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In this paper, we present some inequalities involving operator decreasing functions and 
operator means. These inequalities provide some reverses of the operator Aczél inequality 
dealing with the weighted geometric mean.
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r é s u m é

Nous présentons dans cette Note des inégalités faisant intervenir des fonctions décrois-
santes sur les opérateurs et des moyennes d’opérateurs. Ces inégalités fournissent des 
inverses aux inégalités d’Aczél pour les opérateurs dans le cas des moyennes géométriques 
pondérées.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let B(H) denote the C∗-algebra of all bounded linear operators on a Hilbert space (H, 〈·, ·〉). An operator A ∈ B(H) is 
called positive if 〈Ax, x〉 ≥ 0 for every x ∈H and then we write A ≥ 0. For self-adjoint operators A, B ∈ B(H), we say A ≤ B
if B − A ≥ 0. Also we say that A is strictly positive and we write A > 0 if 〈Ax, x〉 > 0 for every x ∈ H with x �= 0. Let f be a 
continuous real function on (0, ∞). Then f is said to be operator monotone (more precisely, operator monotone increasing) if 
A ≥ B implies f (A) ≥ f (B) for strictly positive operators A, B , and operator monotone decreasing if − f is operator monotone 
or A ≥ B implies f (A) ≤ f (B).

Also, f is said to be operator convex if f (αA + (1 − α)B) ≤ α f (A) + (1 − α) f (B) for all strictly positive operators A, B
and α ∈ [0, 1], and operator concave if − f is operator convex.

In 1956, Aczél [1] proved that if ai, bi(1 ≤ i ≤ n) are positive real numbers such that a2
1 − ∑n

i=2 a2
i > 0 and b2

1 −∑n
i=2 b2

i > 0, then
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(
a2

1 −
n∑

i=2

a2
i

)(
b2

1 −
n∑

i=2

b2
i

) ≤ (
a1b1 −

n∑
i=2

aibi
)2

.

Aczél’s inequality has important applications in the theory of functional equations in non-Euclidean geometry [1,16] and 
references therein. In recent years, considerable attention has been given to this inequality involving its generalizations, 
variations, and applications. See [5,6,14] and references therein. Popoviciu [14] first presented an exponential extension of 
Aczél’s inequality as follows:

Theorem A. Let p > 0, q > 0, 1
p + 1

q = 1, ap
1 − ∑n

i=2 ap
i > 0, and bq

1 − ∑n
i=2 bq

i > 0. Then

(
ap

1 −
n∑

i=2

ap
i

) 1
p
(
bq

1 −
n∑

i=2

bq
i

) 1
q ≤ a1b1 −

n∑
i=2

aibi .

Aczél’s and Popoviciu’s inequalities were sharpened and a variant of Aczél’s inequality in inner product spaces was given 
by Dragomir [6] by establishing the following theorem.

Theorem B. Let a, b be real numbers and x, y be vectors of an inner product space such that a2 − ‖x‖2 > 0 or b2 − ‖y‖2 > 0. Then

(a2 − ‖x‖2)(b2 − ‖y‖2) ≤ (ab − Re〈x, y〉)2. (1)

Moslehian in [13] proved an operator version of the classical Aczél inequality involving α-geometric mean A�α B =
A1/2(A−1/2 B A−1/2)α A1/2, in the following form.

Theorem C. Let g be a non-negative operator decreasing and operator concave function on (0, ∞), 1
p + 1

q = 1, p, q > 1, and A and B
be strictly positive operators. Then

g(Ap)� 1
q

g(Bq) ≤ g(Ap� 1
q

Bq), (2)

〈g(Ap)ξ, ξ〉 1
p 〈g(Bq)ξ, ξ〉 1

q ≤ 〈g(Ap� 1
q

Bq)ξ, ξ〉 (3)

for all ξ ∈H.

In this paper, we present some reverses of operator Aczél inequalities (2) and (3) by using several reverse Young’s 
inequalities. In fact, we show some upper bounds for the inequalities in Theorem C. These results are proved for a non-
negative operator decreasing function g and the condition of operator concavity has been omitted. So, we use less restrictive 
conditions on g . The statements are organized in two sections related to different coefficients.

