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r é s u m é

En généralisant un résultat de C. Vial pour l’espace projectif, on donne une caractérisation 
des quadriques lisses en termes d’existence de collections pleines exceptionnelles d’un 
certain type.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X be a complex variety and let Db(X) be its bounded derived category. An object E ∈ Db(X) is called exceptional if 
we have

Hom(E, E[l]) =
{
C if l = 0

0 if l �= 0

An exceptional collection is a sequence {E1 · · · , En} of exceptional objects which satisfy that Hom(E j, Ei[l]) vanishes for all 
j > i, l ∈ Z. An exceptional collection {E1 · · · , En} is full if D is generated by {Ei}.

In general, full exceptional collections that consist of coherent sheaves are rare. The existence of such collections would 
impose strong restrictions on the geometry of the variety. We now list some varieties with such collections.

• Projective spaces: for any a ∈ Z, {O(a), O(a + 1), · · · , O(a + n)} is a full exceptional collection for Pn (see [2]).
• Smooth quadrics Q n ⊂ Pn+1: M. Kapranov [6] shows that

– if n is odd, for any a ∈ Z, {S, O(a), O(a + 1), · · · , O(a + n − 1)} is a full exceptional collection for Q n ,

E-mail address: liduo211 @mails .ucas .ac .cn.
https://doi.org/10.1016/j.crma.2018.02.008
1631-073X/© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

https://doi.org/10.1016/j.crma.2018.02.008
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:liduo211@mails.ucas.ac.cn
https://doi.org/10.1016/j.crma.2018.02.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2018.02.008&domain=pdf


416 D. Li / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 415–419
– if n is even, for any a ∈ Z, {S−, S+, O(a), O(a + 1), · · · , O(a + n − 1)} is a full exceptional collection for Q n

where S , S− , S+ are certain spinor bundles.

A minifold is a smooth projective variety X whose Db(X) admits a full exceptional collection C of minimal possible length 
dim X + 1. S. Galkin, L. Katzarkov, A. Mellit and E. Shinder classify minifolds up to dimension 4 (see [4]). If C consists only of 
line bundles, C. Vial proves that X is necessarily a projective space (see [12, Theorem 1.2]). In [8], S. Kobayashi and T. Ochiai 
show that if there exists an ample line bundle H on a smooth projective variety X with c1(X) ≥ dim(X) · c1(H), then X is 
isomorphic to a projective space or a smooth quadric. The purpose of this article is to generalize C.Vial’s theorem and prove 
a categorical analog of S. Kobayashi and T. Ochiai’s classification.

There is quite a long history and many excellent results about describing projective spaces and smooth quadrics since 
Mori’s famous work [10], see [1] and the references there. In view of Kapranov’s result, it is reasonable to consider full 
exceptional collections of length dim X + 1 or dim X + 2.

Theorem 1.1. Let X be a smooth projective variety of dimension n (n ≥ 3). Suppose that there exists a full exceptional collection C of 
Db(X) which consists of coherent sheaves and is of length n + 1. If C contains a sub-collection {L1, L2, · · · , Ln} where Li (1 ≤ i ≤ n)

are line bundles, then X is isomorphic to Pn or Q n. Moreover, if n is an even number, X is isomorphic to Pn.

Theorem 1.2. Let X be a smooth projective variety of dimension n (n ≥ 3). Suppose that there exists a full exceptional collection C of 
Db(X) that consists of coherent sheaves and is of length n + 2. If C contains a sub-collection {L1 , L2, · · · , Ln} where Li (1 ≤ i ≤ n)

are line bundles, then X is even-dimensional and is isomorphic to Q n.

To prove Theorem 1.1 and Theorem 1.2, we use the method from C. Vial’s article [12] and some technical input (see 
Lemma 2.1).

Convention: In this article, a variety is an integral scheme of finite type defined over C.

2. A technical lemma

Firstly, we note an easy fact about series of numbers. We shall use this fact and the Riemann–Roch theorem to prove 
Theorem 1.1 and Theorem 1.2.

