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Let A ⇒ M be a Lie algebroid. In this short note, we prove that a pull-back of A along a 
fibration with homologically m-connected fibers shares the same deformation cohomology 
of A up to degree m.
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r é s u m é

Soit A ⇒ M un algébroïde de Lie. Dans cette note, nous prouvons qu’un pull-back de A
lelong d’une fibration ayant des fibres homologiquement m-connexes possède la même 
cohomologie de déformation que A jusqu’au degré m.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

Lie groupoids can be understood as atlases on certain singular spaces, specifically, differentiable stacks, and (by the very 
definition of stack) two Lie groupoids are Morita equivalent if they give rise to the same differentiable stack [2]. This means 
that, when using Lie groupoids to model differentiable stacks, Morita invariants describe the intrinsic geometry of the stack. 
For instance, Lie groupoid cohomology, and the deformation cohomology of a Lie groupoid are Morita invariants, but there 
are more many examples. The terminology is motivated by the fact that the relationship between a Lie groupoid and its 
stack is analogous to the relationship between a ring and its category of modules.

Lie algebroids are infinitesimal counterparts of Lie groupoids. However, the former are more general than the latter in 
the sense that, while all Lie groupoids differentiate to a Lie algebroid, not all Lie algebroids integrate to a Lie groupoid. A 
consequence of this is that there is not a notion of Morita equivalence of Lie algebroids which is universally good, but there 
are several non-equivalent alternatives. The weakest (but reasonable) possible one is the weak Morita equivalence introduced 
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by Ginzburg in [9]. For Poisson manifolds, this notion is weaker than Xu’s Morita equivalence [14], but it makes sense for 
non-integrable Poisson manifolds.

In a similar way as for Lie groupoids, it is important to identify as many Morita invariants of Lie algebroids as possible. 
In [4], Crainic proves (a statement equivalent to the fact) that if two Lie algebroids are Morita equivalent in a suitable 
sense, then they share the same de Rham cohomology in low degree. In this note, we prove the analogous result for the 
deformation cohomology of Lie algebroids. Notice that, for Lie groupoids, the Morita invariance of Lie groupoid cohomology 
has been proved by Crainic himself in [4], while the deformation cohomology has been introduced, and its Morita invariance 
has been proved, only very recently, by Crainic, Mestre, and Struchiner in [5].

We assume that the reader is familiar with Lie algebroids and their description in terms of graded manifolds. We only 
recall that a degree k N-manifold is a graded manifold whose coordinates are concentrated in non-negative degree up to 
degree k, and an NQ -manifold is an N-manifold equipped with an homological vector field. For instance, if A ⇒ M is a Lie 
algebroid, then shifting by one the degree of the fibers of the vector bundle A → M , we get a degree 1 NQ -manifold whose 
homological vector field is the de Rham differential dA of A. Correspondence A � A[1] establishes an equivalence between 
the category of Lie algebroids and the category of degree-1 NQ -manifolds.

1. The deformation complex of a Lie algebroid

Let A ⇒ M be a Lie algebroid. In degree k, the deformation complex of A, denoted by (Cdef(A), δ), consists of (k +
1)-multiderivations of A, i.e. R-(k + 1)-linear maps

c : �(A) × · · · × �(A) → �(A)

such that there exists a (necessarily unique) vector bundle map sc : ∧k A → T M with c and sc satisfying the following Leibniz 
rule

c(α1, . . . ,αk, f αk+1) = sc(α1, . . . ,αk)( f )αk+1 + f c(α1, . . . ,αk,αk+1),

for all α1, . . . , αk+1 ∈ �(A), and f ∈ C∞(M). The differential δ is then defined as

δc(α0, . . . ,αk+1) =
∑

i

(−)i[αi, c(α0, . . . , α̂i, . . . ,αk+1)]

+
∑
i< j

(−)i+ jc([αi,α j],α0, . . . , α̂i, . . . , α̂ j, . . . ,αk+1),

for all α0, . . . , αk+1 ∈ �(A). The cohomology of Cdef(A) is called the deformation cohomology of A and it is denoted by 
Hdef(A) [7].

Actually, Cdef(A) is not just a complex, but it is the DG Lie algebra (even more a DG Lie–Rinehart algebra over the de 
Rham algebra of A) controlling deformations of A, in the sense that

� Lie algebroid structures on A corresponds bijectively to Maurer–Cartan elements in Cdef(A), and
� if two Lie algebroid structures are isotopic, the corresponding Maurer–Cartan elements are gauge equivalent, and the 

converse is also true when M is compact.