2. Reverse inequalities via Kantorovich’s constant

Let A and B , be strictly positive operators. For each α ∈ [0, 1] the α-arithmetic mean is defined as A �α B := (1 − α)A +
αB , and the α-geometric mean is

A�α B = A1/2(A−1/2 B A−1/2)α A1/2.

Clearly, if AB = B A, then A�α B = A1−α Bα . Basic properties of the arithmetic and geometric means can be found in [10]. It 
is well-known as the Young inequality:

A�α B ≤ (1 − α)A + αB.

The celebrated Kantorovich constant is defined by

K (t) = (t + 1)2

4t
, t > 0. (4)

The function K is decreasing on (0, 1) and increasing on [1, ∞), K (t) = K ( 1
t ), and K (t) ≥ 1 for every t > 0 [10].

The research on the Young inequality is interesting, and there are several multiplicative and additive reverses of this 
inequality [7,12]. One of this reverse inequalities is given by Liao et al. [12] using the Kantorovich constant as follows.
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Lemma 1. [12, Theorem 3.1] Let A, B be positive operators satisfying the following conditions 0 < mI ≤ A ≤ m′ I ≤ M ′ I ≤ B ≤ M I or 
0 < mI ≤ B ≤ m′ I ≤ M ′ I ≤ A ≤ M I, for some constants m, m′, M, M ′ . Then

(1 − α)A + αB ≤ K (h)R(A�α B), (5)

where h = M
m , α ∈ [0, 1], R = max{1 − α, α} and K (h) is the Kantorovich constant, defined as in (4).

In the following, we generalize Lemma 1 with the more general sandwich condition 0 < sA ≤ B ≤ t A. The sketch of the 
proof is similar to that of [17, Theorem 2.1].

Lemma 2. Let 0 < sA ≤ B ≤ t A for some scalars 0 < s ≤ t and α ∈ [0, 1]. Then

(1 − α)A + αB ≤ max{K (s)R , K (t)R}(A�α B), (6)

where R = max{α, 1 − α} and K (t) is the Kantorovich constant, defined as in (4).

Proof. From [12, Corollary 2.2] if x is a positive number and α ∈ [0, 1], then

(1 − α) + αx ≤ K (x)R xα.

Thus for every strictly positive operator 0 < sI ≤ C ≤ t I , we have

(1 − α) + αC ≤ max
s≤x≤t

K (x)R Cα.

Substituting A− 1
2 B A− 1

2 for C , we get

(1 − α) + αA− 1
2 B A− 1

2 ≤ max
s≤x≤t

K (x)R(A− 1
2 B A− 1

2 )α.

Multiplying A
1
2 to the both sides in the above inequality, and using the fact that maxs≤x≤t K (x) = max{K (s), K (t)}, the 

desired inequality is obtained. �
Remark 1. We remark that Lemma 2 is a generalization of Lemma 1. Since, if 0 < mI ≤ A ≤ m′ I ≤ M ′ I ≤ B ≤ M I or 0 < mI ≤
B ≤ m′ I ≤ M ′ I ≤ A ≤ M I , then m

M A ≤ B ≤ M
m A. Now by letting s = m

M and t = M
m in Lemma 2, the inequality (5) is obtained. 

Note that K (t) = K ( 1
t ) for every t > 0.

Lemma 3. Let g be a non-negative operator monotone decreasing function on (0, ∞) and A be a strictly positive operator. Then, for 
every scalar λ ≥ 1

1

λ
g(A) ≤ g(λA).

Proof. First note that since g is analytic on (0, ∞), we may assume that g(x) > 0 for all x > 0; otherwise, g is identically 
zero. Also, since g is an operator monotone decreasing on (0, ∞), so f = 1/g is an operator monotone on (0, ∞) and hence 
an operator concave function [3]. On the other hand, it is known that, for every non-negative concave function f and λ ≥ 1, 
f (λx) ≤ λ f (x). Therefore, for every λ ≥ 1, we have

(g(λA))−1 ≤ λ(g(A))−1.

Reversing this inequality, we obtain the result. �
Proposition 1. Let g be a non-negative operator monotone decreasing function on (0, ∞) and 0 < sA ≤ B ≤ t A for some constants 
0 < s ≤ t. Then, for all α ∈ [0, 1]

g(A�α B) ≤ max{K (s)R , K (t)R}(g(A)�α g(B)), (7)

where R = max{α, 1 − α} and K (t) is the Kantorovich constant, defined as in (4).

