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Let F be a field of characteristic p > 0 and G be a smooth finite algebraic group over F . 
We compute the essential dimension edF (G; p) of G at p. That is, we show that

edF (G; p) =
{

1, if p divides |G|, and

0, otherwise.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit F un corps de caractéristique p > 0, et soit G un groupe algébrique fini étale sur F . On 
calcule la dimension essentielle de G en p, que l’on note edF (G; p). Plus précisément, on 
démontre que

edF (G; p) =
{

1, si p divise |G|,
0, sinon.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let F be a field and G be an algebraic group over F . We begin by recalling the definition of the essential dimension 
of G .
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Let K be a field containing F and τ : T → Spec(K ) be a G-torsor. We will say that τ descends to an intermediate subfield 
F ⊂ K0 ⊂ K if τ is the pull-back of some G-torsor τ0 : T0 → Spec(K0), i.e. if there exists a Cartesian diagram of the form

T

τ

T0

τ0

Spec(K ) Spec(K0) Spec(F ).

The essential dimension of τ , denoted by edF (τ ), is the smallest value of the transcendence degree trdeg(K0/F ) such that 
τ descends to K0. The essential dimension of G , denoted by edF (G), is the maximal value of edF (τ ), as K ranges over all 
fields containing F and τ ranges over all G-torsors T → Spec(K ).

Now let p be a prime integer. A field K is called p-closed if the degree of every finite extension L/K is a power of p. 
Equivalently, Gal(K s/K ) is a pro-p-group, where K s is a separable closure of K . For example, the field of real numbers is 
2-closed. The essential dimension edF (G; p) of G at p is the maximal value of edF (τ ), where K ranges over p-closed fields 
K containing F , and τ ranges over the G-torsors T → Spec(K ). For an overview of the theory of essential dimension, we 
refer the reader to the surveys [19] and [16].

The case where G is a finite group (viewed as a constant group over F ) is of particular interest. A theorem of 
N.A. Karpenko and A.S. Merkurjev [10] asserts that, in this case,

edF (G; p) = edF (G p; p) = edF (G p) = rdimF (G p) , (1)

provided that F contains a primitive p-th root of unity ζp . Here G p is any Sylow p-subgroup of G , and rdimF (G p) denotes 
the minimal dimension of a faithful representation of G p defined over F . For example, assuming that ζp ∈ F , edF (G) =
ed(G; p) = r if G = (Z/pZ)r , and ed(G) = ed(G; p) = p if G is a non-abelian group of order p3. Further examples can be 
found in [18].

Little is known about essential dimension of finite groups over a field F of characteristic p > 0. A. Ledet [12] conjectured 
that

edF (Z/pr
Z) = r (2)

for every r � 1. This conjecture remains open for every r � 3. In this paper we will prove the following surprising result.

Theorem 1. Let F be a field of characteristic p > 0 and G be a smooth finite algebraic group over F . Then

edF (G; p) =
{

1, if p divides |G|, and

0, otherwise.

In particular, Ledet’s conjecture (2) fails dramatically if the essential dimension is replaced by the essential dimension 
at p. On the other hand, Theorem 1 fails if ed(G; p) is replaced by ed(G); see [13].

Before proceeding with the proof of Theorem 1, we remark that the condition that G is smooth cannot be dropped. 
Indeed, it is well known that edF (μr

p; p) = r for any r � 0. More generally, if G is a group scheme of finite type over a field 
F of characteristic p (not necessarily finite or smooth), then edF (G; p) � dim(G) − dim(G), where G is the Lie algebra of G; 
see [25, Theorem 1.2].

2. Versality

Let G be an algebraic group and X be an irreducible G-variety (i.e. a variety with a G-action) over F . We will say that 
the G-variety X is generically free if there exists a dense open subvariety U of X such that the scheme-theoretic stabilizer 
Gu of every geometric point u of X is trivial. Equivalently, there exists a G-invariant dense open subvariety U ′ of X , which 
is the total space of a G-torsor; see [23, Section 5].

Following [23, Section 5] and [6, Section 1], we will say that X is weakly versal (respectively, weakly p-versal) if, for every 
infinite field (respectively, every p-closed field) E , and every G-torsor T → Spec(E), there is a G-equivariant F -morphism 
T → X . We will say that X is versal (respectively, p-versal), if every G-invariant dense open subvariety of X is weakly versal 
(respectively, weakly p-versal).

It readily follows from these definitions that ed(G) (respectively, ed(G; p)) is the minimal dimension dim(X) − dim(G), 
where the minimum is taken over all versal (respectively p-versal) generically free G-varieties X ; see [23, Section 5.7], [6, 
Remark 2.6 and Section 8]. Our proof of Theorem 1 will be based on the following facts.

