. All the 
integrals resulting from J1, J3, J4, and J5 can be estimated using integration by parts in time and space and employing 
the Hölder and Sobolev inequalities. On the other hand, when expanding J2, there is a tricky term T = ∫ t

0

∫
�

∂3
t Aμα∂3

t ∂μvαq
where A = Ja, which cannot be treated in this way, and special cancellations are needed to control it. We namely claim

|T | � εN + P0 + P

t∫
0

P, (6)

where P denotes a generic polynomial in N , P0 a generic polynomial of the norms of the initial data.
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Here we sketch the main ideas used in proving (6). Using the formula for the cofactor matrix A = Ja, we rewrite

T =
t∫

0

∫
�

qεαλτ ∂2∂
2
t vλ∂3ητ ∂1∂

3
t vα +

t∫
0

∫
�

qεαλτ ∂2ηλ∂3∂
2
t vτ ∂1∂

3
t vα

−
t∫

0

∫
�

qεαλτ ∂1∂
2
t vλ∂3ητ ∂2∂

3
t vα −

t∫
0

∫
�

qεαλτ ∂1ηλ∂3∂
2
t vτ ∂2∂

3
t vα

+
t∫

0

∫
�

qεαλτ ∂1∂
2
t vλ∂2ητ ∂3∂

3
t vα +

t∫
0

∫
�

qεαλτ ∂1ηλ∂2∂
2
t vτ ∂3∂

3
t vα + L

= T1 + · · · + T6 + L

(7)

where A1α = εαλτ ∂2ηλ∂3ητ , A2α = −εαλτ ∂1ηλ∂3ητ , A3α = εαλτ ∂1ηλ∂2ητ , and L stands for the lower-order terms. Also, 
εαβγ is the totally anti-symmetric symbol with ε123 = 1. To explore the cancellation, we group the terms in (7) as T1 + T3, 
T2 + T5, and T4 + T6. All three pairs are treated by integrating by parts in time. When writing out T1 + T3, the highest-order 
terms are

t∫
0

∫
�

qεαλτ ∂2∂
2
t vλ∂3ητ ∂1∂

3
t vα +

t∫
0

∫
�

qεαλτ ∂1∂
3
t vλ∂3ητ ∂2∂

2
t vα

and the leading terms cancel by relabeling the indices α ↔ λ in the second integral. The same cancellation occurs also in 
the other groupings T2 + T5 and T4 + T6. However, there we integrate the derivatives ∂2 and ∂3; the last sum produces the 
boundary term 

∫

1

q∂2
t v2∂2∂

2
t v3. To bound this term, we use the projection identity �α

β = δα
β − gkl∂kη

α∂lηβ , which allows 
us to relate �∂∂2

t v and ∂∂2
t v3 and write∫


1

q∂2
t v2∂2∂

2
t v3 =

∫

1

q∂2
t v2(�

3
λ∂2∂

2
t vλ + gkl∂kη3∂lηλ∂2∂

2
t vλ).

The last expression can then be controlled using the coercive terms and the trace inequality. Collecting all the inequalities 
leads to

‖∂3
t v‖2

0 + ‖∂3
t R‖2

0 + ‖�∂∂2
t v‖2

0,
1
≤ ε̃N + P0 + P

t∫
0

P.

The energy estimates for two time derivatives and one time derivative are similar. For instance, using analogous methods, 
we obtain

‖∂∂2
t v‖2

0 + ‖∂∂2
t R‖2

0 + ‖�∂
2
∂t v‖2

0,
1
≤ ε̃N + P0 + P

t∫
0

P (8)

and

‖∂2
∂t v‖2

0 + ‖∂2
∂t R‖2

0 + ‖�∂
3

v‖2
0,
1

≤ ε̃N + P0 + P

t∫
0

P. (9)

We emphasize however, that unlike [1], we cannot continue and perform the same estimate for ‖∂3 v‖2
0 + ‖∂3 R‖2

0. The 
reason is that the analog of the term (7) cannot be treated the same way due to lack of time derivatives.

Instead, we obtain the full control of N by using a new Cauchy invariance property for the compressible Euler equations, 
stated next. Note that the Cauchy invariance provides a 3D analog of the 2D vorticity preservation.

Theorem 2.2. (Compressible Cauchy Invariance Formula) Let (v, R) be a smooth solution to (1) defined on [0, T ). Then

εαβγ ∂β vμ∂γ ημ = ωα
0 +

t∫
0

εαβγ aλμ∂λq∂γ ημ
∂β R

R2 , (10)

for 0 ≤ t < T , where ω0 is the vorticity at time zero.
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Here, we provide a sketch of the proof (cf. [5] for complete details). First, we have

∂t(ε
αβγ ∂β vμ∂γ ημ) = εαβγ ∂β vμ∂γ vμ + εαβγ ∂β∂t vμ∂γ ημ

= − 1

R
εαβγ ∂β(aλμ∂λq)∂γ ημ + 1

R2
εαβγ aλμ∂λq∂β R∂γ ημ,

by the anti-symmetry of εαβγ and (1a). Since a = (∇η)−1, we get ∂β(aλμ∂γ ημ) = ∂βaλμ∂γ ημ + aλμ∂γ ∂βημ = 0, and after 
some simple algebra, ∂t(ε

αβγ ∂β vμ∂γ ημ) = 1
R2 εαβγ aλμ∂λq∂β R∂γ ημ . The formula (10) then follows by integrating in time.