Proof. Since 0 < sA ≤ B ≤ t A, from Lemma 2, we have

(1 − α)A + αB ≤ λ(A�α B),

where λ = max{K (s)R , K (t)R}. We know that λ ≥ 1. Also, the function g is operator monotone decreasing and so
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g(λ(A�α B)) ≤ g((1 − α)A + αB).

Now, we can write
1

λ
g(A�α B) ≤ g(λ(A�α B)) ≤ g((1 − α)A + αB) ≤ g(A)�α g(B),

where the first inequality follows from Lemma 3 and the last inequality follows from [2, Theorem 2.1]. �
Now, we can give the reverse of inequalities in Theorem C as follows.

Theorem 1. Let g be a non-negative operator monotone decreasing function on (0, ∞), 1
p + 1

q = 1, p, q > 1, and 0 < sAp ≤ Bq ≤ t Ap

for some constants s, t. Then, for all ξ ∈H

g(Ap� 1
q

Bq) ≤ max{K (s)R , K (t)R}
(

g(Ap)� 1
q

g(Bq)
)

, (8)

〈g(Ap� 1
q

Bq)ξ, ξ〉 ≤ max{K (s)R , K (t)R}〈g(Ap)ξ, ξ〉 1
p 〈g(Bq)ξ, ξ〉 1

q , (9)

where R = max{ 1
p , 1q }, and K (t) is the Kantorovich constant defined as in (4).

Proof. Letting α = 1
q and replacing Ap and Bq with A and B in Proposition 1, we reach the inequality (8). To prove the 

inequality (9), first note that under the condition 0 < sAp ≤ Bq ≤ t Ap from Lemma 2, we have

Ap∇α Bq ≤ max{K (s)R , K (t)R}(Ap�α Bq).

For convenience, set λ = max{K (s)R , K (t)R}. So, for the operator monotone decreasing functions g and α = 1
q

g(λ(Ap� 1
q

Bq)) ≤ g(Ap∇ 1
q

Bq). (10)

Now compute

〈g(Ap� 1
q

Bq)ξ, ξ〉 ≤ λ〈g(λ(Ap� 1
q

Bq))ξ, ξ 〉
≤ λ〈g(Ap∇ 1

q
Bq))ξ, ξ 〉

≤ λ〈g(Ap)� 1
q

g(Bq)ξ, ξ〉

≤ λ〈g(Ap)ξ, ξ〉 1
p 〈g(Bq)ξ, ξ〉 1

q ,

where the first inequality follows from Lemma 3 and the second follows from inequality (10). For the third inequality, we 
use the log-convexity property of operator monotone decreasing functions [2, Theorem 2.1], and, in the last inequality, we 
use the fact that, for every positive operators A, B and every ξ ∈ H, 〈A�α Bξ, ξ〉 ≤ 〈Aξ, ξ〉1−α〈Bξ, ξ〉α [4, Lemma 8]. So, we 
achieve

〈g(Ap� 1
q

Bq)ξ, ξ〉 ≤ max{K (s)R , K (t)R}〈g(Ap)ξ, ξ〉 1
p 〈g(Bq)ξ, ξ〉 1

q ,

as desired. �
Corollary 1. Let 1

p + 1
q = 1, p, q ≥ 1, and A, B be commuting positive operators with spectra contained in (0, 1) such that 0 < sA p ≤

Bq ≤ t Ap for some constants s, t. Then, for every unit vector ξ ∈H

1 − ‖(AB)
1
2 ξ‖2 ≤ max{K (s)R , K (t)R}(1 − ‖A

p
2 ξ‖2)

1
p (1 − ‖B

q
2 ξ‖2)

1
q , (11)

and consequently

1 − ‖ABξ‖2 ≤ max{K (s2)R , K (t2)R}(1 − ‖Apξ‖2)
1
p (1 − ‖Bqξ‖2)

1
q ,

where R = max{ 1
p , 1q }.

Proof. The first inequality is obtained by applying Theorem 1 to the function g(t) = 1 − t on (0, 1) and the fact that 
Ap� 1

q
Bq = AB . Also, for every positive operator A

〈Aξ, ξ〉 = 〈A
1
2 ξ, A

1
2 ξ〉 = ‖A

1
2 ξ‖2.

