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We study the projective logarithmic potential Gμ of a probability measure μ on the 
complex projective space Pn . We prove that the range of the operator μ −→ Gμ is 
contained in the (local) domain of definition of the complex Monge–Ampère operator 
acting on the class of quasi-plurisubharmonic functions on Pn with respect to the Fubini–
Study metric. Moreover, when the measure μ has no atom, we show that the complex 
Monge–Ampère measure of its logarithmic potential is an absolutely continuous measure 
with respect to the Fubini–Study volume form on Pn.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On étudie le potentiel logarithmique projectif Gμ d’une mesure de probabilité μ sur 
l’espace projectif complexe Pn . On établit que l’image de l’opérateur μ −→ Gμ est 
contenue dans le domaine de définition (local) de l’opérateur de Monge–Ampère complexe 
agissant sur les fonctions quasi-plurisousharmoniques dans Pn par rapport à la métrique de 
Fubini–Study. Si μ n’a pas d’atomes, on montre que la mesure de Monge–Ampère complexe 
du potentiel logarithmique de μ est absolument continue par rapport à la forme volume 
de Fubini–Study de Pn .

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of the results

Logarithmic potentials of Borel measures in the complex plane play a fundamental role in Logarithmic Potential Theory. 
This is due to the fact that this theory is associated with the Laplace operator which is a linear elliptic partial differential 
operator of second order. It is well known that in higher dimension plurisubharmonic functions are rather connected to the 
complex Monge–Ampère operator, which is a fully non-linear second-order partial differential operator. Therefore, Pluripo-
tential Theory cannot be described by logarithmic potentials. However, the class of logarithmic potentials gives a nice class 
of plurisubharmonic functions that turns out to be in the local domain of definition of the complex Monge–Ampère operator. 
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This study was carried out by Carlehed [5] in the case of a compactly supported measure on Cn or a bounded hyperconvex 
domain in Cn .

Our main goal is to extend this study to the complex projective space motivated by the fact that the complex Monge–
Ampère operator plays an important role in Kähler geometry (see [13]). A large class of singular potentials on which the 
complex Monge–Ampère is well defined was introduced (see [12], [8], [4]). However, the global domain of definition of the 
complex Monge–Ampère operator on compact Kähler manifolds is not yet well understood. Using the characterization of 
the local domain of definition given by Cegrell and Blocki (see [2], [3], [7]), we show that the class of projective logarith-
mic potentials Pn is contained in the local domain of definition of the complex Monge–Ampère operator on the complex 
projective space (Pn, ω) equipped with the Fubini–Study metric ω = ωF S .

Let μ be a probability measure on Pn . Then its projective logarithmic potential is defined on Pn as follows: for ζ ∈ P
n ,

Gμ(ζ ) :=
∫

Pn

G(ζ,η)dμ(η) where G(ζ,η) := log
|ζ ∧ η|
|ζ ||η| .

Theorem 1.1. Let μ be a probability measure on Pn. Then the following properties hold.
1. The potential Gμ is a negative ω-plurisubharmonic function on Pn normalized by the following condition∫

Pn

Gμ ωn = −αn,

where αn is a numerical constant.
2. Gμ ∈ W 1,p(Pn) for any 0 < p < 2n.
3. Gμ ∈ DM Aloc(P

n, ω).

We also show a regularizing property of the operator μ → Gμ acting on probability measures on Pn .

Theorem 1.2. Let μ be a probability measure on Pn with no atoms (n ≥ 2). Then the Monge–Ampère measure (ω + ddc
Gμ)n is 

absolutely continuous with respect to the Fubini–Study volume form on Pn.

2. The logarithmic potential and proof of Theorem 1.1

The complex projective space can be covered by a finite number of charts given by Uk := {[ζ0, ζ1, · · · , ζn] ∈ P
n : ζk �= 0}

(0 ≤ k ≤ n) and the corresponding coordinate chart is defined on Uk by the formula

zk(ζ ) = zk := (zk
j)0≤ j≤n, j �=k where zk

j := ζ j

ζk
for j �= k.

The Fubini–Study metric ω = ωF S is given on Uk by ω|Uk = 1
2 ddc log(1 +|zk|2). The projective logarithmic kernel on Pn ×P

n

is naturally defined by the following formula

G(ζ,η) := log
|ζ ∧ η|
|ζ ||η| = log sin

d(ζ,η)√
2

where |ζ ∧ η|2 =
∑

0≤i< j≤n

|ζiη j − ζ jηi|2,

where d is the geodesic distance associated with the Fubini–Study metric (see [15], [6]).
We recall some definitions and give a useful characterization of the local domain of definition of the complex Monge–

Ampère operator given by Z. Błocki (see [2], [3]).

