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The coefficients of Linear Recurrent Relations (LRR) play a pivotal role in many forecasting 
techniques. Precise and closed form of the LRR coefficients enables one to achieve more 
accurate forecasts. On account to the fact that, in real-world situations, a time series data is 
contaminated with noise, extracting the noiseless series is of great importance. This paper 
seeks to obtain a closed form, with less noise level, of LRR coefficients for noisy exponential 
time series. Improving the filtering performance through employing noiseless eigenvectors 
of the covariance matrix is another novelty of this study. Our simulation results confirm 
that the proposed approach enhances filtering and forecasting results.
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r é s u m é

Les coefficients des relations récurrentes linéaires (RRL) jouent un rôle central dans 
beaucoup de techniques de prévision. Une formule exacte et close des coefficients d’une 
RRL permet d’obtenir des prévisions plus précises. Prenant en compte le fait que, dans la 
réalité, une suite temporelle de données est contaminée par du bruit, il est très important 
de pouvoir en extraire la série sans bruit. Ce texte vise à obtenir une forme close, avec un 
niveau de bruit moindre, des coefficients d’une RRL, pour les suites en temps exponentiel 
avec bruit. Une autre nouveauté de notre approche est l’amélioration de l’efficacité du 
filtrage par l’utilisation de vecteurs propres sans bruit de la matrice de covariance. Les 
résultats des simulations confirment que l’approche proposée améliore le filtrage et les 
prévisions.
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1. Introduction

A time series Y N = {y1, y2, . . . , yN} of length N is generated by a linear recurrence relation (LRR) of order d > 0, if there 
exists the coefficients α1, . . . , αd such that:

yi+d =
d∑

j=1

α j yi+d− j, 1 ≤ i ≤ N − d, αd �= 0, d < N. (1)

The coefficients α1, . . . , αd are called the coefficients of the LRR or α-coefficients. The class of time series governed by 
LRRs are rather wide and important for practical applications (see, for example, [1–3,5,7–18,22,23]). The Singular Spectrum 
Analysis (SSA) technique is one of the powerful and non-parametric techniques with capability of both forecasting and 
filtering where LRR is used for forecasting new data points [6,17].

Suppose L be an integer called Window Length such that 2 ≤ L ≤ N/2. The starting point of SSA is to construct the 
trajectory matrix X = [X1 : · · · : XK ] via vectors Xi = (yi, . . . , yi+L−1)

ᵀ ∈ RL , i = 1, . . . , K , called lagged vectors, where K =
N − L + 1. The trajectory matrix X is a Hankel matrix in the sense that all elements on anti-diagonals i + j = const. are 
equal. The eigenvalues of XXᵀ are denoted by λ1, . . . , λL in decreasing order of magnitude (λ1 ≥ · · · ≥ λL ≥ 0), and the 
eigenvectors of XXᵀ corresponding to these eigenvalues are denoted by U1, . . . , U L . It is assumed that the eigenvectors have 
unit length, i.e. ‖Ui‖ = 1, where ‖·‖ is the Euclidean norm.

The eigenvectors of XXᵀ play a very pivotal role in the reconstruction stage of SSA. Let I be the chosen set of eigentriples 
attained at the grouping step of SSA and Ui ∈ RL , i ∈ I , be the corresponding eigenvectors. Denote by L ⊂ RL the linear 
space spanned by the vectors Ui, i ∈ I; i.e. L = span{Ui, i ∈ I}. Note that the set {Ui, i ∈ I} is an orthonormal basis in L. 
To reconstruct the time series Y N by set I , all lagged vectors Xi are first orthogonally projected onto L through X̂ =∑

j∈I U j U T
j X, where X is the trajectory matrix of series Y N , and where the matrix X̂ consists of column vectors X̂i , X̂i =∑

j∈I U j U T
j Xi . Then the matrix X̂ is diagonally averaged to get the reconstructed series Ỹ N = {̃y1, . . . , ̃yN}.