(i) ([6, Proposition 2.2]) Every G-variety X with a G-fixed F -point is weakly versal.
(ii) ([6, Theorem 8.3]) Let X be a smooth geometrically irreducible G-variety. Then X is weakly p-versal if and only if X is 

p-versal.
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Combining (i) and (ii), we obtain the following proposition.

Proposition 2. ([6, Corollary 8.6(b)]) Let G be a finite smooth algebraic group over F . If there exists a faithful geometrically irreducible 
G-variety X with a smooth G-fixed F -point, then ed(G; p) � dim(X).

If we replace “p-versal” by “versal”, then (ii) fails: a weakly versal G-variety does not need to be versal. This is the 
underlying reason why both Proposition 2 and Theorem 1 fail if ed(G; p) is replaced by ed(G).

3. Proof of Theorem 1

In this section, we will prove Theorem 1, assuming Lemmas 3 and 4 below. We will defer the proofs of these lemmas to 
sections 4 and 5, respectively.

By [17, Lemma 4.1], if G ′ ⊂ G is a subgroup of index prime to p, then

edF (G; p) = edF (G ′; p). (3)

In particular, if p does not divide |G|, then taking G ′ = {1}, we conclude that edF (G; p) = 0. On the other hand, if p divides 
|G|, then edF (G; p) � 1; see [15, Proposition 4.4] or [14, Lemma 10.1]. Our goal is thus to show that edF (G; p) � 1.

First let us consider the case where G is a finite group, viewed as a constant algebraic group over F . After replacing G
by a Sylow p-subgroup, we may assume that G is a p-group. Let Fp be the field of p elements. Since Fp ⊂ F , we have 
edF (G; p) � edFp (G; p). Thus, for the purpose of proving the inequality edF (G; p) � 1, we may assume that F = Fp . In view 
of Proposition 2, it suffices to prove the following.

Lemma 3. For every finite constant p-group G there exists a faithful G-curve defined over Fp with a smooth G-fixed Fp-point.

Now consider the general case where G is a smooth finite algebraic group over F . In other words, G = τ �, where � is a 
constant finite group, A = Autgrp(�) is the group of automorphisms of � and τ is a cocycle representing a class in H1(F , A).

Lemma 4. (a) edF (G) � edF (� � A), (b) edF (G; p) � ed(� � A; p).

The semidirect product � � A is a constant finite group. Hence, as we showed above, edF (� � A; p) � 1. Theorem 1 now 
follows from Lemma 4(b).

4. Proof of Lemma 3

We will give two proofs: our original proof, extracted from the literature, and a self-contained proof suggested to us by 
the referee.

Proof. Recall that the Nottingham group Aut0(Fp[[t]]) is the group of automorphisms σ of the algebra Fp[[t]] of formal 
power series such that σ(t) = t + a2t2 + a2t3 + . . ., for some a2, a3, . . . ∈ Fp . By a theorem of Leedham–Green and Weiss [3, 
Theorem 3], every finite p-group G embeds into Aut0(Fp[[t]]). Fix an embedding φ : G ↪→ Aut0(Fp[[t]]). By [11, Theo-
rem 1.4.1], there exists a smooth G-curve X over Fp , with an Fp -point x ∈ X fixed by G , such that the G-action in the 
formal neighborhood of x is given by φ; see also [9, Section 2] and [1, Theorem 4.8]. Since φ is injective, the G-action on X
is faithful. �
Alternative proof. First consider the case where G = (Z/pZ)n is an elementary abelian p-group. Here we can construct 
X as the cover of P1 (with function field Fp(s)) given by the compositum of n linearly disjoint Artin–Schreier extensions 
Fp(s, ti)/Fp(s) given by t p

i − ti = f i(s) (e.g., taking f i(s) = spi+1).
Now consider a general finite p-group G . Denote the Frattini subgroup of G by � and the quotient G/� by (Z/pZ)n . 

Let Y be the smooth curve and Y → P
1 be a G/� = (Z/pZ)n-cover constructed in the previous paragraph, totally ramified 

at a point y ∈ Y (Fp) above ∞ ∈ P
1. Let E/Fp(s) be the (Z/pZ)n-Galois extension associated with this cover. By [21, Propo-

sition II.2.2.3], the cohomological dimension of Fp(s) at p is � 1. Consequently, by [21, Propositions I.3.4.16], E/Fp(s) lifts 
to a G-Galois extension K/Fp(s) such that K � = E . Let X be the smooth curve associated with K and x ∈ X(Fp) is a point 
above y:
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x ∈ X

y ∈ Y

∞ ∈ P
1
Fp

.

