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1. Introduction

The study of holomorphic isometric embeddings between complex manifolds is a classical topic in complex geometry. 
For Kähler manifolds, the early work was carried out by Calabi, who, in his seminal work [5] of 1953, proved that two 
complex space forms with different curvature signs cannot be locally isometrically embedded into another one with respect 
to the canonical Kähler metrics. In the proof of his result, the notion of “diastasis” for analytic Kähler metrics plays an 
essential role.

Along these lines of research, Umehara [21] proposed an interesting question whether two Kähler manifolds have in 
common a non-trivial Kähler submanifold with the induced metrics, and showed that Kähler submanifolds of complex 
space form of different types are essentially different from each other. Inspired by the work of Umehara, Di Scala and 
Loi [10] introduced the concept of “relatives” between two Kähler manifolds (i.e. they are said to be relatives if they share 
a common Kähler submanifold; otherwise, we say that they are not relatives) in 2010, and they proved that a bounded 
domain with its Bergman metric and a projective Kähler manifold with the restriction of the Fubini–Study metric are not 
relatives. For related problems, see Cheng, Di Scala and Yuan [6], Di Scala and Loi [9], Mossa [17] and Zedda [23].

Notice that any irreducible Hermitian symmetric space of compact type can be holomorphically isometrically embedded 
into a complex project space by the classical Nakagawa–Takagi embedding. Therefore, associating Umehara’s main result 
in [21] with the Nakagawa–Takagi embedding, it is easy to get that complex Euclidean spaces and Hermitian symmetric 
spaces of compact types are not relatives. What is more, Huang and Yuan [14] solved the problem of the non-relativity 
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between complex Euclidean spaces and the bounded symmetric domains by using the properties of the Nash algebraic 
function.

More recently, Cheng and Niu [7] discussed the non-relativity in the nonhomogeneous setting. Cartan–Hartogs domains, 
introduced by Yin and Roos, are defined as the Hartogs-type domain constructed over the bounded symmetric domains. 
They are natural generalizations of bounded symmetric domains and ellipsoids, but in general they are not homogeneous 
(e.g., see Feng–Tu [12], Yin [22]). Cheng and Niu [7] studied the non-relativity of a complex Euclidean space and a Cartan–
Hartogs domain with canonical metrics.

We define the symmetrized polydisc Gn as follows. Let D be the unit disc in the complex plane C, λ = (λ1, . . . , λn) ∈C
n , 

and let πn = (πn,1, . . . , πn,n) :Cn −→ C
n be the symmetrization map defined by

πn,k(λ) =
∑

1≤ j1<···< jk≤n

λ j1 . . . λ jk , 1 ≤ k ≤ n. (1.1)

The image Gn := πn(Dn) is known as the symmetrized polydisc. In particular, G1 = D, and G2 is the so-called symmetrized 
bidisc. For the general reference of symmetrized polydisc, see Edigarian–Zwonek [11] and the Chapter 7 of Jarnicki–Pflug’s 
book [15].

The symmetrized polydisc Gn (n ≥ 2) is a bounded inhomogeneous pseudoconvex domain without smooth boundary, 
and especially it has not any strongly pseudoconvex boundary point. It is important because the symmetrized bidisc is the 
first known example of a bounded pseudoconvex domain for which the Lempert function, the Kobayashi distance, and the 
Carathéodory distance coincide, but which cannot be exhausted by domains biholomorphic to convex ones (see Costara [8]). 
The symmetrized polydisc has been studied by many authors, especially in the 2-dimensional case, e.g., Agler–Lykova–
Young [1], Agler–Young [2,3], Frosini–Vlacci [13], Tu–Zhang [19], and Trybula [20].

The restriction map πn|Dn : Dn → G
n is a proper holomorphic map (see Rudin [18]). Thus, the symmetrized polydisc Gn

is a proper image of the bounded symmetric domain Dn . The purpose of this paper is to prove the non-existence of common 
Kähler submanifolds of the complex Euclidean space and of the symmetrized polydisc endowed with their canonical metrics. 
Denote Euclidean metric on the complex Euclidean space Cm and Bergman metric on the symmetrized polydisc Gn by ωCm

and ωGn , respectively. Let ωD be a Kähler metric (not necessarily complete) on a domain D ⊆ C (assume without loss of 
generality that 0 is in D). In this paper, we show that there do not simultaneously exist holomorphic isometric immersions 
F : (D, ωD) → (Cm, ωCm ) and G : (D, ωD) → (Gn, ωGn ) as follows.