For the second inequality, note that since AB = B A, from the sandwich condition 0 < sA p ≤ Bq ≤ t Ap we have 0 < s2 A2p ≤
B2q ≤ t2 A2p . Now replacing A2 and B2 with A and B in (11), the assertion is obtained. �
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Remark 2. Moslehian in [13, Corollary 2.4], showed the operator version of Aczél inequality (1) as follows:

(1 − ‖A
p
2 ξ‖2)

1
p (1 − ‖B

q
2 ξ‖2)

1
q ≤ 1 − ‖(AB)

1
2 ξ‖2, (12)

where A and B are commuting positive operators with spectra contained in (0, 1), and 1
p + 1

q = 1 for p, q ≥ 1. As it can be 
seen, inequality (11) in Corollary 1 provides an upper bound for the operator Aczél inequality (12).

Corollary 2. Let g be a non-negative operator monotone decreasing function on (0, ∞) and A, B be commuting positive operators 
such that 0 < sAp ≤ Bq ≤ t Ap for some constants s, t. Then

g(AB) ≤ max{K (s)R , K (t)R}g(Ap)
1
p g(Bq)

1
q , (13)

where R = max
{

1
p , 1

q

}
.

Corollary 3. Let g be a non-negative decreasing function on (0, ∞) and ai, bi be positive numbers such that 0 < s ≤ (bi)
q

(ai)
p ≤ t for some 

constants s, t. Then

n∑
i=1

g(aibi) ≤ max
{

K (s)R , K (t)R
}(

n∑
i=1

g(ap
i )

) 1
p
(

n∑
i=1

g(bq
i )

) 1
q

, (14)

where R = max
{

1
p , 1

q

}
.

Proof. Let A(x1, x2, · · · , xn) = (a1x1, a2x2, · · · , anxn) and B(x1, x2, . . . , xn) = (b1x1, b2x2, · · · , bnxn) be positive operators act-
ing on Hilbert space H = Cn and ξ = (1, 1, . . . , 1). Now, by applying inequality (9) to operators A and B , we get inequal-
ity (14). �
3. Some related results

Dragomir in [7, Theorem 6], gave another reverse inequality for Young’s inequality as follows.

Lemma 4. Let A, B be positive operators such that 0 < sA ≤ B ≤ t A for some constants s, t. Then, for all α ∈ [0, 1]

(1 − α)A + αB ≤ exp
(1

2
α(1 − α)

(max{1, t}
min{1, s} − 1

)2)
(A�α B) . (15)

By using this new ratio, we can express some other operator reverse inequalities. The proofs are similar to that of the 
preceding section.

Proposition 2. Let g be a non-negative operator monotone decreasing function on (0, ∞) and 0 < sA ≤ B ≤ t A for some con-
stants s, t. Then, for all α ∈ [0, 1]

g(A�α B) ≤ exp
(1

2
α(1 − α)

(max{1, t}
min{1, s} − 1

)2)
(g(A)�α g(B)) .

Proof. The assertion is obtained similar to the proof of Proposition 1, by applying inequality (15) instead of inequality (6). 
Note that, for every 0 ≤ α ≤ 1 and s, t > 0, exp

( 1
2 α(1 − α)

( max{1,t}
min{1,s} − 1

)2) ≥ 1. �
Theorem 2. Let g be a non-negative operator monotone decreasing function on (0, ∞), 1

p + 1
q = 1, p, q > 1, and 0 < sAp ≤ Bq ≤ t Ap

for some constants s, t. Then, for all ξ ∈H

g(Ap� 1
q

Bq) ≤ exp
( 1

2pq

(max{1, t}
min{1, s} − 1

)2)(
g(Ap)� 1

q
g(Bq)

)
,

〈g(Ap� 1
q

Bq)ξ, ξ〉 ≤ exp
( 1

2pq

(max{1, t}
min{1, s} − 1

)2)〈g(Ap)ξ, ξ〉 1
p 〈g(Bq)ξ, ξ〉 1

q .

In [9, Theorem B], another reverse Young inequality is presented as follows.
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Lemma 5. Let A and B be positive operators such that 0 < sA ≤ B ≤ A for a constant s and α ∈ [0, 1]. Then

(1 − α)A + αB ≤ Mα(s)(A�α B),

where Mα(s) = 1 + α(1 − α)(s − 1)2

2sα+1 .