There is a simple alternative description of Cdef(A) as the DG Lie algebra of graded derivations of the de Rham algebra 
(C(A), dA), where C(A) = �(∧• A∗), and dA is the usual Lie algebroid de Rham differential. A cochain c ∈ Ck

def(A) corresponds 
to the degree k derivation Dc mapping ω ∈ Cl(A) to Dcω ∈ Ck+l(A), with

Dcω(α1, . . . ,αk+l) =
∑

σ∈Sk,l

(−)σ sc(ασ(1), . . . ,ασ(k))(ω(ασ(k+1), . . . ασ (k+l)))

−
∑

σ∈Sk+1,l−1

(−)σ ω(c(ασ(1), . . . ,ασ(k+1)),ασ(k+2), . . . ασ (k+l)).

When taking this point of view, the Lie bracket in Cdef(A) is just the graded commutator [−, −] of derivations and δ is 
[dA, −]. Finally, we can interpret C(A) as the DG algebra of smooth functions on the degree 1 NQ -manifold A[1], and then 
cochains in Cdef(A) are just vector fields on A[1]:

C(A) = C∞(A[1]), and Cdef(A) =X(A[1]).
In the following, we will mostly take this point of view.

Given two Lie algebroids A ⇒ M and B ⇒ N and a Lie algebroid map F : A → B covering a smooth map M → N , there is 
a DG algebra map F ∗ : C(B) → C(A). One can also connect the deformation complexes as follows. Apply the shift functor to 
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F to get a map of NQ -manifolds: F [1] : A[1] → B[1], and denote by C(F ) the space of F [1]-relative vector fields, i.e. graded 
R-linear maps Z : C(B) → C(A) satisfying the following Leibniz rule

Z(ω1 ∧ ω2) = Z(ω1) ∧ F ∗(ω) + (−)|Z ||ω1| F ∗(ω1) ∧ Z(ω2).

In other words, C(F ) = C(A) ⊗ Cdef(B), where the tensor product is over C(B), and we changed the scalars via F ∗ : C(B) →
C(A). Yet in other (more geometric) terms, C(F ) consists of sections of the graded vector bundle F ∗(T B[1]) → A[1]. Clearly,
C(F ) is a DG (C(A), C(B))-bimodule, whose differential δ : C(F ) → C(F ) is given by

δZ = dA ◦ Z − (−)Z Z ◦ dB , Z ∈ C(F ).

Additionally, there are DG module maps:

Cdef(A)
F�−→ C(F )

F �←− Cdef(B)

given by

F� : X �→ X ◦ F ∗, and F � : Y �→ F ∗ ◦ Y .

2. Morita equivalence of Lie algebroids

There is no universally good notion of Morita equivalence for Lie algebroids. Actually, there are several morally similar but 
inequivalent definitions, all of which involve the notion of pull-back Lie algebroid. Let A ⇒ M be a Lie algebroid with anchor 
ρ : A → T M , and let π : P → M be a surjective submersion. Put

π! A := T P dπ×ρ A = {(v,a) ∈ T P × A : dπ(v) = ρ(a)}.
Then π! A is a Lie algebroid over P in the following way. First of all, sections of π! A → P are pairs (X, α), where X is a 
vector field on P and α is a section of the pull-back bundle π∗ A → P . Additionally dπ(Xp) = ρ(αp) for all p ∈ P . It is 
easy to see that there exists a unique Lie algebroid structure π! A ⇒ P such that the anchor π! A → T P is the projection 
(X, α) �→ X , and the bracket is

[
(X,π∗α), (Y ,π∗β)

] = ([X, Y ],π∗[α,β])
on sections of the special form (X, π∗α), (Y , π∗β), with α, β ∈ �(A). It follows that the natural projection 
 : π! A → A is a 
Lie algebroid map (covering π : P → M). In particular, there are DG module maps

Cdef(π! A)

�−→ C(
)


�←− Cdef(A).

It is worth remarking, for later applications, that there is a short exact sequence of vector bundles over P ,

0−→ V P −→π! A −→π∗ A −→0, (1)

where V P is the vertical tangent bundle of P → M , and the inclusion V P ↪→ π! A maps a vertical vector field X to (X, 0). 
Clearly, the projection π! A → π∗ A maps (X, α) to α.