Lemma 2.1. Let {a1, · · · , an} be a set of n distinct integers. Assume that the cardinality of the set A = {a j − ai |1 ≤ i < j ≤ n} is n. For 
the case n ≥ 5, there exists an integer d such that the ordered series (a1, · · · , an) is one of the followings:

(1) (a1, · · · , a1 + (k − 1)d, a1 + (k + 1)d, · · · , a1 + nd) where 1 ≤ k ≤ n − 1 is an integer;
(2) (a1, a1 + 2d, · · · , a1 + (n − 1)d, a1 + (n + 1)d);
(3) σ(a1, a1 + d, · · · , a1 + (n − 1)d) where σ is a composition of disjoint permutations (i1, i1 + 1) · · · (il, il + 1) for some 1 ≤ l ≤ n.

Proof. We firstly assume a1 < a2 < · · · < an and claim that (a1, · · · , an) is of type (1) or (2).
We shall prove our claim by induction on the length n of the ordered series (a1, · · · , an). Firstly, it is easy to verify 

our claim when n is 5. Then if n > 5, we consider the series (a1, · · · , an−1). Note that the cardinality #B of the set B :=
{a j − ai |1 ≤ i < j ≤ n − 1} is n − 1 or n − 2, as an − a1 ∈ A is not an element of B .

If #B is n − 2, then (a1, · · · , an−1) is arithmetic, and we denote a2 − a1 by an integer d. Then B is {d, 2d, · · · , (n − 2)d}. 
Since #A is n, it is easy to verify that an is a1 + nd and hence, (a1, · · · , an) is of type (1).

If #B is n − 1, by induction, (a1, · · · , an−1) is of type (1) or (2).
If (a1, · · · , an−1) is of type (2), i.e. there exists an integer d such that (a1, · · · , an−1) is (a1, a1 +2d, · · · , a1 + (n −2)d, a1 +

nd), then the set B is {d, 2d, · · · , (n − 2)d, nd}. We can assume an = a1 + md for some integer m > n. If m is n + 1 or n + 2, 
then (n − 1)d belongs to A. If m > n + 2, then (m − 2)d belongs to A. Note that md = an − a1 ∈ A is not an element of B . 
It follows that in both situations, we have #A ≥ #B + 2 = n + 1. So we can exclude the possibility that (a1, · · · , an−1) is of 
type (2).

If (a1, · · · , an−1) is of type (1), i.e. there exists integers d and 1 ≤ k ≤ n − 2 such that (a1, · · · , an−1) is (a1, · · · , a1 + (k −
1)d, a1 + (k + 1)d, · · · , a1 + (n − 1)d). Then the set B is {d, 2d, · · · , (n − 1)d}. Since #A is n, if k is 1, an equals a1 + nd or 
a1 + (n + 1)d. If k ≥ 2, then an equals a1 + nd. Hence (a1, · · · , an) is of type (1) or (2) and we prove our claim.

For an arbitrary series (a1, a2, · · · , an), there is a permutation α satisfying aα(1) < aα(2) < · · · < aα(n) . Now consider the 
set C := {aα( j) − aα(i)|1 ≤ i < j ≤ n}. It is easy to see the equality:

C = {|a j − ai| | 1 ≤ i < j ≤ n}. (2.1)

So we have #C ≤ #A, which means that #C is n − 1 or n.
If #C is n − 1, then (aα(1), · · · , aα(n)) is arithmetic and we denote aα(2) − aα(1) by an integer d. Then C is {d, 2d, · · · ,

(n − 1)d}. Note that for any integer k �= 1, if kd belongs to A, then sgn(k) · d belongs to A. It follows that for any k > 1, 
kd ∈ A implies −kd /∈ A, otherwise, by equality (2.1), we have #A ≥ #C + 2 = n + 1.
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Now we may assume 2d ∈ B , then (aα(1), aα(1) +2d, · · · , aα(1) +2(l −1)d, · · · ), as well as (aα(1) +d, aα(1) +3d, · · · , aα(1) +
(2l − 1)d, · · · ), is an ordered subseries of (a1, · · · , an). For any positive integer l, let ail be aα(1) + 2(l − 1)d and let a jl be 
aα(1) + (2l − 1)d. If j1 > i1, then for any l, a jl − ai1 = (2l − 1)d is an element of A. So the set {kd | 1 ≤ k ≤ n − 1} is 
contained in A. Note that #A is n, by equality (2.1), we have A = {−d, d, 2d, · · · , (n − 1)d}. If j1 < i1, then we have −d ∈ A. 
Since n ≥ 5, ai3 − a j1 = 3d is an element of A. So there is j2 > i1, otherwise, −3d belongs to A. It follows that A is 
{−d, d, 2d, · · · , (n − 1)d}. So if #C is n − 1, the series (a1, · · · , an) is of type (3).

