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We overview our work [7–11,6] defining and studying normal crossings varieties and 
subvarieties in symplectic topology. This work answers a question of Gromov on the 
feasibility of introducing singular (sub)varieties into symplectic topology in the case of 
normal crossings singularities. It also provides a necessary and sufficient condition for 
smoothing normal crossings symplectic varieties. In addition, we explain some connections 
with other areas of mathematics and discuss a few directions for further research.
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r é s u m é

Nous résumons nos travaux [7–11,6], où l’on définit et étudie les variétés et sous-variétés 
à croisements normaux en géométrie symplectique. Ils répondent à une question de 
Gromov sur la possibilité d’introduire de telles (sous-)variétés singuliéres en topologie 
symplectique, dans le cas de singularités à croisements normaux. Nous donnons également 
une condition nécessaire et suffisante pour lisser ces variétés symplectiques à croisements 
normaux. De plus, nous expliquons les liens avec d’autres domaines mathématiques et 
discutons quelques directions pour de futures recherches.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Singularities are ubiquitous in algebraic geometry. Even if one wishes to study only smooth varieties, one is often forced 
to investigate certain singular varieties as well. This is especially true in enumerative geometry, moduli theory, and the 
minimal model program. Degeneration techniques are particular instances where such singularities arise. Suppose, for ex-
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ample, that one wishes to study a particular deformation-invariant property of a smooth variety X such as Gromov–Witten 
invariants. One might then try to degenerate X through a flat one-parameter family to a simpler, but possibly singular, 
variety X0 and study X0 instead. For instance, when one wishes to compute Gromov–Witten invariants, the degeneration 
formulas of [19,31] can be particularly useful. In mirror symmetry, such ideas have been suggested in [27] and are central 
to the Gross–Siebert program [15].

Gromov [14, p. 343] asked if there was an appropriate notion of singular variety in symplectic topology and when 
such varieties could be smoothed. Introducing singularities and degeneration techniques into symplectic topology would 
be extremely useful for the following reasons. First, symplectic manifolds are significantly more flexible than algebraic 
varieties, since one can apply Moser style arguments and sometimes even an h-principle [14]. Smoothing or degenerating 
such symplectic varieties should then become a problem of a topological nature; smoothing algebraic varieties is in contrast 
a notoriously difficult problem. Therefore one would not need to rely on subtle analytic invariants. Second, these techniques 
could be used to study a much larger class of symplectic manifolds (not just those coming from Kähler geometry). For 
instance, they could be useful in mirror symmetry for non-Kähler symplectic manifolds; see for example [37, Section 2.3]. 
They could also be used to construct interesting examples of symplectic manifolds by smoothing singular ones, as has been 
done to great effect in [13].

This note is an overview of our work [7–11,6], which introduces and studies symplectic topology notions of normal 
crossings (or NC) divisor and variety. In Section 2, we explain what these notions are. In Section 3, we describe geometric 
notions of regularization for NC symplectic divisors and varieties, which is basically a “nice” neighborhood of the singular 
locus. Every NC symplectic divisor/variety is deformation equivalent to one with a regularization. In fact, we propose to

view a symplectic (sub)variety as a deformation equivalence class of objects, not as an individual object.

In Section 4, we explain our result on the smoothability of NC symplectic varieties. It provides a purely topological 
necessary and sufficient condition for such a variety to be smoothable. In Section 5, we explain how to use certain local 
Hamiltonian torus actions to degenerate a smooth symplectic manifold into an NC symplectic variety. Finally, in Section 6, 
we discuss connections with other areas of mathematics and directions for further developments.

We would like to thank A. Cannas da Silva, K. Fukaya, E. Ionel, E. Lerman, B. Parker, A. Pires, H. Ruddat, D. Stapleton, 
J. Starr, and D. Sullivan for enlightening discussions on various aspects of our work [7–11,6]. We are also grateful to the 
referee for reading our initial submission very thoroughly, pointing out a number of typos and inaccurate wordings, and 
suggesting several improvements in the exposition.

2. Normal crossings (sub)varieties

A symplectic manifold is a manifold X of an even real dimension 2n together with a closed nondegenerate 2-form ω, i.e. 
dω = 0 and ωn|x �= 0 for every x ∈ X . In particular, ωn is a volume/orientation form on X . An almost complex structure J
on X is a vector bundle endomorphism J of T X covering idX such that J 2 = −idT X . Every complex (holomorphic) structure 
on X determines an almost complex structure on X , but the converse is not true if n > 1. The Nijenhuis (2, 1)-tensor,

N J (ξ, ζ ) = 1

4

([ξ, ζ ] + J [ξ, Jζ ] + J [ Jξ, ζ ] − [ Jξ, Jζ ]) ∈ �(X; T X) ∀ξ, ζ ∈ �(X; T X),

is the obstruction to the integrability of J , i.e. J arises from a holomorphic structure on X if and only if N J ≡ 0; see [28].
Every symplectic manifold (X, ω) can be equipped with an ω-compatible almost complex structure in the sense that 

ω(·, J ·) is a metric. The space Jω(X) of ω-compatible almost complex structures is infinite-dimensional and contractible. 
Such a triple (X, ω, J ) is called an almost Kähler manifold. A Kähler manifold is an almost Kähler manifold such that the 
almost complex structure is integrable. The category of Kähler manifolds includes smooth complex projective varieties, 
i.e. smooth varieties cut out by polynomial equations in a complex projective space PN .

In contrast to algebraic/Kähler geometry, symplectic topology is significantly more “flexible”. For instance, symplectic 
manifolds have no local invariants and smooth families of symplectic manifolds with cohomologous symplectic forms are 
symplectomorphic. We are interested in finding out which algebraic structures can be generalized to useful structures in 
the symplectic topology category.

A symplectic submanifold of a symplectic manifold (X, ω) is a submanifold V of X such that ω|V is a symplectic form. 
Symplectic submanifolds are the analogues of smooth subvarieties in (complex) algebraic geometry. For example, a smooth 
symplectic divisor is a symplectic submanifold of real codimension 2 (or complex codimension 1) and a smooth symplectic 
curve is a symplectic submanifold of real dimension 2. The normal bundle

πNX V : NX V ≡ T X |V ≈ T V ω ≡ {
v ∈ Tx X : x ∈ V , ω(v, w) = 0 ∀ w ∈ Tx V

} −→ V (1)

T V



422 M.F. Tehrani et al. / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 420–432
of a symplectic submanifold V of (X, ω) inherits a fiberwise symplectic form ω|NX V from ω. An ω|NX V -compatible Hermitian 
structure on NX V is a triple (i, ρ, ∇), where i is an ω|NX V -compatible complex structure on NX V , ρ is a Hermitian metric 
with

ρR(·, ·) = ω|NX V (·, i·),
and ∇ is a Hermitian connection compatible with (i, ρ). The space of ω|NX V -compatible Hermitian structures is non-empty 
and contractible.