Definition 2.1 (Ginzburg [9]). Two Lie algebroids A ⇒ M and B ⇒ N are (weak) Morita equivalent if there exist surjective 
submersions

M
π←− P

τ−→ N

with simply connected fibers, such that the pull-back Lie algebroids π! A and τ !B are isomorphic.

Remark 1. Let A ⇒ M be a Lie algebroid, P → M be a surjective submersion and let E → M be a vector bundle carrying a 
representation of A. Then π∗E → P carries a representation of the pull-back Lie algebroid π! A. Definition 2.1, originally due 
to Ginzburg, is then motivated by the fact that, if π has simply connected fibers, correspondence E � π∗E establishes an 
equivalence between the categories of A-representations and of π! A-representations. However, other reasonable definitions 
of Morita equivalence are possible. For instance, one could require submersions π, τ to have fibers with specific, higher 
connectedness (or even cohomological connectedness) properties.

Remark 2. Let A ⇒ M and B ⇒ N be weak Morita equivalent Lie algebroids, and let A ← P → B be surjective submer-
sions realizing the equivalence. Then A and B share several properties. For instance, there is a bijection between their leaf 
spaces, and corresponding leaves have the same fundamental group. Additionally, the Lie algebroid structures transverse to 
corresponding leaves are isomorphic and so are the stabilizer of A at x ∈ M and the stabilizer of B at y ∈ N whenever x, y
are projections of the same point in P [9]. Finally, A and B share the same 0-th and 1-st de Rham cohomology (see also 
Theorem 3.1 below).
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We conclude this section by describing the de Rham complex of a pull-back Lie algebroid π! A ⇒ P . To do this, we will 
interpret C(A) as a DG algebra over differential forms on M via the pull-back ρ∗ : (M) → C(A) along the anchor.

Lemma 2.2. There are canonical isomorphisms of DG modules

C(π! A) = (P ) ⊗
(M)

C(A) and C(
) = (P ) ⊗
(M)

Cdef(A). (2)

Proof. The simplest proof is via graded geometry. Consider the pull-back diagram

π! A
ρ




T P

dπ

A
ρ

T M

.

The top row consists of Lie algebroids over P , while the bottom row consists of Lie algebroids over M . Shifting by 1 the 
degree in the fibers of all of them, we get a diagram of NQ -manifolds

π! A[1] T [1]P

A[1] T [1]M

. (3)

It follows from the functorial properties of the shift that (3) is a pull-back diagram as well. Hence functions on π! A[1] are 
the tensor product over functions on T [1]M of the functions on T [1]P and the functions on A[1]. This is precisely the 
content of the first isomorphism in (2). The second isomorphism immediately follows from the first one and the fact that 

[1]-relative vector fields are the tensor product over functions on A[1] of vector fields on A[1] and functions on π! A[1].

3. Morita invariance of the deformation cohomology

The de Rham cohomologies of Lie algebroids are Morita invariant. More precisely, we have the following theorem due to 
Crainic.

Theorem 3.1 (Crainic [4]). Let A ⇒ M be a Lie algebroid and let π : P → M be a surjective submersion with homologically 
m-connected fibers, then A and the pull-back Lie algebroid π! A share the same de Rham cohomology up to degree m. Specifically, 
the graded vector space map 
∗ : HdR(A) → HdR(π! A) is an isomorphism in degree q ≤ m.

Proof. We briefly recall Crainic’s proof. This will be useful in the following. Begin noticing that the inclusion V P ↪→ π! A is 
the inclusion of a Lie subalgebroid. Accordingly, there is a distinguished subcomplex, and an ideal, F1C ⊂ C(π! A) consisting 
of cochains vanishing when applied to sections of V P . Hence C(π! A) is canonically equipped with a filtration

C(π! A) = F0C ⊃ F1C ⊃ · · · ⊃ F pC ⊃ · · ·
where F p C is the p-th exterior power of F1C . We denote by E the associated (first quadrant) spectral sequence which 
computes HdR(π! A). It follows from the short exact sequence (1) that

E p,q
0 = F pC p+q/F p+1C p+q = V q ⊗ C p(A)

where V  = �(∧•V ∗ P ) are vertical differential forms on P , and the tensor product is over C∞(M). Now, it is easy to see 
that differential

dp,•
0 : V • ⊗ C p(A) → V •+1 ⊗ C p(A)

is just the vertical de Rham differential dV (up to tensoring by C p(A)), and, from the connectedness hypothesis, we have 
H0(V , dV ) = C∞(M), and Hq(V , dV ) = 0 for 0 < q ≤ m. Hence E•,0

1 = C(A), and

E•,q
1 = Hq(V • ⊗ C(A),dV ) = 0 for 0 < q ≤ m.