The rest of the proof of Theorem 2.1 may now be performed similarly to [6]. Namely, control of the curl is provided by 
the Cauchy invariance formula (10). Then the divergence of v and its time derivatives are obtained from (1b) in an inductive 
fashion, using the fact that the third time derivatives are independently estimated from (4). Finally, the boundary integral 
is estimated using (5), (8), and (9). The exception is the missing estimate for v3, which is obtained from the equation (1e)
(cf. [5] for details).

Collecting all the estimates leads to

N (t) ≤ C0 P (N (0)) + P (N (t))

t∫
0

P (N (s))ds,

where P is a polynomial, and the rest follows by a standard Gronwall argument.

3. Incompressible case

In this section, we describe the a priori estimates for the local existence for the incompressible Euler equations. We 
address the equations in the Lagrangian coordinates, where they take the form

∂t vα + aμα∂μq = 0 in [0, T ) × �, (11a)

aαβ∂α vβ = 0 in [0, T ) × �, (11b)

∂ta
αβ + aαγ ∂μvγ aμβ = 0 in [0, T ) × �, (11c)

aμα Nμq + σ |aT N|�gη
α = 0 on [0, T ) × 
1, (11d)

vμNμ = 0 on [0, T ) × 
0, (11e)

η(0, ·) = id, v(0, ·)= v0. (11f)

All the quantities are as in the compressible case, except for q, which is now a Lagrange multiplier enforcing the incom-
pressibility constraint. Then we have the following a priori estimates supporting the local existence with the velocity H3 in 
the interior, with a condition on the trace at the free boundary.

Theorem 3.1. Assume that σ > 0 in (11). Let v0 be a smooth divergence-free vector field on �. Then there exist T∗ > 0 and a constant 
C0 , depending only on ‖v0‖3 , ‖v0‖4,
1 , and σ > 0, such that any smooth solution (v, q) to (11) with initial condition v0 and defined 
on the time interval [0, T∗), satisfies

‖v‖3 + ‖∂t v‖2.5 + ‖∂2
t v‖1.5 + ‖∂3

t v‖0 + ‖q‖3 + ‖∂tq‖2 + ‖∂2
t q‖1 ≤ C0. (12)

Observe that the Sobolev exponents in (3) and (12) differ. The proof of Theorem 3.1 is different than the one of Theo-
rem 2.1; however, the main steps also rely on the energy inequality for the third time derivative of the velocity

1

2
‖∂3

t v‖2
0 = 1

2
‖∂3

t v(0)‖2
0 −

t∫
0

∫
�

∂3
t ∂μ(aμαq)∂3

t vα.

The main difference with the compressible case are in the treatment of the pressure and in bounding the boundary integral

−
t∫

0

∫

1

√
g(gij gkl − glj gik)∂ jη

α∂kηλ∂
2
t ∂l v

λ∂3
t ∂i vα. (13)

For the pressure, the main inequalities are summarized in the following statement.
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Lemma 3.2. We have the estimates

‖q‖3 ≤ C‖∇v‖2‖v‖2 + C‖∂t v‖1.5,
1 + C,

‖∂tq‖2 ≤ C‖∇v‖1.5+δ(‖q‖2.5 + ‖∂t v‖1.5) + C(‖∇v‖1.5‖∇v‖L∞ + ‖∇∂t v‖1.5)‖v‖1.5+δ

+ C‖∂2
t v‖1,
1 + C‖v‖2.5 + C‖∂t v‖2.5,

‖∂2
t q‖1 ≤ C(‖v‖1.5‖∇v‖L∞ + ‖∂t v‖1.5)(‖q‖2 + ‖∂t v‖1) + C‖∇v‖L∞(‖∂tq‖1 + ‖∂2

t v‖0)

+ C(‖v‖1.5‖∇v‖2
L∞ + ‖∂t v‖1.5‖∇v‖L∞ + ‖∂2

t v‖1.5)‖v‖1 + C‖∂3
t v‖0

+ C(‖∂t v‖2.5 + ‖v‖3‖∂tq‖1) + C(1 + ‖v‖2
3 + ‖∂t v‖2)(‖∂t v‖2 + ‖v‖2

3),

for t ∈ (0, T ) and δ > 0 a small number.

The lemma is obtained by solving the elliptic boundary value problems for q, ∂tq, and ∂2
t q. For q and qt , we consider the 

Neumann problem, while for the second derivative, we use the Dirichlet problem, together with an estimate

‖∂2
t q‖0,
1 ≤ ε‖∂2

t q‖1 + C(‖∂t v‖2.5 + ‖v‖3‖∂tq‖1) + C(1 + ‖v‖2
3 + ‖∂t v‖2)(‖∂t v‖2 + ‖v‖2

3)

(cf. [4] for details). The treatment for the boundary integral (13) is involved and it relies on its determinant structure 
(cf. [2]). The rest of the proof is obtained by the H1 estimate for ∂2

t v . However, in order to control ‖v‖3, we use the 
additional boundary regularity provided by the surface tension, together with the div-curl estimates provided by the Cauchy 
invariance [7].
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