The eigenvectors Ui, i ∈ I , are also employed in the forecasting methods of SSA. Let U i ∈ RL−1 be the vector consisting 
of the first L − 1 components of the vector Ui , πi be the last component of the vector Ui and v2 = ∑

i∈I π2
i . The last 

component zL of any vector Z = (z1, . . . , zL)
ᵀ ∈ L is a linear combination of the first components z1, . . . , zL−1, i.e. zL =

α1zL−1 + · · · + αL−1z1, (see [6]), where the vector A = (αL−1, . . . , α1)
ᵀ is obtained as follows:

A = 1

1 − v2

∑
i∈I

πi U i . (2)

The α-coefficients {α j, j = 1, . . . , L − 1} in (2), which are made by eigenvectors Ui, i ∈ I , play a fundamental role in SSA 
forecasting. For example, in Recurrent forecasting (R-forecasting) if the time series Z N+h = {z1, . . . , zN+h} is defined by:

zi =
{

ỹi for i = 1, . . . , N,∑L−1
j=1 α j zi− j for i = N + 1, . . . , N + h,

(3)

then the numbers zN+1, . . . , zN+h are the h step ahead recurrent forecasts. It is clear that R-forecasting is performed by the 
direct use of LRR in (1) and of α-coefficients in (2).

The same approach can be used for Vector forecasting (V-forecasting). Consider the matrix � = V V ᵀ + (1 − v2)A Aᵀ , 
where the matrix V consists of column vectors Ui, i ∈ I . If the vectors W i defined as:

W i =
{

X̂i for i = 1, . . . , K ,

PVecW i−1 for i = K + 1, . . . , K + h + L − 1,
(4)

where PVecW i−1 =
(

�W i−1

AᵀW i−1

)
and W i−1 is the vector consisting of the last L − 1 components of the vector W i−1, then 

by constructing the matrix W = [W1 : · · · : W K+h+L−1] and making its diagonal averaging the series {z1, . . . , zN+h+L−1} is 
obtained. The numbers zN+1, . . . , zN+h are the h step ahead vector forecasts. It is clear that α-coefficients have also key role 
in V-forecasting through the matrix � and the linear operator PVec.

It can be assumed that Y N is the sum of a noise free series (signal) and noise, i.e.:

yt = st + nt, t = 1, . . . , N, (5)

where st and nt represent the signal and noise components, respectively. Equation (5) can be expressed in the following 
matrix form:

X = S + N, (6)
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where S and N represent L × K trajectory matrices of the signal and noise components, respectively. According to (6), the 
trajectory matrix X is not a noiseless matrix. Hence, the eigenvectors of XXᵀ are contaminated with noise. Therefore, it 
seems that the accuracy of the reconstruction stage of SSA is affected by the contribution of some noise to eigenvectors 
Ui, i ∈ I , resulting in a reduction of reconstruction and forecasting performance.

The effect of noise level can also be traced in α-coefficients. In theory, the α-coefficients can get their exact or noise-free 
values if time series Y N is not contaminated with noise; i.e. yt = st . However, in reality, the α-coefficients that are computed 
based on noisy time series are not noise free. This is because, as per (2), these coefficients are built on noisy eigenvectors 
Ui, i ∈ I . Furthermore, as Equation (2) indicates, the αi coefficient changes when the values of L and Ui change. However, 
this study proposes a closed form of the exact α-coefficients for an exponential time series family. To the best of our 
knowledge, this investigation is carried out for the first time. Because of widespread applications of exponential series in 
various fields, ranging from population growth models, biology, non-linear time series analysis, and econometrics to financial 
time series [4,5,10,19–21], the proposed approaches can be used in many areas.

The reminder of this paper is organized as follows. Section 2 studies the closed form of exact α-coefficients in expo-
nential time series. In Section 3, the quality of reconstruction is evaluated using the results given in Section 2. This section 
presents the new versions of recurrent and vector forecasting methods to enhance the performance of forecasting. Section 4
provides the empirical results, and finally concluding remarks with a discussion and summary are presented in Section 5.

2. The exact formula of α-coefficients for an exponential series

It is worth mentioning that the number of α-coefficients is equal to L − 1 for any time series with the window length L. 
For example, there are three α-coefficients α1, α2, and α3 for L = 4. In order to better distinguish between the α-coefficients 
for different values of L, we will use another notation afterwards, in which αi,L denotes the ith α-coefficient for a given L, 
e.g., α3,5 is the third α-coefficient for L = 5.