Additionally d•,0
1 : C(A) → C(A) is precisely the de Rham differential dA . We conclude that

E p,q = E p,q∞ = 0 for 1 < p + q ≤ m,
2
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and

Hq
dR(A) = E0,q

2 = E0,q∞ = Hq
dR(π! A) for q ≤ m.

We now come to our main result. The following theorem (and its corollary) is our version of the Morita invariance of 
the deformation cohomology.

Theorem 3.2. Let A ⇒ M be a Lie algebroid and let π : P → M be a surjective submersion with homologically m-connected fibers, 
then A and the pull-back Lie algebroid π! A share the same deformation cohomology up to degree m.

Proof. The present proof is inspired by the Crainic, Mestre, and Struchiner proof of the Morita invariance of the deformation 
cohomology of Lie groupoids [5]. However, notice that, in our statement, the Lie algebroid A needs not to be integrable. 
Consider the DG module maps

Cdef(π! A)

�−→ C(
)


�←− Cdef(A).

Our strategy consists in proving that

(i) 
� is a quasi-isomorphism (regardless the connectedness properties of the fibers of π);
(ii) 
� induces an isomorphism in cohomology up to degree m.

We begin with (i). As π is a surjective submersion, then 
� is surjective. Actually it consists in restricting a derivation of 
C(π! A) to the DG subalgebra C(A) ↪→ C(π! A). Geometrically, it consists in composing a vector field on π! A[1] with projection 
d
[1] : T π! A[1] → T A[1]. Denote K := ker
� and consider the short exact sequence of DG modules

0−→K−→ Cdef(π! A)

�−→ C(
)−→0.

It is enough to show that K is acyclic. To do this, we construct a contracting homotopy h :K →K for (K, δ). Notice that K
consists of derivations of C(π! A) vanishing on C(A), equivalently it consists of vector fields on π! A[1] that are the vertical
wrt projection 
[1] : π! A[1] → A[1]. As (3) is a pull-back diagram, the vector fields in K are completely determined by their 
composition with T π! A[1] → T T [1]P . This shows that there is a DG module isomorphism

K �−→ C(π! A) ⊗
(P )

V = C(A) ⊗
(M)

V

where V is the DG (P )-module of vector fields on T [1]P that are vertical with respect to projection T [1]P → T [1]M . Now 
we construct a contracting homotopy hV : V → V for V . First recall that the differential in V is the commutator with the de 
Rham differential d : (P ) → (P ). Now, every vector field V on T [1]P is a derivation of (P ). Hence, it can be uniquely 
written in the form V = L J + iK , where J , K are form valued vector fields on P . Additionally, V is vertical with respect to 
T [1]P → T [1]M if and only if J , K are both vertical wrt P → M . Put hV (V ) := (−)|V |i J , so that V = [d, hV (V )] +hV ([d, V ]), 
showing that hV is indeed a contracting homotopy. It is easy to see that hV is (M)-linear and we define

h : C(A) ⊗
(M)

V → C(A) ⊗
(M)

V, ω ⊗ V �→ (−)|ω|ω ⊗ hV (V ).

A straightforward computation shows that h is a contracting homotopy. Hence K is acyclic.
Now we prove (ii). The proof is analogous to that of Theorem 3.1. As C(
) is a DG C(π! A)-module, there is a filtration

C(
) = F0C · C(
) ⊃ F1C · C(
) ⊃ · · · ⊃ F p C · C(
) ⊃ · · ·
hence a spectral sequence computing the cohomology of C(
), that we denote again by E . From Lemma 2.2 and from (1)
again, we have

E p,q
0 = F pC p+q · C(
)/F p+1C p+q · C(
) = V q ⊗ C p

def(A),

where the tensor product is over C∞(M), and the differential d0 : E0 → E0 is the vertical de Rham differential dV : V  →
V  (tensorized by C•

def(A)). Now the proof proceeds exactly as the proof of Theorem 3.1, and we leave the details to the 
reader.