Definition 2.1. Let � ⊂ C
n be a domain. By definition, the set DM Aloc(�) denotes the set of plurisubharmonic functions φ

on � for which there a positive Borel measure σ on � such that for all open U ⊂⊂ X and ∀ (φ j) ∈ P S H(U ) ∩ C∞(U ) ↘ φ

in U , the sequence of measures (ddcφ j)
n converges weakly to σ in U . In this case, we put (ddcφ)n = σ .

The following result of Blocki gives a useful characterization of the local domain of definition of the complex Monge–
Ampère operator.

Theorem 2.2 (Z.Błocki [2], [3]). 1. If � ⊂C
2 is an open set then DM Aloc(�) = P S H(�) ∩ W 1,2

loc (�).
2. If n ≥ 3, a plurisubharmonic function φ on a open set � ⊂ C

n belongs to DM Aloc(�) if and only if for any a ∈ � there exists a 
neighborhood Ua of a in � and a sequence (φ j) ⊂ P S H(U z) ∩ C∞(Ua) ↘ φ in Ua such that the sequences

|φ j|n−p−2dφ j ∧ dcφ j ∧ (ddcφ j)
p ∧ (ddc|z|2)n−p−1, p = 0,1, · · · ,n − 2

are locally weakly bounded in Ua.
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Observe that, by Bedford and Taylor [1], the class of locally bounded plurisubharmonic functions in � is contained 
in DM Aloc(�). By the work of J.-P. Demailly [9], any plurisubharmonic function in � bounded near the boundary 
∂� is contained in DM Aloc(�). Let (X, ω) be a Kähler manifold of dimension n. We denote by P S H(X, ω) the set 
of ω-plurisubharmonic functions in X . Then it is possible to define in the same way the local domain of definition 
DM Aloc(X, ω) of the complex Monge–Ampère operator on (X, ω). A function ϕ ∈ P S H(X, ω) belongs to DM Aloc(X, ω)

if for any local chart (U , z), the function φ := ϕ + ρ belongs to DM Aloc(U ) where ρ is a Kähler potential of ω. Then 
the previous theorem extends trivially to this general case. Let (χ j)0≤ j≤n be a fixed partition of unity subordinated to the 
covering (U j)0≤ j≤n . We define m j = ∫

χ j dμ and J = { j ∈ {0, 1, · · · , n} : m j �= 0}. Then J �= ∅ and for j ∈ J , the measure 
μ j := 1

m j
χ jμ is a probability measure on Pn supported in U j , and we have the following convex decomposition of μ

μ =
∑
j∈ J

m jμ j .

Therefore, the potential Gμ can be written as a convex combination

Gμ =
∑
j∈ J

m jGμ j .

To show that Gμ ∈ DM Aloc(P
n, ω), it suffices to consider the case of a compact measure supported in an affine chart. 

Without loss of generality, we may always assume that μ is compactly supported in U0 and we are reduced to the study of 
the potential Gμ on the open set U0. The restriction of G(ζ, η) to U0 ×U0 can be expressed in affine coordinates as

G(ζ,η) = N(z, w) − 1

2
log(1 + |z|2)

where

N(z, w) := 1

2
log

|z − w|2 + |z ∧ w|2
1 + |w|2 ,

will be called the projective logarithmic kernel on Cn .

Lemma 2.3. 1. The kernel N is upper semicontinuous in Cn ×C
n and smooth off the diagonal of Cn ×C

n.
2. For any fixed w ∈C

n, the function N(., w) : z → N(z, w) is plurisubharmonic in Cn and satisfies the following inequality

1

2
log

|z − w|2
1 + |w|2 ≤ N(z, w) ≤ 1

2
log(1 + |z|2), ∀ (z, w) ∈C

n ×C
n.

From Lemma 2.3, we have the following properties of the projective logarithmic kernel G on Pn × P
n .

Corollary 2.4. 1. The kernel G is a non-positive upper semi-continuous function on Pn × P
n and smooth off the diagonal of Pn × P

n.
2. For any fixed η ∈ P

n, the function G(., η) : ζ → G(ζ, η) is a non positive ω-plurisubharmonic function in Pn and smooth in Pn \{η}, 
hence G(., η) ∈ DM Aloc(P

n, ω). Moreover, (ω + ddcG(·, η))n = δη .

For a probability measure ν on Cn , we define the projective logarithmic potential of ν as follows: for z ∈C

Vν(z) := 1

2

∫

Cn

log
|z − w|2 + |z ∧ w|2

1 + |w|2 dν(w).

Proposition 2.5. Let ν be a probability measure ν on Cn. Then the function Vν(z) is plurisubharmonic in Cn and for all z ∈ C
n

Vν(z) ≤ 1

2
log(1 + |z|2).

Also Vν ∈ DM Aloc(C
n) and

(ddc
Vν)n =

∫

Cn×···×Cn

ddc
z N(., w1) ∧ · · · ∧ ddc

z N(., w w)dν(w1) · · · dν(wn).