Consider now a noise free exponential series of length N:

yt = st = exp(β0 + β1t), t = 1,2, . . . , N, (7)

where β0 and β1 are parameters needed to be estimated. Let us first consider the structure of the matrix XXᵀ for an 
exponential series.

Theorem 1. For an exponential series yt = exp(β0 + β1t), the matrix XXᵀ has the following form:

XXᵀ = γ e2β0 EL,

where,

EL = (e(i+ j−2)β1)
L,L
i, j=1 =

⎛⎜⎜⎜⎝
1 eβ1 . . . e(L−1)β1

eβ1 e2β1 . . . eLβ1

...
...

. . .
...

e(L−1)β1 eLβ1 . . . e(2L−2)β1

⎞⎟⎟⎟⎠
L×L

, (8)

γ = ∑K−1
l=0 e2(1+l)β1 and K = N − L + 1.

Proof. If the ith row of the trajectory matrix X is denoted by Hi , i.e. Hi = (yi, . . . , yi+K−1), then it can be concluded that 
the component of ith row and jth column of the matrix XXᵀ is given as follows:

Hi Hᵀ
j =

K−1∑
l=0

yi+l y j+l =
K−1∑
l=0

eβ0+(i+l)β1 eβ0+( j+l)β1 = e2β0

K−1∑
l=0

e(i+ j+2l)β1

= e2β0

K−1∑
l=0

e(i+ j−2+2+2l)β1 = e2β0

K−1∑
l=0

e(i+ j−2)β1 e(2+2l)β1

= e2β0 e(i+ j−2)β1

K−1∑
l=0

e2(1+l)β1 = γ e2β0 e(i+ j−2)β1 .

Therefore, by the definition of EL in (8), it can be concluded that XXᵀ = γ e2β0 EL , where γ = ∑K−1
l=0 e2(1+l)β1 . �

Theorem 1 shows that XXᵀ is a multiple of the matrix EL . Accordingly, the matrices XXᵀ and EL have similar eigenvectors 
(with different eigenvalues). Additionally, we have X j = eβ1 X j−1 = e( j−1)β1 X1, where X j is the jth column of the trajectory 
matrix X. Accordingly, the following corollary can be obtained.
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Corollary 1. rank(X) = rank(XXᵀ) = rank(EL) = 1.

Theorem 2. For an exponential series yt = exp(β0 + β1t), the eigenvector of matrices XXᵀ and EL is eL , where eL = (
1, eβ1 , . . . ,

e(L−1)β1
)ᵀ

.

Proof. According to Corollary 1, the matrix EL has only one eigenvector. It can be easily shown that EL = eLeᵀL . We have:

ELeL = eLeᵀL eL = ‖eL‖2 eL . (9)

Relation (9) indicates that ‖eL‖2 and eL are the eigenvalue and the eigenvector of the matrix EL , respectively. Consequently, 
the eigenvalue and eigenvector of the matrix XXᵀ are γ e2β0 ‖eL‖2 and eL , respectively. �

Since the rank of the trajectory matrix for the exponential series (7) is equal to one for different values of β0 and β1, we 
then choose I = {1} for reconstruction and forecasting. Now, having the eigenvector of XXᵀ , it is possible to drive a formula 
to determine the exact values of the α-coefficients.

Theorem 3. The closed form of α-coefficients for an exponential series yt = exp(β0 + β1t) is as follows:

αi,L = e(2L−i−2)β1

‖eL−1‖2
, i = 1,2, . . . , L − 1. (10)

Proof. Recall from Section 1 that for any time series with trajectory matrix X, U1 = (u1, u2, . . . , uL)
ᵀ is the first eigenvector 

of XXᵀ with unit length, i.e. ‖U1‖ = 1. Thus, by applying Theorem 2, we have U1 = eL‖eL‖ and,

U1 = (u1, u2, . . . , uL)
ᵀ = 1

‖eL‖
(

1,eβ1 , . . . ,e(L−1)β1
)ᵀ

,

U 1 = (u1, u2, . . . , uL−1)
ᵀ = 1

‖eL‖
(

1,eβ1 , . . . ,e(L−2)β1
)ᵀ = eL−1

‖eL‖ ,

v2 =
∑
i∈I

π2
i = π2

1 = u2
L = e2(L−1)β1

‖eL‖2
.