Theorem 1.1. Let D be a domain in C. Assume that F = ( f1, . . . , fm) : D → C
m and G = (g1, . . . , gn) : D → Gn are holomorphic 

mappings such that

F ∗ωCm = G∗ωGn on D. (1.2)

Then F must be a constant map.

As an immediate consequence, we have the following:

Corollary 1.2. There does not exist a Kähler manifold (X, ωX) that can be holomorphic isometrically embedded into the complex 
Euclidean space (Cm, ωCm ) and also into the symmetrized polydisc (Gn, ωGn ).

Our proof uses the idea developed in the work of Huang and Yuan [14], but due to the fact that Gn (n ≥ 2) is nonhomo-
geneous, we cannot assume that G(0) = 0 just as their proof without loss of generality. On the other hand, although that 
some Cartan–Hartogs domains, researched by Cheng and Niu [7] within the same problem, are also inhomogeneous, they 
[7] stressed the extra condition G(0) = 0 there. We make no such assumption about G in the paper. And then, this causes 
that KGn

(
G(z), G(0)

)
may not be a constant on D in the process of our proof, where KGn (·, ·) is the Bergman kernel of Gn . 

The key ideas in this paper are to verify that the Bergman kernel KGn (·, ·) of Gn can be described as a rational form and 
that { f i(z)}m

i=1 can be written as holomorphic rational functions in g1(z), . . . , gn(z) on D .

2. Preliminaries

In this section, we review several basic facts about the symmetrized polydisc Gn , the fundamental theorem of symmetric 
polynomials, and Nash algebraic function, which will be used in the subsequent section.

For the proper holomorphic map πn :Dn →G
n (n ≥ 2), we have

det π′
n(λ) =

∏
1≤i< j≤n

(λi − λ j).

Define

�n := {λ ∈D
n : det π′

n(λ) = 0}.
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Then

πn
−1(πn(λ)) = {(λσ(1), · · · , λσ (n)) : σ is a permutation of {1, · · · ,n}}, λ ∈D

n \ �n. (2.1)

The proper holomorphic map πn :Dn →G
n is also a branched covering. For a holomorphic mapping G : D → Gn of a simply 

connected domain D ⊆ C with G(D) 
⋂

πn(�n) 	= ∅ (specially, G(D) ⊂ πn(�n)), generally speaking, it may be impossible to 
find a holomorphic mapping T : D → D

n such that G ≡ πn(T ) on D .
Let K�(·, ·) denote the Bergman kernel of the domain � ⊆ C

n . From the formula for the Bergman kernel of the poly-
disc D

n and from the formula for the behavior of the Bergman kernel under proper holomorphic mappings (see Bell [4]), 
by (2.1), Edigarian–Zwonek [11] obtained the following result.

Lemma 2.1. (See [11])

KGn

(
πn(λ),πn(μ)

) =
det

[ 1
(1−λ jμ̄k)

2

]
1≤ j,k≤n

πn det π′
n(λ)det π′

n(μ)
, λ,μ ∈ D

n\�n. (2.2)

Observe that although the right-hand side of (2.2) is not formally defined on the whole Gn ×Gn , it extends smoothly on 
this set. In the case n = 2, the elementary calculation shows the following.

Lemma 2.2. (See [11])

KG2

(
π2(λ),π2(μ)

) = 2 − (λ1 + λ2)(μ̄1 + μ̄2) + 2λ1λ2μ̄1μ̄2

π2[(1 − λ1μ̄1)(1 − λ1μ̄2)(1 − λ2μ̄1)(1 − λ2μ̄2)]2
.

Using Lemma 2.2, we easily obtain

KG2

(
(s1, p1), (s2, p2)

) = 2 − s1 s̄2 + 2p1 p̄2

π2[1 − s1 s̄2 + (s2
1 − 2p1)p̄2 − p1s1 s̄2 p̄2 + p1 s̄2

2 + p2
1 p̄2

2]2
,

where (si, pi) ∈G2, i = 1, 2.
Then the above equation gives an explicit formula for KG2 (·, ·), which is independent of the symmetrization map π2. 