Now we consider the remaining case that #C is n. By our claim at the beginning, there exists an integer d such that 
(aα(1), · · · , aα(n)) is of type (1) or (2). For any integer l > 0, by equality (2.1), the numbers ld and −ld cannot belong to A
at the same time. So we may assume d ∈ A and −d /∈ A.

Assume that (aα(1), · · · , aα(n)) is of type (2). Note that (aα(2), · · · , aα(n−1)) is an ordered subseries of (a1, a2, · · · , an). 
Since n ≥ 5, 2d belongs to A. So we have α(1) < α(2) and α(n − 1) < α(n), which means (a1, · · · , an) = (aα(1), · · · , aα(n)). If 
(aα(1), · · · , aα(n)) is of type (1), by a very similar argument, one can also verify (a1, · · · , an) = (aα(1), · · · , aα(n)). �

In order to prove Theorem 1.1 and Theorem 1.2, we need consider the case n = 4. By a case-by-case analysis, the situation 
of n = 4 is slightly different from Lemma 2.1.

Remark 2.2. We keep the assumptions and notations of Lemma 2.1.
For the case n = 4, (a1, a2, a3, a4) is one of the followings:

(1) (a, a + d, a + 2d, a + 4d) or (a, a + 2d, a + 3d, a + 4d) where d is an integer;
(2) σ(a, a + d, a + 2d, a + 3d) where d is a positive integer and σ �= id is a permutation with A = {±d, δ1 · 2d, δ2 · 3d} such 

that δi belongs to {±1};
(3) σ(a, a + d, b, b + d) where d is a positive integer with b > a + d and σ is a permutation.

3. Proof of Theorem 1.1 and Theorem 1.2

Let X be a smooth projective variety. Recall that, for any two objects E and F in Db(X), the Euler pairing χ is the integer 
χ(E, F ) := ∑

l(−1)l dimC Hom(E, F [l]).

Definition 3.1. An object E is said to be numerically exceptional if χ(E, E) = 1. A collection {E1, · · · , Er} of numerical 
exceptional objects is a numerical exceptional collection if χ(E j, Ei) vanishes for any j > i.

For Fano varieties of Picard number 1, we have the following result.

Theorem 3.2. Let X be a smooth projective Fano variety of dimension n (n ≥ 3) whose Pic(X) is isomorphic to Z. Assume that there is 
a numerical exceptional collection {L1, · · ·Ln} where Li (1 ≤ i ≤ n) are line bundles. Then X is isomorphic to Pn or a smooth quadric 
Q n.

Proof. Let H be an ample generator of Pic(X) and let λ be the index of X . The Euler characteristic χ(OX (aH)) is a poly-
nomial P with rational coefficients of degree n in the variable a. We write Li as Li = O X (ai H) for some integer ai and we 
have ai �= a j for any i �= j, as χ(OX ) is 1. The equalities χ(L j, Li) = χ(Li ⊗L−1

j ) = P (ai − a j) = 0 (i < j) imply that ai − a j

(i < j) are roots of P (a) = 0. So the cardinality μ of the set {a j − ai |1 ≤ i < j ≤ n} is n − 1 or n.
If μ is n − 1, the series (a1, a2, · · · , an) is arithmetic and we denote a2 − a1 by an integer d. The polynomial P vanishes 

at −ld for any 1 ≤ l ≤ n − 1. Let the remaining root of P (a) = 0 be −N . By the Riemann–Roch theorem, we have

P (a) = χ(OX (aH)) = deg(Hn)

n! an + deg(Hn−1 · c1(X))

2(n − 1)! an−1 + · · · + χ(OX )

= deg(Hn)

n! (a + d) · · · (a + (n − 1)d)(a + N).