Let V ⊂ X be a smooth symplectic divisor. An ω|NX V -compatible Hermitian structure (i, ρ, ∇) as above determines 
a 1-form α∇ on NX V − V whose restriction to each fiber NX V |x − {x} ∼= C∗ is the 1-form dθ with respect to the polar 
coordinates (r, θ) on C. We also denote by ρ the square-of-the-norm function on NX V . If ̃ J is the almost complex structure 
on NX V induced by i and an almost complex structure J V on V via ∇ , then

α∇ = dc lnρ ≡ − 1

4π
dρ

ρ
◦ J̃ V .

The closed 2-form

ω̂ ≡ π∗(ω|V ) + 1

2
d(ρα∇) ∈ 	2(NX V ) (2)

is well defined, is nondegenerate in a small neighborhood of V , and restricts to the standard symplectic form d(r2dθ)

on each fiber. By the Symplectic Neighborhood Theorem [23, Theorem 3.30], there exists an identification (called an
ω-regularization, in what follows)


 : N ′
X V −→ X, 
|V = idV , d
|V = id, (3)

of a small neighborhood N ′
X V of V in NX V with a neighborhood of V in X such that 
∗ω = ω̂. Regularizations are useful 

for applications, such as the symplectic sum construction of [13,22]. They also ensure the existence of almost complex 
structures J on X that are “nice” along V . These are in turn useful for constructing relative Gromov–Witten invariants 
of (X, V ), for example.

In the 1980s, Gromov combined the rigidity of algebraic geometry with the flexibility of the smooth category and initi-
ated the use of J -holomorphic maps from Riemann surfaces (�, j) into (X, J ),

u : (�, j) −→ (X, J ), ∂̄u ≡ 1

2

(
du + J du ◦ j) = 0, (4)

as a generalization of holomorphic maps. The singularities of the image of a J -holomorphic map u are locally the same 
as the algebraic ones; see [24, Appendix E]. If J is ω-compatible, then the smooth locus of u is a symplectic submanifold 
of (X, ω). A singular symplectic variety in complex dimension 1 can thus be defined as a subset of X that can be realized 
as the image of a J -holomorphic map. The spaces of J -holomorphic maps have a nice deformation theory, which makes 
it possible to study these objects in families; see [24, Chapter 3] and [21, Section 3], for example. The idea of studying 
J -holomorphic maps from higher-dimensional domains is not as promising because the Cauchy–Riemann equation (4) is 
over-determined if the dimension of � is greater than 2.

In parallel with his introduction of J -holomorphic curve techniques into symplectic topology, Gromov asked about the 
feasibility of introducing notions of singular (sub-)varieties of higher dimension suitable for this field; see [14, p. 343]. By 
the last paragraph, the idea of defining such singular objects as images of J -holomorphic maps is not promising and we 
should consider an intrinsic approach. Nevertheless, we still require that for such a singular object V in X , the space (or a 
nice subspace) of almost complex structures on X compatible with V to be non-empty and “manageable”.

In algebraic geometry, divisors, i.e. subvarieties of codimension 1, are dual objects to curves and have long been of par-
ticular importance. On the symplectic side, smooth symplectic divisors appear in different contexts such as in relation with 
complex line bundles [5], symplectic sum constructions [13,22], relative Gromov–Witten theory and degeneration formulas 
for Gromov–Witten invariants [36,20,17,30], symplectic geometry of affine varieties [25,26], and homological mirror sym-
metry [33]. The following question is thus one of the most important specializations of Gromov’s inquiry:

Can one define a soft notion of (singular) symplectic divisor that only involves soft intrinsic symplectic data, but at the same time is 
compatible with rigid auxiliary almost Kähler data needed for making such a notion useful?

NC divisors/varieties are the most basic and important classes of singular objects in complex algebraic (or Kähler) geom-
etry. An NC divisor in a smooth variety X is a subvariety V locally defined by an equation of the form

z1 · · · zk = 0 (5)
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Fig. 1. A 3-fold SC variety.

in a holomorphic coordinate chart (z1, . . . , zn) on X . A simple normal crossings (or SC) divisor is a global transverse union of 
smooth divisors, i.e.

V =
⋃
i∈S

V i ⊂ X .

An NC variety of complex dimension n is a variety X∅ that can be locally embedded as an NC divisor in Cn+1. In other 
words, every sufficiently small open set U in X∅ can be written as

U =
(�

i∈S

Ui

)/
∼, Uij ≈ U ji ∀ i, j ∈ S, i �= j,

where {Uij} j∈S−i is an SC divisor in a smooth component Ui of U . A simple normal crossings (or SC) variety is a global 
transverse union of smooth varieties {Xi}i∈S along SC divisors {Xij} j∈S−i in Xi , i.e.

X∅ =
(�

i∈S

Xi

)/
∼, Xij ≈ X ji ∀ i, j ∈ S, i �= j.

A 3-fold SC variety is shown in Fig. 1.
NC varieties often emerge as nice limits of smooth algebraic varieties. A semistable degeneration is a one-parameter family 

π : Z −→ , where  is a disk around the origin in C and Z is a smooth variety, such that the central fiber Z0 ≡ π−1(0)

is an NC variety and the fibers over ∗ ≡  − {0} are smooth. Semistable degenerations play a central role in algebraic 
geometry and mirror symmetry. They appear in compactification of moduli spaces, Hodge theory, Gromov–Witten theory, 
etc.

Example 1 ([2, Section 6.2]). Let P be a homogeneous cubic polynomial in x0, . . . , x3 and

Z ′ = {(
t, [x0, x1, x2, x3]

) ∈C× P3 : x1x2x3 = t P (x0, x1, x2, x3)
} ⊂ C× P3 .

Let π′ : Z ′ −→ C be the projection map to the first factor. If P is generic and  ⊂ C is a sufficiently small disk around the 
origin, then π′ −1(t) is a smooth cubic hypersurface (divisor) in P3 for every t ∈ ∗ . For t = 0, π′ −1(t) is the SC variety

X ′
∅ = {0} × (

X ′
1 ∪ X ′

2 ∪ X ′
3

) ⊂ {0} × P3 with

X ′
i ≡ (xi = 0) ≈ P2 ∀ i ∈ {1,2,3}, X ′

i j ≡ X ′
i ∩ X ′

j ≈ P1 ∀ i, j ∈ {1,2,3}, i �= j.