From (2),

A = (
αL−1,L,αL−2,L, . . . ,α1,L

)ᵀ = 1

1 − v2

∑
i∈I

πi U i = uL

1 − u2
L

U 1

=
e(L−1)β1

‖eL‖
1 − e2(L−1)β1

‖eL‖2

× eL−1

‖eL‖

= e(L−1)β1

‖eL‖2 − e2(L−1)β1
× eL−1

= e(L−1)β1

1 + e2β1 + · · · + e2(L−1)β1 − e2(L−1)β1
eL−1

= e(L−1)β1

1 + e2β1 + · · · + e2(L−2)β1
eL−1

= e(L−1)β1

‖eL−1‖2
eL−1. (11)

Therefore,

αi,L = e(2L−i−2)β1

‖eL−1‖2
, i = 1,2, . . . , L − 1. �

Corollary 2. For an exponential series yt = exp(β0 + β1t), we have the following.

1. For each i, αi,L > 0.
2. αi+1,L = e−β1αi,L, i = 1, 2, . . . , L − 1.
3. For each i, αi,L is independent of N and β0 . In other words, the value of N and β0 have no effect on the α-coefficients.
4. If β1 > 0, the sequence {αi,L}L−1

i=1 is decreasing and, if β1 < 0, it is a increasing sequence.
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3. Reconstruction and forecasting formula for exponential series

3.1. Reconstruction

The reconstruction step of SSA for any time series includes the following two steps.

1. The orthogonal projection of the lagged vector Xi on L = span{Ui, i ∈ I}, denoted by X̂i , that is, X̂i = ∑
j∈I U j U i

j . 
Projecting all lagged vectors can be done by X̂ = ∑

j∈I U j U
ᵀ
j X, where X is the trajectory matrix of the original series 

Y N , and the matrix X̂ consists of the column vectors X̂i .
2. The Hankelization of the matrix X̂ via diagonal averaging to reconstruct the series Ỹ N = {̃y1, . . . , ̃yN}. In other words, 

X̃ =H(̂X), where X̃ is the trajectory matrix of reconstructed series and H(·) is the Hankelization operator.

It is clear that eigenvectors Ui, i ∈ I , have key role in the reconstruction step of SSA. However, in reality, these eigenvec-
tors are contaminated with noise, which, according to (6), may result in a low accuracy of the reconstruction step. Therefore, 
utilizing noise-free eigenvectors can improve the performance of the reconstruction step. In this subsection, a new recon-
struction procedure for exponential series based on the noise-free eigenvector U1 = eL‖eL‖ is provided. Since EL = eLeᵀL , we 
have

U1Uᵀ
1 = eL

‖eL‖
eᵀL

‖eL‖ = eLeᵀL
‖eL‖2

= 1

‖eL‖2
EL . (12)

Consequently, two steps of proposed reconstruction steps for exponential series are as follows:

1) orthogonal projection of the lagged vectors on L = span{ eL‖eL‖ } by X̂ = 1
‖eL‖2 ELX;

2) Hankelization of the matrix X̂ via diagonal averaging to get the reconstructed series Ỹ N = {̃y1, . . . , ̃yN}, i.e. X̃ =H(̂X).

3.2. New R-forecasting

Considering the proposed reconstruction of Exponential series, the new R-forecasting algorithm for Exponential series 
can be presented as follows:

1) the lagged vectors are projected on L = span{ eL‖eL‖ } by X̂ = 1
‖eL‖2 ELX;

2) the reconstructed time series Ỹ N = {̃y1, . . . , ̃yN} is obtained by diagonal averaging of X̂; i.e. X̃ =H(̂X);
3) the time series Z N+h = {z1, . . . , zN+h} is defined by:

zi =
{

ỹi for i = 1, . . . , N,∑L−1
j=1 α j,L zi− j for i = N + 1, . . . , N + h,

where α j,L = e(2L− j−2)β1

‖eL−1‖2 and zN+1, . . . , zN+h form the h step ahead recurrent forecasts for exponential series.