By comparing coefficients of the identities, we obtain two equalities:

deg(Hn)

n! (n − 1)!dn−1N = 1 (1)

deg(Hn)

n! (N +
n−1∑
l=1

ld) = deg(Hn−1 · c1(X))

2(n − 1)! . (2)

One can deduce d = 1, deg Hn = 1, λ = n + 1 or d = 1, deg Hn = 2, λ = n. Then by [8, Corollary to Theorem 2.1], the Fano 
variety X is isomorphic to Pn or Q n .
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If μ is n, we aim to show that X is isomorphic to Pn . We firstly assume n ≥ 5, then the ordered series (a1, a2, · · · , an)

is classified in Lemma 2.1. If (a1, a2, · · · , an) is of type (1) as in Lemma 2.1, then there exists an integer d such that the 
polynomial P (a) vanishes exactly at −ld (1 ≤ l ≤ n). By a similar argument, we have deg Hn = 1, d = 1 and λ = n + 1. If 
(a1, a2, · · · , an) is of type (2) as in Lemma 2.1, the roots of P (a) = 0 are {−d, −2d, · · · , −(n − 1)d, −(n + 1)d} for some 
integer d. Then we have deg(Hn)

n! (n − 1)!dn(n + 1) = 1, which is absurd as d is an integer. If (a1, a2, · · · , an) is of type (3) as in 
Lemma 2.1, the roots of P (a) = 0 are {±d, −2d, · · · , −(n −1)d} for some integer d. Then it is easy to deduce deg(Hn)dn = −n
and λ = (n+1)(n−2)

n d ∈ Z+ , which is impossible.
Now suppose μ = 3 and n = 3. Then (a1, a2, a3) is not arithmetic. By a simple calculation, we have λ = 4

3 (a3 − a1) ≥ 4.
Now suppose μ = 4 and n = 4. If (a1, a2, a3, a4) is of type (1) as in Remark 2.2, by a similar argument, we can deduce 

that λ is 5. If (a1, a2, a3, a4) is of type (2) as in Remark 2.2, then there exists an integer d such that the roots of P (a) = 0 are 
{d, −d, δ1 · 2d, δ2 · 3d}, where δi belongs to {±1}. So we have deg(H4)

4 d4 · δ1 · δ2 = −1. Then |d| is 1 and λ = 1
2 (δ1 · 2d + δ2 · 3d)

is not an integer, which is impossible. If (a1, a2, a3, a4) is of type (3) as in Remark 2.2, by a case-by-case analysis, the only 
possibility satisfying deg(H4)

4!
∏

i< j(a j − ai) = 1 and λ > 0 is (a1, a2, a3, a4) = (a1, a1 + 1, a1 + 3, a1 + 4), hence λ is 5.
By all the above argument, if μ is n, then we have λ ≥ n + 1, hence X is isomorphic to Pn . �
We now prove a lemma about the Picard group of a variety. For similar results, we refer to [3, Theorem 3.4] and [12, 

Lemma 2.6].

Lemma 3.3. Let X be a smooth projective variety of dimension n. Suppose that there exists a full exceptional collection C of Db(X). 
If the length of C is n + 1, then Pic(X) is isomorphic to Z. If the length of C is n + 2 (n ≥ 3), then n is an even number and Pic(X) is 
isomorphic to Z.

Proof. For any smooth projective variety X , the existence of a full exceptional collection of Db(X) whose length is m
implies that the Grothendieck group K0(X) of Db(X) is isomorphic to Zm . Moreover, as a consequence of the Grothendieck–
Riemann–Roch theorem, we have the identity:

m = rk K0(X) =
n∑

i=0

rk CHi
Q(X)

where every rk CHi
Q(X) is non-zero. If m equals n + 1, then Pic(X) is of rank 1. If m equals n + 2, by [7] or [11, Proposition 