Corollary 3.3. Let A ⇒ M and B ⇒ N be (weak) Morita equivalent Lie algebroids. Then A and B share the same 0-th and 1-st 
deformation cohomology. If, additionally, the Morita equivalence is realized by surjective submersions M ← P → N with homologically 
m-connected fibers, then A and B share the same deformation cohomology up to degree m.
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4. An illustrative example: deformations of weak Morita equivalent foliations

Let M be a manifold and let F be a foliation of M . The deformations of F are controlled by (F , T M/TF): leafwise 
differential forms with values in the Bott representation [11]. Cochain complex (F , T M/TF) is a deformation retract of 
the deformation complex Cdef(TF) [7,13]. In particular, (F , T M/TF) and Cdef(TF) share the same cohomology. This 
means that, morally, deforming a foliation F or its tangent algebroid TF is the same. This should be expected from the 
fact that small deformations of TF preserve the injectivity of the anchor.

Now let V ⊂ H be a flag of foliations of a manifold P . In other words, V and H are foliations, and the leaves of V are 
contained into leaves of H. Yet in other terms TV ⊂ TH. Assume that V is simple, i.e. its leaf space M is a manifold and 
the projection π : P → M is a surjective submersion. In other words, V = V P : the vertical bundle of P with respect to π. 
From involutivity π∗(TH) = TF for a, necessarily unique, foliation F of M , and TH = (dπ)−1(TF). It is then immediate 
to see that TH = π!TF : the pull-back Lie algebroid. So, if P has homologically m-connected fibers, TF and TH share the 
same deformation cohomology up to degree m. Now, using that (F , T M/TF) is a deformation retract of Cdef(TF) (and 
similarly for H) we immediately get the following theorem.

Theorem 4.1. Let V ⊂H be a flag of foliations on P . Assume that V is simple and let F be the foliation induced by H on the leaf space 
of V via projection. If the leaves of V are m-simply connected, then F and H share the same deformation cohomology up to degree m.

It is now natural to define a weak Morita equivalence for foliated manifolds. Namely, two foliated manifolds (M, F) and 
(N, G) are weak Morita equivalent if the tangent algebroids of F and G are weak Morita equivalent. Theorem 4.1 then reveals 
that if (M, F) and (N, G) are Morita equivalent, then F and G share the same 0-th and 1-st deformation cohomology. If, 
additionally, the Morita equivalence is realized by surjective submersions with homologically m-connected fibers, then F
and G share the same deformation cohomology up to degree m.

Finally, notice that the tangent algebroid of a foliation F is always integrable. Any integration of F is called a foliation 
groupoid [6]. It would be interesting to explore the relationship between the weak Morita equivalence of foliations and the 
Morita equivalence of their foliation groupoids (particularly the monodromy and the holonomy groupoids). However, this 
goes beyond the scopes of the present note.

5. Final remarks

There is another approach to the deformation cohomology of a Lie algebroid. Namely, the deformation complex of a Lie 
algebroid A ⇒ M can be seen as the linear de Rham complex of the cotangent VB-algebroid (T ∗ A ⇒ A∗) → (A ⇒ M) [10,1]. 
Recall that a VB-algebroid is a vector bundle object in the category of Lie algebroids, and its linear de Rham complex is the 
subcomplex in the de Rham complex consisting of cochains that are linear with respect to the vector bundle structure. It is 
possible to define a notion of (weak) Morita equivalence for VB-algebroids respecting the vector bundle structure. It is then 
natural to expect that (1) if two Lie algebroids are (weak) Morita equivalent, then their cotangent VB-algebroids are (weak) 
Morita equivalent, and (2) if two VB-algebroids are (weak) Morita equivalent, then their linear de Rham cohomologies 
are the same in low degree. If so, then Theorem 3.2 would be an immediate corollary. This alternative approach to the 
Morita invariance of the deformation cohomology of Lie algebroids is actually being investigated in a separate work [12]. 
We remark that Morita equivalence for VB-groupoids, i.e. vector bundle objects in the category of Lie groupoids, is defined 
and discussed in [8], where the authors prove the Morita invariance of the VB-groupoid cohomology. Finally, VB-groupoid 
cohomology is related to VB-algebroid cohomology by a Van-Est type map [3].
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