However, the total space Z ′ of π′ is not smooth at the 9 points of

Z ′ sing ≡ {0} × (
X ′

∂ ∩ (P = 0)
) ⊂ X∅, where X ′

∂ = X ′
12 ∪ X ′

13 ∪ X ′
23 ⊂ P3 .

A small resolution Z of Z ′| ≡ π′ −1() can be obtained by blowing up each singular point on X ′
i j in either X ′

i or X ′
j . The 

map π′ then induces a projection π : Z −→  and defines a semistable degeneration. Every fiber of π over ∗ is a smooth 
cubic surface. The central fiber π−1(0) is the SC variety X∅ ≡ X1 ∪ X2 ∪ X3 with 3 smooth components, each a blowup of P2

at some number of points. If each singular point on X ′
i j is blown up in X ′

i with i < j, then Z is obtained from Z ′ through 
two global blowups of C × P3 and is thus projective.

As a first step to answer Gromov’s inquiry, we introduce topological notions of NC symplectic divisor and variety in [7,9].
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Definition 2 ([7, Definition 2.1]). An SC symplectic divisor in a symplectic manifold (X, ω) is a finite transverse union V ≡⋃
i∈S V i of smooth symplectic divisors {V i}i∈S such that for every I ⊂ S the submanifold

V I ≡
⋂
i∈I

V i ⊂ X

is symplectic and its symplectic and intersection orientations are the same.

Such a collection {V i}i∈S of symplectic submanifolds of (X, ω) is sometimes called positively intersecting. For example, if 
the real dimension of X is 4, V is an SC symplectic divisor if and only if the V i ’s intersect transversely and every point 
of a pairwise intersection V i ∩ V j is positive. By [7, Example 2.7], the compatibility-of-orientation condition along all strata 
cannot be replaced with a condition on a smaller subset of such strata.

Definition 3 ([7, Definition 2.5]). An SC symplectic variety is a pair (X∅, (ωi)i∈S), where

X∅ =
(�

i∈S

Xi

)/
∼, Xij ≈ X ji ∀ i, j ∈ S, i �= j,

for a finite collection (Xi, ωi)i∈S of symplectic manifolds, some SC symplectic divisor {Xij} j∈S−{i} in Xi for each i ∈ S , and 
symplectic identifications Xij ≈ X ji for all i, j ∈ S distinct.

An NC symplectic divisor is a subset of a symplectic manifold (X, ω) locally equal to an SC symplectic divisor. An NC 
symplectic variety is a space locally equal to an SC symplectic variety. In other words, it is a topological space together with 
“charts” mapping homeomorphically to SC symplectic varieties and with structure-preserving overlap maps. There are global 
descriptions of NC symplectic divisors and varieties in terms of transverse immersions that respect certain permutation 
symmetries; see [9] for details.

3. Regularizations

In order to show that Definitions 2 and 3 are appropriate analogues of the corresponding notions in algebraic geometry 
and are suitable for applications in symplectic topology, we have to show that the SC symplectic divisors and varieties 
of Definitions 2 and 3 admit (possibly after deformations) a contractible space of compatible almost complex structures. 
In the case of a smooth divisor, one needs a regularization (3) to construct “nice” almost complex structures. We need a 
similar thing for NC symplectic divisors and varieties. In other words, we need to construct “nice” neighborhoods of an NC 
symplectic divisor V in the ambient manifold X and of the singular locus X∂ of an SC symplectic variety X∅ (after possibly 
deforming these objects). We describe below what regularizations for SC/NC divisors/varieties are. The precise definitions 
are contained in [7,9].

Let V be an SC symplectic divisor in a symplectic manifold (X, ω) as in Definition 2. By the transversality assumption, 
the homomorphisms

NX V I −→
⊕
i∈I

NX V i
∣∣

V I
, I ⊂ S,

induced by the inclusions T V I ⊂ T V i |V I are isomorphisms. For I ′ ⊂ I ⊂ S , define

NI;I ′ =
⊕

i∈I−I ′
NX V i|V I ⊂ NX V I .

We denote by

πI : NX V I −→ V I , �I : T X |V I −→ NX V I , πI;I ′ : NX V I = NI;I ′ ⊕NI;I−I ′ −→ NI;I ′

the natural projection maps.
A system of regularizations for {V i}i∈S in X is a collection of smooth embeddings


I : N ′
X V I −→ X, I ⊂ S,

from open neighborhoods N ′
X V I ⊂NX V I of V I so that 
I |V I = idV I , d
I induces the identity map on NX V I , and


I
(
NI;I ′ ∩ Dom(
I )

) = V I ′ ∩ Im(
I ) ∀ I ′ ⊂ I ⊂ S .

This implies that d
I induces an isomorphism

D
I;I ′ : π∗
I;I ′NI;I−I ′

∣∣
N ∩Dom(
 )

−→ NX V I ′
∣∣

V ∩Im(
 )
;

I;I′ I I′ I
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see [7, Section 2.2]. It is given by the derivative

D
I;I ′
(

v I ′ , v I−I ′
) ≡ �I ′

(
d

dt

I (v I ′ , tv I−I ′)

∣∣∣
t=0

)
∀(v I ′ , v I−I ′) ∈ π−1

I;I ′(Dom(
I )), (6)

of 
I in the direction “normal” to V I ′ . In the I = I ′ case, this derivative is the identity map. If |S| = 1, i.e. V is a smooth 
divisor, a system of regularizations is a single map 
 as in (3) and Definition 4 below imposes no additional condition.

Definition 4. A regularization for V in X is a system of regularizations for {V i}i∈S in X as above such that

Dom(
I ) = D
−1
I;I ′

(
Dom(
I ′)

)
, 
I = 
I ′ ◦D
I;I ′ |Dom(
I ) ∀ I ′ ⊂ I ⊂ S .

Definition 5 ([7, Definition 2.9]). An ω-regularization for V in X consists of a choice of Hermitian structure (iI;i , ρI;i, ∇(I;i)) on 
NX V i |V I for all i ∈ I ⊂ S together with a regularization for V in X as in Definition 4, so that


∗
I ω = π∗(ω|V I ) + 1

2

∑
i∈I

d(ρI;iα∇(I;i) ) ∀ I ⊂ S,

and (6) is an isomorphism of split Hermitian vector bundles for all I ′ ⊂ I ⊂ S .