3.10], the cycle class maps cli : CHi
Q(X) → H2i(X, Q) (0 ≤ i ≤ n) are all isomorphisms. So for any 0 ≤ i ≤ n, there exists a 

perfect pairing CHi
Q(X) × CHn−i

Q
(X) → Q induced by the Poincaré duality. It follows rk CHi

Q(X) = rk CHn−i
Q

(X) = 1 for any 
i �= n − i. So n is an even number and X is of Picard number 1. By [5, Lemma 2.2] or [12, Lemma 2.6], the Chow group 
CH1(X) is torsion free, so Pic(X) is isomorphic to Z. �
Proof of Theorem 1.1. By [3, Proposition 3.2], the variety X is Fano. Then Theorem 1.1 is a direct corollary of Theorem 3.2
and Lemma 3.3. �

In order to prove Theorem 1.2, we need the concept of the anticanonical pseudoheight, which has been introduced by 
A. Kuznetsov. For an exceptional collection C = {E1, · · · , En}, the anticanonical pseudoheight phac(C) of C is defined as

phac(C) := min
1≤ao<···<ap≤n

(e(Ea0 , Ea1) + · · · + e(Eap−1 , Eap ) + e(Eap , Ea0 ⊗ K −1
X ) − p)

where for any F , F ′ ∈ Db(X), the relative height e(F , F ′) is defined as min{k|Extk(F , F ′) �= 0}. A. Kuznetsov shows in [9, 
Corollary 6.2] that if there is phac(C) > − dim X , then C is not full.

Proof of Theorem 1.2. By Lemma 3.3, we have Pic(X) 
 ZH for some ample line bundle H and rk K0(X) is n + 2, which 
implies that X is even-dimensional. We keep using the notations in the proof of Theorem 3.2 and aim to show that X is 
Fano. If n > 5, by a very similar argument as in the proof of Theorem 3.2, we can list all the possibilities in the following 
diagram:

(a1, · · · ,an) Roots of P (a) λ X

(1) (a1,a1 + 1, · · · ,a1 + (n − 1)) {−k | 1 ≤ k ≤ n − 1} n Q n

(2)(a1,a1 + 1, · · · ,a1 + (n − 1)) {−k | 1 ≤ k ≤ n} n + 1 Pn

(3) (a1,a1 − 1, · · · ,a1 − (n − 1)) {k | 1 ≤ k ≤ n − 1} −n general type
(4) (a1,a1 − 1, · · · ,a1 − (n − 1)) {k | 1 ≤ k ≤ n} −n − 1 general type
(5) (a1, · · · ,a1 − k + 1,a1 − k − 1 · · · ,a1 − n) {k | 1 ≤ k ≤ n} −n − 1 general type
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By the Kodaira vanishing theorem, for line bundles L, L′ with L ⊗ L′ −1 ample, the relative height e(L, L′) is bigger 
than n. Note that for all coherent sheaves F , F ′ , e(F , F ′) is non-negative. It easily follows that in cases (3) (4) (5) of our 
diagram, there is phac(C) > −n, which contradicts our assumption.

If n is 4, let μ be the cardinality of the set {a j − ai |1 ≤ i < j ≤ 4}. For the cases μ = 3 or μ = 4 and (a1, a2, a3, a4) of 
type (1) as in Remark 2.2, by a similar argument as in the proof of Theorem 3.2, one can easily deduce that X is Fano or is 
of general type. But if X is of general type, i.e. K X is ample, there is phac(C) > −4. So X is Fano.

By a similar argument as in the proof of Theorem 3.2, (a1, a2, a3, a4) cannot be of type (2); otherwise, the index λ
will not be an integer. Now suppose (a1, a2, a3, a4) is of type (3). Note that if χ(L j, Li) vanishes, by the Serre duality, 
χ(Li, L j ⊗ K X ) also vanishes. It follows that for any i < j, a j − ai − λ is also a root of P (a) = 0. For example, the series 
(a1, a2, a3, a4) = (a + 3, a, a + 4, a + 1) does not satisfy this property, although here the cardinality #A is 4. Then, by a case 
by case analysis, the only possibility for (a1, a2, a3, a4) is (a, a + 1, a + 3, a + 4) with a ∈ Z, which also implies that X is 
Fano. Note that K0(P

n) is isomorphic to Zn+1, by Theorem 3.2, X is isomorphic to Q n . �
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