Now, by using this new constant, the similar reverse Aczél inequalities are obtained. Note that Mα(s) ≥ 1 for every 
α ∈ [0, 1]. See [9] for more properties of Mα(s).

Proposition 3. Let g be a non-negative operator monotone decreasing function on (0, ∞), 0 < sA ≤ B ≤ A for a constant s and 
α ∈ [0, 1]. Then

g(A�α B) ≤ Mα(s)(g(A)�α g(B)).

Theorem 3. Let g be a non-negative operator monotone decreasing function on (0, ∞), 1
p + 1

q = 1, p, q > 1, and 0 < sAp ≤ Bq ≤ Ap

for a constant s. Then, for all ξ ∈H,

g(Ap� 1
q

Bq) ≤ M 1
q
(s)(g(Ap)� 1

q
g(Bq)),

〈g(Ap� 1
q

Bq)ξ, ξ〉 ≤ M 1
q
(s)〈g(Ap)ξ, ξ〉 1

p 〈g(Bq)ξ, ξ〉 1
q .

Remark 3. We clearly see that the condition 0 < sA ≤ B ≤ t A for some s ≤ t in Lemma 4 is more general than the condition 
0 < sA ≤ B ≤ A for s ≤ 1 in Lemma 5. But under the same condition 0 < sA ≤ B ≤ A, the constant appearing in Lemma 5
gives a better estimate than the ones in Lemma 4. In fact, we have

Mα(s) ≤ exp
(1

2
α(1 − α)

(1

s
− 1

)2)
,

for every α ∈ [0, 1] and 0 < s ≤ 1 [8, Proposition 2.10].

In [11], it is shown that if f : [0, ∞) −→ [0, ∞) is an operator monotone function and 0 < sA ≤ B ≤ t A for some 
constants s, t , then for all α ∈ [0, 1]

f (A)�α f (B) ≤ max{S(s), S(t)} f (A�α B),

where S(t) = t
1

t−1

e log t
1

t−1

for t > 0 is the so-called Specht’s ratio [10,15]. As a result, we can show, for a non-negative operator 

monotone decreasing function g on (0, ∞), 0 < sA ≤ B ≤ t A, and α ∈ [0, 1]
g(A�α B) ≤ max{S(s), S(t)}(g(A)�α g(B)). (16)

Hence, one can deduce another reverse of operator Aczél inequality with the constant max{S(p), S(q)}, which is independent 
of α.

Remark 4. In this paper, three evaluation expressions are derived. In the following, we show that there is no ordering 
between the appeared estimates.

(1) Comparison of the constants in Lemma 2 and in Lemma 4:
Let 0 < sA ≤ B ≤ t A for some constants s, t and α ∈ [0, 1]. Also, with no loss of generality let s < t < 1. Since K is 
decreasing function on (0, 1), by Lemma 2, we have

(1 − α)A + αB ≤ K (s)R(A�α B),

where R = max{α, 1 − α}. Also, be Lemma 4,

(1 − α)A + αB ≤ exp
(1

2
α(1 − α)

(1

s
− 1

)2)
A�α B.

Now, the following numerical examples show that there is no ordering between them:
(i) take α = 0.9 and s = 0.3, then we have

max{K (s)α, K (s)1−α} − exp
(1

2
α(1 − α)

(1

s
− 1

)2) � 0.0833059;
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(ii) take α = 0.3 and s = 0.3, then we have

max{K (s)α, K (s)1−α} − exp
(1

2
α(1 − α)

(1

s
− 1

)2) � −0.500368.

(2) Comparison of the constants in inequality (16) and in inequality (7) of Proposition 1.
Let 0 < sA ≤ B ≤ t A for some constants s, t and α ∈ [0, 1]. Also, with no loss of generality let 1 ≤ s ≤ t . Then, from 
inequality (16), we have

g(A�α B) ≤ S(t)(g(A)�α g(B)),

and from inequality (7)

g(A�α B) ≤ K (t)R(g(A)�α g(B)),

where R = max{α, 1 − α}. We compare the coefficients of these inequalities as follows:
(i) take α = 0.8 and t = 9, then

max{K (t)α, K (t)1−α} − S(t) � 0.501632;
(ii) take α = 0.1 and t = 9, then

max{K (t)α, K (t)1−α} − S(t) � −0.655227.
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