Since the intersection of the singular locus of an SC symplectic variety with each irreducible component Xi is an SC 
symplectic divisor inside Xi , one gets the following straightforward definition of a regularization for these objects.

Definition 6 ([7, Definition 2.15]). Let (X∅, (ωi)i∈S) be an SC symplectic variety as in Definition 3. An (ωi)i∈S -regularization is 
an ωi -regularization Ri for the SC symplectic divisor {Xij} j∈S−{i} in Xi for each i ∈ S so that the restrictions of Ri and R j
to Xij give identical ωi |Xij -regularizations of the SC symplectic divisor {Xijk}k∈S−{i, j} in Xij for all distinct i, j ∈ S .

Since an NC symplectic divisor V ⊂ X is equal to an SC symplectic divisor V p ⊂ X near each point p ∈ V , we can define 
an ω-regularization for V to be an ω-regularization for V p for each p ∈ V so that any two such ω-regularizations associated 
with p, q ∈ V agree on V p ∩ Vq . Regularizations for NC symplectic varieties are defined similarly; see [9] for details.

Unlike a smooth symplectic divisor, an NC symplectic divisor V ⊂ X need not admit an ω-regularization. If an SC sym-
plectic divisor V as in Definition 2 admits an ω-regularization, then its smooth components V i are in fact ω-orthogonal. 
On the other hand, many applications (such as symplectic constructions and Gromov–Witten theory) care only about the 
deformation equivalence classes of the symplectic structure. Therefore, the alternative philosophy proposed in [7] is to

study NC symplectic divisors/varieties up to deformation equivalence and show that each deformation equivalence class has a 
subspace of sufficiently “nice” representatives.

More concretely, for a transverse union V ≡ ⋃
i∈S V i of closed real codimension 2 submanifolds of a manifold X , let 

Symp+(X, V ) be the space of all symplectic forms ω on X such that V is an SC symplectic divisor in (X, ω). We also define 
a space of auxiliary data Aux(X, V ) to be the space of pairs (ω, R), where ω ∈ Symp+(X, V ) and R is an ω-regularization 
of V in X . Let

� : Symp+(X, V ) −→ H2(M;R)

be the map sending ω to its de Rham equivalence class [ω]. The following is a weaker version of the main result of [7] for 
SC symplectic divisors.

Theorem 7 ([7, Theorem 2.13]). Let V ≡ ⋃
i∈S V i be a transverse union of closed real codimension 2 submanifolds of a manifold X. 

Then the projection maps

π : Aux(X, V ) −→ Symp+(X, V ), π
∣∣
�−1(α)

: {� ◦ π}−1(α) −→ �−1(α), α ∈ H2
dR(M),

are weak homotopy equivalences.

There is a direct analogue of Theorem 7 for SC symplectic varieties; see [7, Theorem 2.17]. There are also similar results 
for NC symplectic divisors and varieties; see [9].

For many applications, the most important consequences of Theorem 7 are the following. First, for each ω ∈
Symp+(X, V ), there exists a path (ωt)t∈[0,1] of cohomologous symplectic forms in Symp+(X, V ) such that ω0 = ω and V
admits an ω1-regularization in X . By the Moser Isotopy Theorem [23, Section 3.2], this is equivalent to saying that every SC 
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symplectic divisor in (X, ω) is isotopic through SC symplectic divisors inside (X, ω) to one that admits an ω-regularization. 
Second, for two pairs

(ω0,R0), (ω1,R1) ∈ Aux(X, V )

and a path (ωt)t∈[0,1] of symplectic forms Symp+(X, V ) connecting ω0 and ω1, there exists a deformation (ωt,τ )t,τ∈[0,1] of 
this path in Symp+(X, V ) fixing the end points, i.e.(

ωt,0
)

t∈[0,1] = (
ωt

)
t∈[0,1], ω0,τ = ω0, ω1,τ = ω1 ∀τ ∈ [0,1],

such that the ending path (ωt,1)t∈[0,1] can be lifted to a path(
ωt,1, R̃t

)
t∈[0,1] ∈ Aux(X, V ) with R̃0 ∼= R0, R̃1 ∼= R1.

If (ωt)t∈[0,1] is a path of cohomologous forms, then its deformation (ωt,τ )t,τ∈[0,1] can be chosen to consist of cohomologous 
forms as well.

Theorem 7 implies that every SC symplectic divisor is isotopic to one admitting a “nice” compatible almost complex 
structure. We define the space of almost Kähler data AK(X, V ) to be the space of triples (ω, R, J ), where ω ∈ Symp+(X, V )

is a symplectic structure, R is an ω-regularization of V as in Definition 6, and J ∈Jω(X) is such that for each I ⊂ S:

• V I is J -holomorphic,
• 
∗

I J restricted to each fiber F of πI |Dom(
I ) is equal to 
⊕

i∈I iI;i |F ,
• πI ◦ 
−1

I is a ( J |V I , J |Im(
I ))-holomorphic map.

By Theorem 7 and a straightforward induction argument, the projection maps

π′ : AK(X, V ) −→ Aux(X, V ),

π′|{�◦π}−1(α) : {� ◦ π ◦ π′}−1(α) −→ {� ◦ π}−1(α), α ∈ H2
dR(M),

are also weak homotopy equivalences. Therefore, the above conclusions concerning lifts from Symp+(X, V ) hold with 
Aux(X, V ) replaced by AK(X, V ) as well.

If (ω, R, J ) ∈ AK(X, V ), J is very regular around V . In particular, it respects the C∗-action on the components NX V i |V I

of the normal bundle NX V I of V I in X and the image of its Nijenhuis tensor on T X |V I lies in T V I (i.e. it vanishes in 
the normal direction to V I ). Regularizations for NC divisors and varieties similarly ensure the existence of almost complex 
structures with analogous properties on symplectic manifolds containing NC divisors and on NC varieties themselves. The 
above properties of J are very desirable for applications involving J -holomorphic curve techniques; works such as [20,17,
19,30,2] make use of these properties in contexts involving various specializations of NC symplectic divisors and varieties 
introduced in [7,9].