We claim that x is fixed by G; in particular, this will imply that x ∈ X(Fp). Let H be the stabilizer of x in G . Since � acts 
transitively on the fiber above y in X , we have � · H = G . By Frattini’s theorem (see, e.g., [20, Theorem 5.2.12]), � is the set 
of non-generators of G . We conclude that H = G , as claimed. �
5. Proof of Lemma 4

We will make use of the following description of edF (G) and edF (G; p) in the case where G is a finite algebraic group 
over F . Let G → GL(V ) be a faithful representation. A compression (respectively, a p-compression) of V is a dominant 
G-equivariant rational map V ��� X (respectively, a dominant G-equivariant correspondence V � X of degree prime to p), 
where G acts faithfully on X . Here, by a correspondence, we mean a G-equivariant subvariety V ′ of V × X such that the G
transitively permutes the irreducible components of V ′ , and the dimension of each component equals the dimension of V . 
The degree of this correspondence is defined as the degree of the projection V ′ → V to the first factor.

Recall that edF (G) (respectively, edF (G; p)) equals the minimal value of dim(X) taken over all compressions V ��� X
(respectively all p-compressions V � X). In particular, these numbers depend only on G and F and not on the choice of 
the generically free representation V . For details, see [19].

We are now ready to proceed with the proof of Lemma 4. To prove part (a), let V be a generically free representation of 
� � A and let f : V ��� X be a � � A-compression, with X of minimal possible dimension. That is, dimF (X) = edF (� � A). 
Twisting by τ , we obtain a G = τ �-equivariant map τ f : τ V ��� τ X ; see, e.g., [7, Proposition 2.6(a)]. Now observe that by 
Hilbert’s Theorem 90, τ V is a vector space with a linear action of G = τ � and τ f : τ V ��� τ X is a compression. (To see 
that the G-action on τ V and τ X are faithful, we may pass to the algebraic closure F of F . Over F , τ is split, so that G = �, 
τ V = V , τ X = X and τ f = f , and it becomes obvious that the G-actions on τ V and τ X are faithful.) We conclude that 
edF (G) � dimF ( τ X) = dimF (X) = edF (� � A), as desired.

The proof of part (b) proceeds along the same lines. The starting point is a p-compression f : V � X with X of minimal 
possible dimension, dimF (X) = edF (� � A; p). We twist f by τ to obtain a p-compression τ f : τ V � τ X of the linear 
action of G = τ � on τ V . The rest of the argument is the same as in part (a). This completes the proof of Lemma 4 and thus 
of Theorem 1. �
6. An application

In this section, G will denote a connected reductive linear algebraic group over a field F . It is shown in [4, Theorem 
1.1(c)] that there exists a finite F -subgroup S ⊂ G such that every G-torsor over every field K/F admits reduction of 
structure to S; see also [5, Corollary 1.4]. In other words, the map H1(K , S) → H1(K , G) is surjective for every field K
containing F . If this happens, we will say that “G admits reduction of structure to S”.

We will now use Theorem 1 to show that if char(F ) = p > 0 and p is a torsion prime for G , then S cannot be smooth. 
For the definition of torsion primes, a discussion of their properties and further references, see [22]. Note that by a theorem 
of A. Grothendieck [8], if G is not special (i.e. if H1(K , G) �= {1} for some field K containing F ), then G has at least one 
torsion prime; see also [22, 1.5.1].

Corollary 5. Let G be a connected reductive linear algebraic group over an algebraically closed field F of characteristic p > 0.
(a) If S is a smooth finite subgroup of G defined over F , then the natural map

f K : H1(K , S) → H1(K , G)

is trivial for any p-closed field K containing F . In other words, f K sends every α ∈ H1(K , S) to 1 ∈ H1(K , G).
(b) If p is a torsion prime for G, then G does not admit reduction of structure to any smooth finite subgroup.

Proof. (a) Let α ∈ H1(K , S) and β = f K (α) ∈ H1(K , G). By Theorem 1, α descends to α0 ∈ H1(K0, S) for some intermediate 
field F ⊂ K0 ⊂ K , where trdeg(K0/F ) � 1. Since F is algebraically closed, dim(K0) � 1; see [21, Sections II.3.1-3]. By Serre’s 
Conjecture I (proved by R. Steinberg [24] for a perfect field K0 and by A. Borel and T. A. Springer [2, §8.6] for an arbitrary 
K0 of dimension � 1), H1(K0, G) = {1}. Tracing through the diagram
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H1(K0, S)
f K0 H1(K0, G) = {1}

α0 1

α β

H1(K , S)
f K H1(K , G),

we see that β = 1, as desired.
(b) If p is a torsion prime for G , then H1(K , G) �= {1} for some p-closed field K containing F ; see [15, Proposition 4.4]. 

In view of part (a), this implies that f K is not surjective. �
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