Similar to common R-forecasting in SSA, the proposed R-forecasting algorithm for exponential series can be expressed in 
vector form. Let PRec : RL �→ RL be the linear operator defined as:

PRec Z =
(

Z
Aᵀ Z

)
, (13)

where Z ∈ RL−1 is the vector consisting of the last L − 1 components of the vector Z = (z1, . . . , zL)
ᵀ ∈ RL and A is the 

vector of α-coefficients from Relation (11). The vector form of new R-forecasting algorithm is as follows:

W i =
{

X̃i for i = 1, . . . , K ,

PRecW i−1 for i = K + 1, . . . , K + h,
(14)

where X̃i is the ith column of X̃ = H(̂X). The matrix W = [W1 : · · · : W K+h] is the trajectory matrix of the series Z N+h . 
Consequently, the h step ahead recurrent forecasts zN+1, . . . , zN+h can be achieved.

3.3. New V-forecasting

Consider the common V-forecasting reviewed in Section 1; at first, the matrix � should be determined. From Theorem 3, 
we have:
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U1 = eL

‖eL‖ , V = U 1 = eL−1

‖eL‖ , v = e(L−1)β1

‖eL‖ , A = e(L−1)β1

‖eL−1‖2
eL−1.

It can be easily shown that EL−1 = eL−1eᵀL−1. Therefore,

V V ᵀ = eL−1

‖eL‖
eᵀL−1

‖eL‖ = 1

‖eL‖2
EL−1,

A Aᵀ = e(L−1)β1

‖eL−1‖2
eL−1

e(L−1)β1

‖eL−1‖2
eᵀL−1 = e2(L−1)β1

‖eL−1‖4
EL−1.

Thus,

� = V V ᵀ +
(

1 − v2
)

A Aᵀ

= 1

‖eL‖2
EL−1 +

(
1 − e2(L−1)β1

‖eL‖2

)
e2(L−1)β1

‖eL−1‖4
EL−1

=
{

1

‖eL‖2
+

(
1 − e2(L−1)β1

‖eL‖2

)
e2(L−1)β1

‖eL−1‖4

}
EL−1. (15)

The new V-forecasting algorithm for exponential series can be presented as follows:

1) project the lagged vector Xi on L = span{ eL‖eL‖ } by X̂i = 1
‖eL‖2 EL Xi ;

2) apply Relations (11) and (15), and define the linear operator PVec : RL �→L as follows:

PVec Z =
(

�Z
Aᵀ Z

)
; (16)

3) define the vectors W i as:

W i =
{

X̂i for i = 1, . . . , K ,

PVecW i−1 for i = K + 1, . . . , K + h + L − 1; (17)

4) by constructing the matrix W = [W1 : · · · : W K+h+L−1] and making its diagonal average, the series {z1, . . . , zN+h+L−1} is 
obtained;

5) the values zN+1, . . . , zN+h form the h step ahead vector forecasts for exponential series.

4. Empirical results

4.1. Reconstruction

In this subsection, the performance of the proposed reconstruction approach is evaluated using simulated noisy expo-
nential series with various noise levels. Consider the noisy exponential series:

yt = exp(0.1 + 0.01t) + nt, t = 1,2, . . . ,100,

where nt is the normally distributed noise series with zero mean. The accuracy of the results’ reconstruction is measured 
using the Root Mean Squared Error (RMSE). The following RMSE ratio is applied to compare the proposed and common 
reconstruction methods:

R RM S E =
(∑N

t=1(yt − ˜̃yt)
2
)1/2

(∑N
t=1(yt − ỹt)2

)1/2
, (18)

where ˜̃yt and ỹt are reconstructed series at time t achieved by the proposed and common reconstruction methods, 
respectively. If R RM S E < 1, then the proposed reconstruction outperforms the competitor method. Alternatively, when 
R RM S E > 1, it would indicate that the performance of the proposed reconstruction is worse than the latter.