In algebraic geometry, one can associate a holomorphic line bundle with any Cartier divisor. It is straightforward to ex-
tend this to the symplectic topology category in the case of a smooth symplectic divisor V in a symplectic manifold (X, ω). 
Fix an identification 
 as in (3) and an ω|NX V -compatible complex structure i on NX V so that NX V becomes a complex 
line bundle over V . Then,

OX (V ) ≡ (

−1 ∗π∗

NX V NX V |
(N ′
X V ) � (X − V ) ×C

)/∼ −→ X,


−1 ∗π∗
NX V NX V |
(N ′

X V ) � (

(v), v, cv

) ∼ (

(v), c

) ∈ (X − V ) ×C,

is a complex line bundle over X with

c1(OX (V )) = PDX ([V ]X ) ∈ H2(X;Z), (7)

where [V ]X is the homology class in X represented by V . The space of pairs (
, i) involved in explicitly constructing this 
line bundle is contractible. Therefore, a family B in

Symp+(X, V ) = Symp(X, V )

determines a complex line bundle OB×X (V ) over B × X .
Regularizations for NC symplectic divisors and varieties extend the construction of the previous paragraph to these 

spaces. In particular, an NC symplectic divisor V in a symplectic manifold (X, ω) determines a complex line bundle OX (V )

over X satisfying (7). It also determines a complex vector bundle T X(−log V ) of rank equal to half the real dimension of X
satisfying

c
(
T X(−log V )

) = c(T X,ω)
/(

1 + PDX ([V (1)]X ) + PDX ([V (2)]X ) + . . .
) ∈ H2(X;Q), (8)
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where V (r) ⊂ V is the r-fold locus (locally intersection of at least r branches of V ); see [10]. This vector bundle extends 
the notion of logarithmic tangent bundle, which plays a central role in the Gross–Siebert program [15,16], to symplectic 
topology. The deformation equivalence classes of both bundles depend only on the deformation equivalence class of ω in 
Symp+(X, V ). If V is an SC symplectic divisor as in Definition 2, then

OX (V ) =
⊗
i∈S

OX (V i) −→ X

and the equality in (8) holds in H2(X; Z). An NC symplectic variety (X∅, ω∅) determines a complex line bundle OX∂
(X∅)

over the singular locus X∂ of X∅ , which we call the normal bundle of X∂ . The deformation equivalence class of OX∂
(X∅)

similarly depends only on the deformation equivalence class of ω∅ in the space Symp+(X∅) of all NC-symplectic-variety 
structures on X∅ . If (X∅, ω∅) is an SC symplectic variety as in Definition 3, then a regularization for (X∅, ω∅) determines 
line bundles

OXc
i
(Xi) −→ Xc

i ≡
⋃

j∈S−{i}
X j ⊂ X∅, i ∈ S,

obtained by canonically identifying the line bundles

OX j (Xij)
∣∣

X jk
= OX jk (Xijk) = OXk (Xik)

∣∣
X jk

over X jk; see [8, Section 2.1]. In this case,

OX∂
(X∅) =

⊗
i∈S

OXc
i
(Xi)

∣∣
X∂

−→ X∂ ≡
⋃

i, j∈S
i �= j

Xi j .

4. Smoothings of NC symplectic varieties

Having introduced analogues of NC divisors/varieties into symplectic topology, we next present an analogue of the 
algebro-geometric notion of semistable degeneration.

Definition 8 ([8, Definition 2.6], [10]). If (Z, ωZ ) is a symplectic manifold and  ⊂ C is a disk around the origin, a smooth 
surjective map π :Z −→  is a nearly regular symplectic fibration if

• X∅ ≡Z0 ≡ π−1(0) is an NC symplectic divisor in (Z, ωZ ),
• π is a submersion outside of the singular locus X∂ of X∅ ,
• for every λ ∈  − {0}, Zλ ≡ π−1(λ) is a symplectic submanifold of (Z, ωZ ).

The restriction of ωZ to X∅ above determines an NC symplectic variety (X∅, ω∅). For each I ⊂ [N], the derivatives of π
along the normal bundles NZ Xi of Xi in Z induce a homomorphism

D I π :
⊗
i∈I

NZ Xi
∣∣

XI
−→ C

that vanishes along X J with I � J ⊂ [N]. We call the nearly regular symplectic fibration of Definition 8 a one-parameter 
family of smoothings of (X∅, ω∅) if the homomorphism

NZ Xi
∣∣
x −→ C, vi −→ D I π

(
(v j) j∈I

)
,

is an orientation-preserving isomorphism for all i ∈ I ⊂ [N], x ∈ XI with x /∈ X J if I � J ⊂ [N], and v j ∈ NZ X j|x − {0} for 
j ∈ I − {i}.

From the complex geometry point of view, such a family replaces the nodal singularity z1 . . . zN = 0 in Cn , i.e. a union of 
N coordinate hyperplanes in the central fiber π−1(0), by a smoothing z1 . . . zN = λ with λ ∈C∗ in a generic fiber. A regular-
ization for (X∅, ω∅) determines a complex vector bundle logZ T X∅ over X∅ of rank equal to half the real dimension of X∅
satisfying

c
(

logZ T X∅
) = c

(
TZ(−log X∅)

)∣∣
X∅ .

This bundle is the analogue of the logarithmic tangent bundle of a smoothable NC variety in algebraic geometry. Its deforma-
tion equivalence class again depends only on the deformation equivalence class of ωZ in Symp+(Z, X∅).

In light of the deformation equivalence philosophy stated on page 425, we say that an NC symplectic variety (X∅, ω∅)
is smoothable if some NC symplectic variety (X∅, ω′

∅) deformation equivalent to (X∅, ω∅) admits a one-parameter family of 
smoothings. In this section, we answer the following question:
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Which SC symplectic varieties are smoothable?

The d-semistability condition of [12, Definition (1.13)] is well known to be an obstruction to the smoothability of an 
NC variety in a one-parameter family with a smooth total space in the algebraic geometry category. As shown in [32], the 
d-semistability condition is not the only obstruction in the algebraic category, even in the simplest non-trivial case discussed 
below.

Let (X1, ω1) and (X2, ω2) be smooth symplectic manifolds with identical copies of a smooth symplectic divisor X12 ⊂
X1, X2. Then(

X∅ = X1 ∪X12 X2,ω∅ = (ω1,ω2)
)

(9)

is an SC symplectic variety. If (X1, ω1), (X2, ω2), and X12 are smooth projective varieties, the d-semistability condition 
of [12] in this case is the existence of an isomorphism

OX∂
(X∅) ≡ NX1 X12 ⊗C NX2 X12 ≈ OX12 −→ X12 (10)

in the category of holomorphic line bundles. By the now classical symplectic sum construction, suggested in [14, p. 343] and 
carried out in [13,22], the smoothability of the 2-fold SC symplectic variety (9) in the sense of Definition 8 is equivalent to 
the existence of an isomorphism (10) in the category of complex line bundles.