286 F.Z. Assila / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 283–287
Proof of Theorem 1.1. As we have seen, we have

Gμ =
∑
j∈ J

m jGμ j ,

where μ j is compactly supported in the affine chart U j .
Observe that for a fixed k one can write on Uk

Gμk (ζ ) + 1

2
log(1+ | z |2) = Vμk (z)

where z := zk(ζ ) ∈ C
n , which is plurisubharmonic in Cn . Hence Gμ is ω-plurisubharmonic in Pn .

2. By the co-area formula (see [10])

∫

Pn

Gμ(ζ )dV (ζ ) =
π/

√
2∫

0

log sin
r√
2

A(r)dr = − cn√
2n2

,

where A(r) := cn sin2n−2(r/
√

2) sin(
√

2r) is the area of the sphere about η and radius r on Pn and cn is a numerical constant 
(see [14], page 168, or [11], lemma 5.6).

Let p ≥ 1. Since |∇d|ω = 1, also by the co-area formula

∫

Pn

|∇Gμ(ζ )|pdV (ζ ) ≤
∫

Pn

cotp
(d(ζ,η)√

2

)
dμ(η) dV (ζ ) ≤ 2

√
2cn

π/2∫

0

sin2n−1−p t dt,

which is finite if and only if p < 2n. Hence, for all p ∈]0, 2n[ : Gμ ∈ W 1,p(Pn) (by concavity of xp ).

3. When n = 2, we can apply the previous result to conclude that Gμ ∈ DM Aloc(P
2). When n ≥ 3, we apply Blocki’s 

characterization stated above to show that Gμk ∈ DM Aloc(Uk). We consider the following approximating sequence

V
ε
μ(z) = 1

2

∫

Cn

log
( |z − w|2 + |z ∧ w|2

1 + |w|2 + ε2
)

dμk(w) ↘Vμ(z),

and use the next classical lemma on Riesz potentials to show a uniform estimate on their weighted gradients, as required 
in Blocki’s theorem.

Lemma 2.6. Let μ be a probability measure on Cn. For 0 < α < 2n, define the Riesz potential of μ by

Jμ,α(z) :=
∫

Cn

dμ(w)

|z − w|α .

If 0 < p < 2n/α then Jμ,α ∈ Lp
loc(C

n). �
3. Regularizing property and proof of Theorem 1.2

We prove a regularizing property of the operator μ → Gμ . By the localization process explained above, the proof of 
Theorem 1.2 follows from the following theorem, which generalizes and improves a result of Carlehed (see [5]).

Theorem 3.1. Let μ be a probability measure on Cn (n ≥ 2) with no atoms, and let ψ ∈L(Cn). Assume that ψ is smooth in some open 
subset U ⊂ C

n. Then for any 0 ≤ m ≤ n, the Monge–Ampère measure (ddc
Vμ)m ∧ (ddcψ)n−m is absolutely continuous with respect 

to the Lebesgue measure on U .

The proof is based on the following elementary lemma.

Lemma 3.2. Assume n ≥ 2 and let (w1, · · · , wn) ∈ (Cn)n fixed such that w1 �= w2 . Let ψ ∈L(Cn). Assume that ψ is smooth in some 
open subset U ⊂C

n. Then for any integer 0 ≤ m ≤ n, the measure
∧

1≤ j≤m

ddc log(| · −w j|2 + | · ∧w j|2) ∧ (ddcψ)n−m

is absolutely continuous with respect to the Lebesgue measure on U .
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Proof of Theorem 3.1. We first assume that m = n. Let K ⊂ C
n be a compact set such that (ddc|z|2)n(K ) = 0. Set 

� = {(w, w, · · · , w) : w ∈ C
n}. Since μ puts no mass at any point, it follows by Fubini’s theorem that μ⊗n(�) = 0. By 

Proposition 2.5∫

K

(ddc
Vμ)n =

∫

(Cn)n\�
f (w1, · · · , wn)dμ⊗n(w1, · · · , wn),

where

f (w1, · · · , wn) =
∫

K

ddc log(|z − w1|2 + |z ∧ w1|2) ∧ · · · ∧ ddc log(|z − wn|2 + |z ∧ wn|2).

By Lemma 3.2, for any (w1, · · · , wn) �∈ �, f (w1, · · · , wn) = 0, hence (ddc
Vμ)n(K ) = 0. The case 1 ≤ m < n follows from 

Lemma 3.2 in the same way. The proof is complete.

Proof of Theorem 1.2. As we have seen in the proof of Theorem 1.1, one can write on each coordinate chart Uk ,

Gμ(ζ ) = mkGμk + ψk(z),

where ψk ∈ L(Cn) is a smooth function in Cn . Using Theorem 3.1 again we conclude that Gμ ∈ DM Aloc(Uk). Therefore 
Gμ ∈ DM Aloc(P

n).
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