Moreover, KG2(·, ·) is a rational function on G2 × G2. However, it seems difficult to write an explicit formula for KGn (·, ·)
(n ≥ 3) (e.g., see Remark 12 in Edigarian–Zwonek [11]).

In order to obtain a more handy form for KGn (·, ·), we need the fundamental theorem of symmetric polynomials as 
follows.

Lemma 2.3. (See [16]) Any symmetric polynomial in n variables x1, . . . , xn is representable in a unique way as a polynomial in the n
elementary symmetric polynomials σ1, . . . , σn, where σ j is the jth elementary symmetrized polynomial, i.e.

σ j =
∑

1≤i1<···<i j≤n

xi1 · · · xi j .

Next let us recall some properties of Nash algebraic function. A holomorphic function F over U ⊆C
k is called a holomor-

phic Nash algebraic function if there is a non-zero holomorphic polynomial P (z, X) in X with coefficients in polynomials of 
z such that P (z, F (z)) ≡ 0 on U . Furthermore, one can assume that P (z, X) is an irreducible polynomial

P (z, X) = ad(z)Xd + ad−1(z)Xd−1 + · · · + a0(z)

where ai (i = 0, . . . , d) are holomorphic polynomials in z having no common factors and ad 	≡ 0. P (z, X) is said to be the 
annihilating function of F (z). Huang and Yuan [14] obtained the following result.

Lemma 2.4. (See [14]) Let U ⊆ C
k be a connected open set, and ξ = (ξ1, . . . , ξk) ∈ U . Let H1(ξ), . . . , Hl(ξ) and H(ξ) be holomorphic 

Nash algebraic functions on U . Assume that

exp H(ξ) =
l∏

i=1

(Hi(ξ))μi

for certain real numbers μ1, . . . , μl . Then H(ξ) is constant on U .

3. Proof of the main results

Assume, to reach a contradiction, that F : D → C
n is not constant. Assume without loss of generality that D is simply 

connected, 0 is in D , and F (0) = 0.
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Using the condition (1.2), we obtain

∂∂̄
( m∑

i=1

| f i(z)|2 − log KGn

(
G(z), G(z)

)) = 0, z ∈ D. (3.1)

This means that the term 
∑m

i=1 | f i(z)|2 − log KGn

(
G(z), G(z)

)
in the equation (3.1) is a harmonic function of z on the 

domain D in C. So there exists a holomorphic function ϕ(z) on D such that

m∑
i=1

| f i(z)|2 − log KGn

(
G(z), G(z)

) = ϕ(z) + ϕ(z), z ∈ D. (3.2)

By F (0) = 0, we have 2Reϕ(0) = − log KGn

(
G(0), G(0)

)
. Then by complexifying (3.2), we get

m∑
i=1

f i(z) f̄ i(w) − log KGn

(
G(z), G(w)

) = ϕ(z) + ϕ(w), (3.3)

where (z, w) ∈ D × D . Hence let w = 0, we obtain

ϕ(z) = − log KGn

(
G(z), G(0)

) − ϕ(0). (3.4)

Next we divide into three steps to prove Theorem 1.1.
Step 1. We claim that the Bergman kernel KGn (ξ, η) is a rational function in ξ and η̄.
Denote ξ = πn(λ), η = πn(μ). If λ, μ ∈D

n\�n , then, by the calculating of the numerator in the formula (2.2), we get

KGn (ξ,η) = KGn

(
πn(λ),πn(μ)

)
=

det
[ 1

(1−λ jμ̄k)
2

]
1≤ j,k≤n

πn det π′
n(λ)det π′

n(μ)

= 1∏n
i, j=1(1 − λiμ̄ j)

2

P1(λ, μ̄)

det π′
n(λ)det π′

n(μ)
,

(3.5)

where P1(λ, μ̄) is a polynomial in λ and μ̄, and det π′
n(λ) = ∏

1≤ j<k≤n(λ j − λk).