The topological type of smooth fibers (X#, ω#) of the one-parameter family of smoothings produced by the construction 
of [13] depends only on the homotopy class of isomorphisms (10). With such a choice fixed, this construction involves 
choosing an ω1|NX1 X12 -compatible almost complex structure on NX1 X12, an ω2|NX2 X12 -compatible almost complex struc-
ture on NX2 X12, and a representative for the above homotopy class. Because of these choices, the resulting symplectic 
manifold (X#, ω#) is determined by (X1, ω1), (X2, ω2), and the choice of the homotopy class only up to symplectic de-
formation equivalence. Since the symplectic deformations of the SC symplectic variety (9) do not affect the deformation 
equivalence class of (X#, ω#), it would have been sufficient to carry out the symplectic sum construction of [13] only on a 
path-connected set of representatives for each deformation equivalence class of the SC symplectic variety (9).

The above change in perspective turns out to be very useful for smoothing out arbitrary NC symplectic varieties in [8,
10] and thus answering another question of [14, p. 343]. By the next theorem, the direct analogue of the d-semistability 
condition of [12] is the only obstruction for the smoothability of an arbitrary NC symplectic variety. Regularizations are the 
essential auxiliary data in the proof of this result.

Theorem 9 ([8, Theorem 2.7], [10]). An NC symplectic variety (X∅, ω∅) is smoothable if and only if the associated line bundle OX∂
(X∅)

is trivializable. Furthermore, the germ at the zero fiber of the deformation equivalence class of the nearly regular symplectic fibration 
(Z, ωZ , π) provided by the proof of this statement is determined by a homotopy class of trivializations ofOX∂

(X∅). If, in addition, X∂ is 
compact, the deformation equivalence class of a smooth fiber (Zλ, ωλ) is also determined by a homotopy class of these trivializations.

If (X∅, ω∅) is an SC symplectic variety as in Definition 3 and X∅ is compact, we call (the deformation equivalence class 
of) a generic fiber of the resulting one-parameter family the multifold or |S|-fold symplectic sum of (Xi, ωi)i∈S .

If (X∅, ω∅) is an SC symplectic variety as in Definition 3,

OX∂
(X∅)

∣∣
Xij

= NXi Xi j ⊗NX j Xi j ⊗
⊗
k∈S

k �=i, j

OXij (Xijk) ∀ i, j ∈ S, i �= j. (11)

By [8, Example 2.10], the triviality of OX∂
(X∅) is in general stronger than the triviality of the restrictions (11); the latter is 

known as the triple point condition in the algebraic geometric literature. If the natural homomorphism

H2(X∂ ;Z) −→
⊕
i, j∈S
i �= j

H2(Xij;Z) (12)

is injective or at most one of the homomorphisms

H1(Xij;Z) −→
⊕
k∈S

k �=i, j

H1(Xijk;Z), i, j ∈ S, i �= j, (13)

is not surjective, then OX∂
(X∅) is trivial if and only if all restrictions in (11) are trivial.

In Example 1, the line bundle (11) corresponding to X ′
i j ≈ P1 is equal to OP1 (3). Therefore, X ′

∅ is not smoothable. After 
blowing up the 3 singular points on each X ′

i j , we get:

NX Xij ⊗NX Xij ⊗OX (X123) ∼= OP1 ∀ i, j = 1,2,3, i �= j.
i j i j
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In this case, the homomorphism (12) is injective and all homomorphisms (13) are surjective. By Theorem 9, the NC symplec-
tic variety X∅ of Example 1 is thus smoothable. In this case, there is only one homotopy class of trivializations of OX∂

(X∅). 
The smoothing provided by the proof of Theorem 9 is conjecturally equivalent to the one of Example 1, provided the latter 
is projective.

The proof of the SC case of Theorem 9 in [8] explicitly constructs (Z, ωZ , π) by gluing together local charts ZI with 
I ⊂ S non-empty; these charts are equipped with symplectic forms and local smoothings. We deform (ωi)i∈S in Symp+(X∅)
so that X∅ admits an (ωi)i∈S -regularization R and choose a trivialization � of OX∂

(X∅) so that it is compatible with R in 
a suitable sense. If |I| ≥ 2, ZI is a neighborhood of a large open subset X◦

I of XI in

N XI |X◦
I
≡

⊕
i∈I

NXI−i X I |X◦
I
;

the closure of X◦
I is “slightly” disjoint from all X J with J � I . If I = {i} with i ∈ S , ZI is a neighborhood of X◦

i × {0} in 
X◦

i × C. The regularization R and the trivialization � are used to glue the charts ZI ′ and ZI for I ′ ⊂ I with |I ′| ≥ 2 and 
|I ′| = 1, respectively.

If |I| ≥ 2, the restriction of π to ZI is a positive multiple of the composition

ZI ↪−→
⊕
i∈I

NXI−i X I
∣∣

X◦
I
−→

⊗
i∈I

NXI−i X I
∣∣

X◦
I
= OX∂

(X∅)|X◦
I

�−→ X◦
I ×C−→ C.

If |I| = 1, the restriction of π to ZI is a positive multiple of the projection to the second component. The symplectic 
form ωZ on Z is built by interpolating between the symplectic forms (2) determined by the product Hermitian structures 
(iI;i, ρI;i, ∇(I;i))i∈I on ZI with |I| ≥ 2 and certain product symplectic forms on ZI with |I| = 1.

The proof of the SC case of Theorem 9 outlined above is extended to the general case in [10]. By [8, Proposition 5.1]
and its extension to the NC case in [10], every one-parameter family of smoothings of an NC symplectic variety (X∅, ω∅)
determines a homotopy class of trivializations of OX∂

(X∅). By [8, Proposition 5.5] and its extension to the NC case in [10], 
the homotopy class determined by the family provided by the proof of Theorem 9 is the input homotopy class. We believe 
that the equivalence classes of smoothings of a compact NC symplectic variety (X∅, ω∅) correspond to the homotopy classes 
of trivializations of OX∂

(X∅). This is equivalent to the following.

Conjecture 10. Let (Z, ωZ , π) be a one-parameter family of smoothings of a compact NC symplectic variety (X∅, ω∅). Then 
(Z, ωZ , π) is deformation equivalent to a smoothing of (X∅, ω∅) provided by the proof of Theorem 9.