Table 1 reports the RRMSE values for the reconstruction of exponential series. The window length (L) ranges from 2 to 
50, and different values of the standard deviation of noise series have been used. As can be seen in this table, the proposed 
reconstruction always outperforms the common reconstruction for each value of the standard deviation. The performance of 
the proposed reconstruction rises as L reaches greater values. In addition, the proposed reconstruction is much better than 
the other one as the standard deviation increases.
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Table 1
RRMSE for reconstruction.

Standard 
deviation

L

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50

1 1.000 0.998 0.995 0.990 0.984 0.976 0.965 0.952 0.938 0.927 0.906 0.889 0.866 0.841 0.807 0.778 0.726
4 0.984 0.987 0.976 0.971 0.960 0.948 0.933 0.922 0.911 0.890 0.875 0.845 0.832 0.793 0.766 0.735 0.697
6 0.966 0.930 0.906 0.879 0.871 0.848 0.820 0.812 0.784 0.761 0.737 0.724 0.687 0.668 0.647 0.614 0.580

Table 2
RRMSE values for recurrent forecasting.

Forecasting 
horizon

Standard 
deviation

L

2 5 8 11 14 17 20 23 26 29 32 35 38

h = 1 1 0.960 0.922 0.885 0.851 0.819 0.775 0.761 0.732 0.685 0.662 0.625 0.593 0.580
4 0.870 0.863 0.817 0.774 0.726 0.683 0.648 0.616 0.615 0.599 0.544 0.512 0.485
6 0.854 0.842 0.758 0.736 0.675 0.635 0.597 0.553 0.532 0.505 0.487 0.448 0.437

h = 3 1 0.909 0.882 0.853 0.823 0.791 0.747 0.732 0.698 0.671 0.633 0.595 0.583 0.547
4 0.817 0.786 0.754 0.742 0.714 0.671 0.629 0.612 0.573 0.569 0.513 0.511 0.460
6 0.756 0.732 0.719 0.663 0.629 0.604 0.575 0.566 0.537 0.500 0.474 0.453 0.414

h = 6 1 0.823 0.818 0.794 0.764 0.745 0.715 0.673 0.664 0.631 0.592 0.562 0.544 0.523
4 0.724 0.678 0.663 0.647 0.644 0.612 0.603 0.535 0.535 0.526 0.486 0.461 0.446
6 0.695 0.658 0.645 0.627 0.603 0.572 0.536 0.514 0.494 0.485 0.458 0.423 0.424

h = 12 1 0.757 0.733 0.703 0.681 0.650 0.629 0.606 0.584 0.562 0.541 0.533 0.527 0.519
4 0.702 0.687 0.653 0.622 0.580 0.573 0.544 0.532 0.529 0.517 0.501 0.493 0.481
6 0.669 0.647 0.633 0.612 0.573 0.557 0.532 0.523 0.517 0.495 0.488 0.476 0.467

h = 24 1 0.572 0.525 0.513 0.499 0.481 0.457 0.441 0.438 0.414 0.402 0.364 0.354 0.336
4 0.475 0.455 0.423 0.395 0.381 0.378 0.361 0.353 0.334 0.324 0.311 0.306 0.286
6 0.445 0.431 0.409 0.387 0.372 0.368 0.356 0.332 0.321 0.319 0.307 0.287 0.264

4.2. Forecasting

In this subsection, the performance of the proposed recurrent and vector forecasting algorithms are compared with 
common versions of them by applying simulated exponential series. The series is split into two sets: the training and the 
testing part. The accuracy of the results’ forecasting is measured using the widely used metric, Root Mean Squared Error 
(RMSE):

R RM S Eh =
(∑m+n−h

t=m (yt+h − ŷt+h|t)2
)1/2

(∑m+n−h
t=m (yt+h − ˆ̂yt+h|t)2

)1/2
, (19)

where, m is the length of training sample, n is the length of test sample, h is the length of forecast horizon, ŷt+h|t is the 
h-step ahead forecast obtained by the proposed recurrent (or vector) forecasting and ˆ̂yt+h|t is the h-step ahead forecast 
taken through the common recurrent (or vector) forecasting. If R RM S Eh < 1, then the proposed recurrent (or vector) fore-
casting outperforms the competitor method at the horizon h. Alternatively, when R RM S Eh > 1, it would indicate that the 
performance of the proposed recurrent (or vector) forecasting is worse than the other one.