Let P2(λ, μ̄) := ∏n
i, j=1(1 − λiμ̄ j)

2. Notice that P2(λ, μ̄) is zero-free on Dn ×D
n and

P2(λ, μ̄) =
n∏

j=1

[
(1 − λ1μ̄ j) · · · (1 − λnμ̄ j)

]2

=
n∏

j=1

(1 − ξ1μ̄ j + ξ2μ̄
2
j + · · · + (−1)nξnμ̄

n
j )

2 (3.6)

:= P̃ξ (μ̄),

where ξ = (ξ1, . . . , ξn) := πn(λ). Since P̃ξ (μ̄) is a symmetric polynomial in μ̄, by applying Lemma 2.3 to equation (3.6), we 
have

P̃ξ (μ̄) =
∑
α

hα(ξ)η̄α (=
∑
α

hα(ξ)πn(μ)
α
), (3.7)

where the sum over α with finite terms. Together with (3.6) and (3.7), we conclude that hα(ξ) is a holomorphic polynomial 
in ξ by the uniqueness of the power series. Hence,

P2(λ, μ̄) = H2(ξ, η̄)

for a polynomial H2(ξ, η̄) in ξ and η̄. Notice that H2(ξ, η̄) is holomorphic in ξ and anti-holomorphic in η, and what is 
more, it is zero-free on Gn ×Gn .

Now we consider the remaining terms in (3.5). Let

P̃1(λ, μ̄) := P1(λ, μ̄)

det π′
n(λ)det π′

n(μ)
.

Since the Bergman kernel KGn

(
ξ, η

)
extends smoothly on the whole Gn ×Gn , this means that P̃1(λ, μ̄) is a rational function 

in λ and μ̄, and smoothly on Dn ×Dn . Note
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det π′
n(λ)det π′

n(μ) =
∏

1≤ j<k≤n
(λ j − λk)

∏
1≤r<s≤n

(μr − μs). (3.8)

We claim that P̃1(λ, μ̄) must be a polynomial in λ and μ̄. In fact, let P̃1(λ, μ̄) := φ1(λ,μ̄)
φ2(λ,μ̄)

, where φ1 and φ2 are polynomial 

on Cn ×C
n with dimC φ−1

1 (0) ∩φ−1
2 (0) ≤ 2n −2. Since φ2(λ, μ̄) is a factor of the polynomial det π′

n(λ) det π′
n(μ), we have that 

φ2 must be a constant. Otherwise, by (3.8), φ2(λ, μ̄) has complex (2n − 1)-dimensional zero set in Dn ×Dn , a contradiction 
with P̃1(λ, μ̄) smoothly on Dn ×Dn .

Thus, we have

P̃1(λ, μ̄) = KGn (ξ,η)H2(ξ, η̄)

for (ξ, η) = (πn(λ), πn(μ)) ∈ Gn × Gn , and (λ, μ) ∈ D
n × D

n . This implies that there exists a real analytic function H1(ξ, η̄)

on Gn × Gn such that P̃1(λ, μ̄) = H1(ξ, η̄). Since P̃1(λ, μ̄) is a polynomial in λ and μ̄, we have that H1(ξ, η̄) is also a 
polynomial in ξ and η̄.

Therefore, the Bergman kernel KGn (·, ·) can be written as follows:

KGn (ξ,η) = H1(ξ, η̄)

H2(ξ, η̄)
, (ξ,η) ∈Gn ×Gn,

i.e. KGn (·, ·) is a rational function.
Step 2. We claim that { f i(z)}m

i=1 can be written as holomorphic rational functions in g1(z), . . . , gn(z), shrinking D towards 
the origin if needed.

Since KGn (·, ·) is a real analytic function with KGn (ξ, ξ) 	= 0 on Gn × Gn , we assume that there exist two neighbor-
hoods U1 and U2 of the origin such that KGn

(
G(z), G(w)

) 	= 0 for all (z, w) ∈ U1 × U2, and it also holds for H1
(
G(z), Ḡ(w)

)
.

Now we fix z near 0, and differentiate formula (3.3) with respect to w̄ near 0. Then, by writing

Dδ
(

F̄ (w)
) = ( ∂δ

∂ w̄δ
f̄1(w), . . . ,

∂δ

∂ w̄δ
f̄n(w)

)
, ∀δ ∈ N, (3.9)

we obtain

F (z) · D1( F̄ (w)
) = 1

KGn

(
G(z), G(w)

){ n∑
k=1

∂ KGn

∂η̄k

(
G(z), G(w)

)∂ ḡk

∂ w̄
(w)

}
+ ϕ′(w).