Remark 11. The surgery construction of [34,35] on 4-dimensional symplectic manifolds along pairwise positively intersecting 
immersed surfaces, also called N-fold symplectic sum construction, agrees with ours (which is consistent with algebraic 
geometry and [14, p. 343]) only for N = 3. In particular, the setting of [35, Theorem 2.7] is essentially the dimR X = 4
case of the setting of [8, Theorem 2.7]. The output of [35, Theorem 2.7] is then symplectically deformation equivalent to 
the smooth fibers of the one-parameter family provided by [8, Theorem 2.7]. The perspectives taken in [35] and in [8] are 
fundamentally different as well. The viewpoint in [35] is that of surgery on 4-dimensional manifolds; the viewpoint in [8]
is that of smoothing a variety in a one-dimensional family with a smooth total space. The configurations in [35] with N ≥ 4
correspond to varieties, such as{

(x, y, z, w) ∈C4 : xy = 0, zw = 0
}
, (14)

that do not even admit such smoothings. The total space of the natural one-parameter smoothing of (14), i.e. with 0 replaced 
by λ ∈C, is singular at the origin.

5. SC degenerations of symplectic manifolds

We next discuss the potential for reversing the construction of Theorem 9.

Can one degenerate a symplectic manifold (X, ω) into some SC symplectic variety (Xi, ωi)i∈S in a one-parameter family?

The |S| = 2 case of this question is the now classical symplectic cut construction of [18]. Given a free Hamiltonian S1-action 
generated by Hamiltonian h on an open subset W of X so that Ṽ ≡ h−1(0) is a separating hypersurface, this construction 
decomposes (X, ω) into two symplectic manifolds, (X−, ω−) and (X+, ω+). It cuts X into closed subsets U≤ and U≥
along Ṽ and collapses their boundary Ṽ to a smooth symplectic divisor V ≡ Ṽ /S1 inside (X−, ω−) and (X+, ω+). The 
associated “wedge”,

X∅ ≡ X− ∪V X+,
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is a 2-fold SC symplectic variety as in (9). If we assume instead that Ṽ is non-separating, the result would be an NC 
symplectic variety.

In [11], we generalize and enhance the symplectic cut construction of [18] to produce a nearly regular symplectic fi-
bration with regular fibers deformation equivalent to (X, ω). The central singular fiber of this fibration is what we call a
multifold (or N-fold) symplectic cut of (X, ω). The input of this construction is a multifold cutting configuration C defined 
below.

For a finite non-empty set S , let

(S1)S• =
{
(eiθi )i∈S ∈ (S1)S :

∏
i∈S

eiθi = 1

}
.

For I ⊂ S , we identify (S1)I with the subgroup{
(eiθi )i∈S ∈ (S1)S : eiθi = 1 ∀ i ∈ S − I

}
of (S1)S in the natural way and let

(S1)I• ≡ (S1)S• ∩ (S1)I .

Denote by tI;• ⊂ tS;• the Lie algebra of (S1)I• and by t∗I;• its dual. For i, j ∈ I ⊂ S , the homomorphism

t∗I;• = RI/{
aI ∈RI : a ∈ R

} −→ R, η ≡ [
(ak)k∈I

] −→ ηi j ≡ a j − ai ,

is well-defined. We write (η)i < (η) j (resp. (η)i ≤ (η) j , (η)i = (η) j ) if 0 < ηi j (resp. 0 ≤ ηi j , 0 = ηi j).

Definition 12. A multifold Hamiltonian configuration for a symplectic manifold (X, ω) is a tuple

C ≡ (
U I , φI ,μI : U I −→ t∗I;•

)
∅�=I⊂S , (15)

where S is a finite non-empty set, (U I )∅�=I⊂S is an open cover of X , and φI is a Hamiltonian (S1)I•-action on U I with 
moment map μI , such that

(a) U I ∩ U I ′ = ∅ unless I ⊂ I ′ or I ′ ⊂ I;
(b) μI (x)|tI ′;• = μI ′ (x) for all x ∈ U I ∩ U I ′ and I ′ ⊂ I ⊂ S;
(c) (μI (x))i < (μI (x)) j for all x ∈ U I ∩ U I ′ , i ∈ I ′ ⊂ I ⊂ S , and j ∈ I − I ′ .

Definition 13. A multifold cutting configuration for (X, ω) is a multifold Hamiltonian configuration as in (15) such that the 
restriction of the (S1)I•-action φI to (S1)I ′• is free on the preimage of 0 ∈ t∗I ′;• under the moment map

μI ′;I : {x ∈ U I : (μI (x)
)

i <
(
μI (x)

)
j ∀ i ∈ I ′, j ∈ I − I ′

} −→ t∗I ′;•, μI ′;I (x) = μI (x)
∣∣
tI′;•

,

for all I ′ ⊂ I ⊂ S with I ′ �= ∅.

We use a multifold cutting configuration C in [11] to decompose (X, ω) into |S| symplectic manifolds (Xi, ωi) at once. 
We first cut X into the closed subspaces

U≤
i ≡

⋃
i∈I⊂S

{
x ∈ U I : (μI (x))i ≤ (μI (x)) j ∀ j ∈ I

}
, i ∈ S.

The subspace U≤
i has boundary and corners

U≤
I ≡

⋃
I⊂ J⊂S

{
x ∈ U J : (μ J (x))i ≤ (μ J (x)) j ∀ i ∈ I, j ∈ J

}
, i ∈ I ⊂ S, |I| ≥ 2.

We collapse each U≤
I by the (S1)I•-action φI to obtain symplectic manifolds (Xi, ωi) with i ∈ S and symplectic submanifolds 

XI ≡ U≤
I /(S1)I• of real codimension 2(|I| − 1) in (Xi, ωi) with i ∈ I ⊂ S . For each i ∈ S , {Xij}i∈S−i is an SC symplectic divisor 

in (Xi, ωi). The entire collection {XI } determines an SC symplectic variety (X∅, ω∅), which we call a multifold (or |S|-fold) 
symplectic cut of (X, ω).

We also construct a symplectic manifold (Z, ωZ ) containing X∅ as an SC symplectic divisor and a smooth map π :
Z −→ C so that X∅ = π−1(0) and ωZ |X∅ = ω∅ . The restriction of π to a neighborhood Z ′ of X∅ in Z is a nearly regular 
symplectic fibration and thus determines a one-parameter family of smoothings of the SC symplectic variety (X∅, ω∅). If 
X is compact, then a generic fiber of π|Z ′ is deformation equivalent to (X, ω). In such a case, we call (Z ′, ωZ |Z ′ , π|Z ′ ) a
multifold (or |S|-fold) SC symplectic degeneration of (X, ω). This is a symplectic topology analogue of the algebro-geometric 
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Fig. 2. A 3-fold cutting configuration.

notion of semistable degeneration (i.e. smooth one-parameter family of degenerations of a smooth algebraic variety to an NC 
algebraic variety).