Let us now consider the following noisy exponential series:

yt = exp(0.01t) + nt, t = 1,2, . . . ,100,

where nt is the normally distributed noise series with zero mean. The first 70 observations were considered as training 
samples (m = 70) and the rest as test samples (n = 30).

Tables 2 and 3 report the RRMSE for recurrent and vector forecasting at h = 1, 3, 6, 12, and 24 forecast horizons using 
1000 iterations. For each h, different values of the standard deviation for the noise series has been used. As can be seen 
from Tables 2 and 3, all RRMSEs are less than one, confirming that the proposed recurrent and vector forecasting approaches 
outperform the common basic recurrent and vector forecasting at all forecast horizons, for each value of the window length 
(L) and different values of the standard deviation of the noise series. It is noteworthy that the efficiency of the proposed 
forecasting methods increases as L increases. Additionally, for each L and h, the efficiency increases as the standard deviation 
intensifies.
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Table 3
RRMSE for vector forecasting.

Forecasting 
horizon

Standard 
deviation

L

2 5 8 11 14 17 20 23 26 29 32 35 38

h = 1 1 0.959 0.929 0.904 0.874 0.851 0.834 0.804 0.795 0.766 0.749 0.726 0.716 0.697
4 0.906 0.899 0.848 0.804 0.779 0.748 0.733 0.722 0.700 0.687 0.666 0.653 0.630
6 0.855 0.840 0.803 0.788 0.759 0.725 0.703 0.681 0.670 0.656 0.647 0.631 0.600

h = 3 1 0.908 0.891 0.864 0.840 0.815 0.787 0.767 0.749 0.718 0.703 0.673 0.653 0.630
4 0.883 0.872 0.841 0.807 0.779 0.762 0.743 0.716 0.690 0.664 0.643 0.621 0.598
6 0.858 0.836 0.808 0.781 0.764 0.745 0.731 0.704 0.678 0.650 0.635 0.596 0.568

h = 6 1 0.831 0.827 0.810 0.787 0.766 0.738 0.724 0.696 0.681 0.655 0.625 0.597 0.588
4 0.815 0.808 0.789 0.770 0.740 0.718 0.677 0.664 0.629 0.616 0.604 0.567 0.520
6 0.781 0.763 0.753 0.730 0.727 0.709 0.665 0.650 0.607 0.590 0.582 0.556 0.504

h = 12 1 0.782 0.746 0.719 0.701 0.679 0.659 0.639 0.620 0.597 0.568 0.557 0.537 0.508
4 0.763 0.726 0.700 0.676 0.648 0.640 0.620 0.593 0.577 0.551 0.530 0.515 0.486
6 0.735 0.711 0.688 0.654 0.639 0.625 0.618 0.583 0.564 0.537 0.526 0.507 0.476

h = 24 1 0.720 0.672 0.612 0.585 0.570 0.558 0.539 0.517 0.499 0.468 0.456 0.441 0.426
4 0.681 0.661 0.607 0.576 0.547 0.539 0.518 0.489 0.465 0.451 0.436 0.407 0.402
6 0.666 0.643 0.582 0.562 0.533 0.520 0.497 0.470 0.451 0.439 0.422 0.393 0.371

5. Conclusion

The current study proposes a closed form of filtered LRR coefficients (or exact α-coefficients) for exponential time series. 
On account of the fact that the α-coefficients play a fundamental role in both the recurrent and the vector forecasting 
approach within the SSA framework, the accuracy of filtering and forecasting results are enhanced using the filtered closed 
form of the α-coefficients.

The simulation results confirmed the superiority of the proposed approach. The results also indicate that the length of 
the time series (N) and β0 do no have any effect on the α-coefficients.

Accordingly, employing the proposed approach is recommended for filtering and forecasting time series where there 
exists an exponential-like trend as part of the series component.
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