If we set w = 0 in this formula, simple calculation shows

F (z) · D1( F̄ (0)
) =

H2
(
G(z), Ḡ(0)

)∑n
k=1

∂ H1
∂η̄k

(
G(z), Ḡ(0)

) ∂ ḡk
∂ w̄ (0)

KGn

(
G(z), G(0)

)(
H2(G(z), Ḡ(0))

)2

−
H1

(
G(z), Ḡ(0)

)∑n
k=1

∂ H2
∂η̄k

(
G(z), Ḡ(0)

) ∂ ḡk
∂ w̄ (0)

KGn

(
G(z), G(0)

)(
H2(G(z), Ḡ(0))

)2
+ ϕ′(0)

=
∑n

k=1
∂ H1
∂η̄k

(
G(z), Ḡ(0)

) ∂ ḡk
∂ w̄ (0)

H1
(
G(z), Ḡ(0)

)
−

∑n
k=1

∂ H2
∂η̄k

(
G(z), Ḡ(0)

) ∂ ḡk
∂ w̄ (0)

H2
(
G(z), Ḡ(0)

) + ϕ′(0). (3.10)

Note that H1
(
G(z), Ḡ(w)

)
, H2

(
G(z), Ḡ(w)

)
are two polynomials in G(z) and Ḡ(w), H1

(
G(z), Ḡ(w)

) 	= 0 everywhere on 
U1 × U2, and H2

(
G(z), Ḡ(w)

) 	= 0 everywhere on Gn × Gn . Then the right-hand side of equation (3.10) is a well-defined 
holomorphic rational function in g1, . . . , gn . Following the similar discussion, for any positive integer δ, and for z near 0, we 
get

F (z) · Dδ( F̄ (0)) = Q δ(g1, . . . , gn), δ = 1,2, · · · , (3.11)

where Q δ(g1, . . . , gn) is a holomorphic rational function in g1, . . . , gn .
Now denote V := SpanC{Dδ( F̄ (w))|w=0}δ≥1 be a vector subspace of Cm . Since F is nonconstant by our assumption, 

V cannot be a zero space. Now we let {Dδ j ( F̄ (w))|w=0}d
j=1 be a basis for V . Because F̄ (w) is anti-holomorphic on D and 

F̄ (0) = 0, for any w near 0, by the Taylor expansion we have:

F̄ (w) =
∑
δ≥1

Dδ( F̄ (0))

δ! w̄δ ∈ V,

where Dδ is defined by (3.9). Then for a small neighborhood U0 of 0, we have F̄ (U0) ⊆ V .
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On the other hand, taking the vectors {V j}m−d
j=1 as the basis of V⊥ on Cm , we get

F (z) · V j = 0, j = 1, . . . ,m − d.

Combining with (3.11), we can obtain a non-degenerate linear equation:

( f1, · · · , fm)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dδ1( F̄ (w))|w=0
...

Dδd ( F̄ (w))|w=0
V 1
...

Vm−d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q δ1
...

Q δd

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is obvious that each complement f j of F can be linearly expressed by {Q δ j }d
j=1 by Gramer’s rule, i.e. we can write

f j = Q̃ j(g1, . . . , gn), j = 1, · · · ,m,

where {Q̃ j(g1, . . . , gn)}m
j=1 are holomorphic rational functions in g1, . . . , gn , and then they are holomorphic Nash algebraic 

functions in g1, . . . , gn .
Step 3. Now we consider two cases to achieve the contradiction.
Let R be the field of rational functions in z over D . Consider the field extension

R̃ = R(g1, . . . , gn),

i.e. the smallest subfield of meromorphic function field over D containing rational functions and g1, . . . , gn . Denote 
trdge(R̃/R) be the transcendence degree of the field extension R̃/R.

Case 1. If trdge(R̃/R) = 0, i.e. g1, . . . , gn are all holomorphic Nash algebraic functions in z.
From the above argument, we get that f j ( j = 1, . . . , m) are also Nash algebraic functions in z. Together with the 

following equation

exp
( m∑

i=1

f i(z) f̄ i(w)
) = eϕ(z)+ϕ(w)KGn (G(z), G(w))

= e−(ϕ(0)+ϕ(0)) KGn (G(z), G(w))

KGn (G(z), G(0))KGn (G(0), G(w))

and Lemma 2.4, we obtain that F is a constant map.
Case 2. If trdge(R̃/R) := l > 0, i.e. g1, . . . , gn are not all holomorphic Nash algebraic functions in z.
One can choose, without loss of generality, that g1, . . . , gl (l ≤ n) is the maximal algebraic independent subset in R̃. 