The symplectic manifold (Z, ωZ ) is obtained by gluing together charts (Z◦
I , �I ) with I ⊂ S non-empty. Each (Z◦

I , �I )

is the Symplectic Reduction [4, Theorem 23.1] with respect to the moment map

μ̃I : U I ×CI −→ t∗I;•, μ̃I (x, z) = μI (x) − μCI ;•(z),

where μCI ;• is the moment map for the restriction of the standard (S1)I -action on CI to (S1)I• such that 0 ∈ CI is its 
critical point. The restriction of π to Z◦

I is a positive multiple of the map

Z◦
I −→ C,

[
x, (zi)i∈I

] −→
∏
i∈I

zi .

The intersection of Z◦
I with Xi corresponds to the region zi = 0 inside Z◦

I .
The S = {1, 2} case of Definition 13 corresponds to the symplectic cut construction of [18] by identifying (S1)S• with S1

via the projection to the first component of (S1)S and taking

W = U S , X− = U≤
1 , X+ = U≤

2 , Ṽ = U≤
12 .

Figs. 2 and 1 show a 3-fold cutting configuration and the associated 3-fold symplectic cut, respectively.
The SC case of the symplectic sum/smoothing construction of Theorem 9 and the symplectic cut/degeneration construc-

tion of [11] are intuitively mutual inverses. However, we are unaware of any work where even the 2-fold case of this 
statement (relating the constructions of [13] and [18]) is made precise. The purpose of [6] is to establish this statement as 
formulated below.

Fix n, N ∈ Z+ . Let SCV(n, N) be the space of tuples (X∅, ω∅, ̄h) consisting of a compact N-fold SC symplectic variety 
(X∅, ω∅) of real dimension 2n and a homotopy class h̄ of trivializations of an associated line bundle OX∂

(X∅). Let SCC(n, N)

be the space of tuples (X, ω, C ) consisting of a compact symplectic manifold (X, ω) of real dimension 2n and an N-fold 
cutting configuration C for (X, ω). By [6], a generic fiber (X, ω) of a nearly regular symplectic fibration arising from the 
proof of the SC case of Theorem 9 admits a natural N-fold cutting configuration C . By [8, Proposition 5.1], the semistable 
degeneration (Z ′, ωZ |Z ′ , π|Z ′) of (X, ω) arising from a cutting configuration C determines a homotopy class h̄ of trivial-
ization of a line bundle OX∂

(X∅) associated with the central fiber. Thus, there are natural maps

Sn,N : SCV(n, N) −→ SCC(n, N), Cn,N : SCC(n, N) −→ SCV(n, N), (16)

which we call smoothing and cutting maps respectively.
The aim of [6] is to show that the two maps in (16) are weak homotopy inverses. It is fairly straightforward to show that 

Cn,N ◦Sn,N is homotopy equivalent to the identity. Along with Conjecture 10, this implies that Sn,N ◦Cn,N is weakly homotopy 
equivalent to the identity, but Conjecture 10 is more than what is needed. The multifold symplectic cut construction of [11], 
the maps (16), and their being weak homotopy inverses should generalize to the arbitrary NC case as well.

6. Directions for further research

Log smooth degenerations to log smooth algebraic varieties play important roles in such areas of modern algebraic geom-
etry as Hodge theory and log Gromov–Witten theory [16,1]. The almost Kähler analogue of the log smooth category provided 
by the exploded manifold category of [29] underpins a similar study of GW-invariants in [30]. The works [16,1,30] ex-
tend GW-invariants to algebraic varieties with so-called fine saturated log structures and show that these invariants do not 
change under deformations that are smooth in the category of such varieties. An effective decomposition formula splitting 
GW-invariants of a fine saturated log algebraic variety into GW-invariants of the irreducible components of the underlying 
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variety would generalize the renowned formula of [19] and is key to the Gross–Siebert program [15], but has turned out to 
be difficult to work out. As GW-invariants of smooth algebraic varieties are fundamentally symplectic topology invariants, 
it is natural to expect the same of fine saturated log algebraic varieties. This should in turn provide a more robust set-
ting for effectively generalizing the decomposition formula of [19]. We believe that the deformation equivalence philosophy 
stated on page 425 and the methods used to implement it in the case of NC singularities can be used to define a category 
of fine saturated log symplectic varieties, which in turn should provide a suitable setting for extending GW-invariants from 
symplectic manifolds and studying their properties under semistable degeneration. NC singularities are the most basic type 
of fine saturated log structures. Our work [7–11,6] introduces symplectic topology analogues of these structures, includ-
ing the associated log tangent bundles, and lays the foundation for defining the long-awaited GW-invariants relative to NC 
symplectic divisors.

The (2-fold) symplectic sum construction of [13] has been used to build vast classes of non-Kähler symplectic manifolds. 
For example, it is shown in [13] that every finitely presented group can be realized as the fundamental group of a compact 
symplectic manifold of real dimension 4. There are still many open questions about the geography of symplectic manifolds 
and the classification of symplectic manifolds with certain topological properties. The smoothing and degeneration con-
structions of [8,10,11] may shed light on some of these questions. For example, it is well known that a rationally connected
compact Kähler manifold (i.e. a Kähler manifold with a rational curve through every pair of points) is simply connected; 
see [3, Theorem 3.5]. As noted by J. Starr, the fundamental group of a compact almost Kähler manifold (X, ω, J ) with a 
rational J -holomorphic curve of a fixed homology class through every pair of points is finite.

Question 14. Is every compact almost Kähler manifold with a rational J -holomorphic curve of a fixed homology class through every 
pair of points simply connected?

The multifold sum/smoothing construction of [8] and the multifold cut/degeneration construction of [11] may be useful 
in answering this question negatively and positively, respectively. The existence of curves as Question 14 is implied by the 
existence of a nonzero GW-invariant of (X, ω) with two point insertions, but the converse is not known to be true, even in 
the projective category. The constructions of [8] and [11] may be also useful in studying whether the simple connectedness 
holds under the stronger condition of the existence of a nonzero GW-invariant with two point insertions.
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