Then,

trdge
(
R̃/R(g1, . . . , gl)

) = 0.

Thus any element in {gl+1, . . . , gn} is holomorphic Nash algebraic function in z, g1, . . . , gl . In other words, there exists a 
small neighborhood V of 0 such that for {gi}n

i=l+1, we have some holomorphic Nash algebraic functions {ĝi(z, X)}n
i=l+1 in 

the neighborhood V̂ of {(z, g1, . . . , gl)|z ∈ V } ⊆C ×C
l , such that

gi(z) = ĝi(z, g1, . . . , gl), i = l + 1, . . . ,n,

for all z ∈ V , where X = (X1, . . . , Xl). Then by the step two, there exist holomorphic Nash algebraic functions { f̂ i(z, X)}m
i=1

on V̂ such that

f i(z) = f̂ i(z, g1, . . . , gl), i = 1, . . . ,m,

for all z ∈ V .
Denote Ĝ(z, X) = (ĝl+1(z, X), . . . , ̂gn(z, X)). Then, by (3.3) and (3.4), we define a function on V̂ × V as follows:

ψ(z, X, w) =
m∑

i=1

f̂ i(z, X) f̄ i(w) − log KGn

(
(X, Ĝ(z, X)), G(w)

)
+ log KGn

(
(X, Ĝ(z, X)), G(0)

) + ϕ(0) − ϕ(w).

Then ψ(z, g1, . . . , gl, w) ≡ 0 on V . Now we claim that ψ(z, X, w) ≡ 0 on V̂ × V .
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Define

φ(z, X, w) = ∂ψ

∂ w̄
(z, X, w).

We need only to prove that φ(z, X, w) ≡ 0 on V̂ × V .
Otherwise, then there exists a neighborhood V 0 of 0 ∈ V such that φ(z, X, w0) 	≡ 0. For fixed w0 ∈ V 0, φ(z, X, w0) is 

holomorphic Nash algebraic function in (z, X). Assume that its annihilating function is

P (z, X, t) = ad(z, X)td + · · · + a0(z, X),

where a0(z, X) 	≡ 0 on V̂ , and {ai(z, X)}d
i=0 are holomorphic polynominals in (z, X). Note that ψ(z, g1, . . . , gl, w0) = 0 on V . 

Then φ(z, g1, . . . , gl, w0) = 0 on V . Hence,

P (z, g1, . . . , gl, φ(z, g1, . . . , gl, w0)) = P (z, g1, . . . , gl,0) = a0(z, g1, . . . , gl) = 0.

That is, we get {g1, . . . , gl} are algebraic dependent over R, which is a contradiction. Therefore, ψ(z, X, w) ≡ 0 for all 
(z, X) ∈ V̂ , w ∈ V 0, and then we have ψ(z, X, w) ≡ 0 for (z, X, w) ∈ V̂ × V .

Now we have the following equality

m∑
i=1

f̂ i(z, X) f̄ i(w) = log KGn

(
(X, Ĝ(z, X)), G(w)

)
− log KGn

(
(X, Ĝ(z, X)), G(0)

) − ϕ(0) + ϕ(w),

where (z, X, w) ∈ V̂ × V . In particular, for some fixed z and w , the left-hand side of this equation is not identically equal 
zero on V̂ × V . Indeed, if

m∑
i=1

f̂ i(z, X) f̄ i(w) ≡ 0,

by setting w = z, we have

m∑
i=1

| f i(z)|2 =
m∑

i=1

f̂ i(z, g1, . . . , gl) f̄ i(z) ≡ 0.

This implies that { f i(z)}m
i=1 are constant maps, which contradicts with the previous assumption.

Next consider the following equation

exp

(
m∑

i=1

f̂ i(z, X) f̄ i(w)

)
= e−(ϕ(0)+ϕ(0))

KGn

(
(X, Ĝ(z, X)), G(w)

)
KGn

(
(X, Ĝ(z, X)), G(0)

)
KGn

(
G(0), G(w)

) . (3.12)

Note that 
∑m

i=1 f̂ i(z, X) f̄ i(w) is a nonconstant holomorphic Nash algebraic function in X for some fixed z and w , and the 
right hand side is also a holomorphic Nash algebraic function in X , which is a contradiction by Lemma 2.4.

Therefore F must be constant. This completes the proof of Theorem 1.1.
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