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We consider the classical “Serrin’s symmetry result” for the overdetermined boundary 
value problem related to the equation �u = −1 in a model manifold of non-negative Ricci 
curvature. Using an extension of the Weinberger classical argument we prove a Euclidean 
symmetry result under a suitable “compatibility” assumption between the solution and the 
geometry of the model.
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r é s u m é

Nous considérons le résultat classique de « symétrie de Serrin » pour les problèmes à 
valeurs à la frontière surdéterminés, pour l’équation �u = −1 sur une variété modèle 
de courbure de Ricci positive ou nulle. Utilisant une extension de l’argument également 
classique de Weinberger, nous montrons un résultat de symétrie euclidienne sous une 
hypothèse de « compatibilité » entre la solution et la géométrie du modèle.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Preliminaries and statement of the result

A classical result obtained by Serrin in [16] is the following one.

Theorem 1. Let � be a bounded domain in the Euclidean space Rm whose boundary is of class C2. Suppose that � supports a solution 
u ∈ C2(�) ∩ C1(�̄) to the overdetermined problem
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⎧⎪⎨
⎪⎩

�u = −1 in �,

u = 0 on ∂�,

∂νu = constant on ∂�,

(1)

where ν denotes the exterior unit normal to ∂�. Then � is a ball and u has this specific form

u(r) = 1

2m
(b2 − r2), (2)

where b is the radius of the ball and r denotes distance from its centre.

This result is known as the “Serrin’s symmetry result” or the “Serrin’s rigidity result”. The technique used by Serrin to 
prove this result is a refinement of the famous reflection principle due to Alexandrov in [2], and is the so-called “moving 
planes method” together with the Maximum Principle and a new version of Hopf’s boundary point Lemma. In particular, 
Alexandrov introduced this method to prove that a closed (i.e. compact without boundary) hypersurface embedded in the 
Euclidean space Rm with constant mean curvature must be a sphere. Moreover, in [11], Kumaresan and Prajapat used the 
same method of the moving planes to prove the analogous of the “Serrin’s symmetry result” in the case of bounded domains 
of the hyperbolic space Hm and of the hemisphere Sm+ .

We mention that the technique of Serrin inspired the study of various properties and symmetry results for positive 
solutions to elliptic partial differential equations in bounded and unbounded domains of the Euclidean space (see the 
seminal paper by Gidas, Ni and Nirenberg [10]).

In this article, we focus on the more analytic approach by Weinberger [18], which is based on the Maximum Principle, 
the integration by parts, the Cauchy–Schwarz inequality, and the Bochner–Weitzenboch formula. We try to extend his proof 
to the so-called model manifolds with non-negative Ricci curvature.

We mention that the approach of Weinberger inspired several works in the context of elliptic partial differential equa-
tions (see, e.g., [3,5–9,12,13,17] and references therein).

In general, as we will see, the importance and the convenience of the model manifolds lie in the fact that their geometry 
and some natural differential operators (such as the Laplacian) have a particularly simple and explicit description.

First of all, we recall the definition of the m-dimensional model manifold.

Definition 2. A Riemannian manifold (Mm
σ , gMm

σ
) is called a model manifold if:

M
m
σ := [0, R) × S

m−1

∼ and gMm
σ

:= dr ⊗ dr + σ 2(r)gSm−1;
where R ∈ (0, +∞], ∼ is the relation that identifies all the points of {0} × S

m−1 and σ : [0, R) → [0, +∞) is a smooth 
function such that:

– σ(r) > 0, for all r > 0;
– σ (2k)(0) = 0, for all k = 0, 1, 2, . . . ;
– σ ′(0) = 1.

Moreover, the unique point corresponding to r = 0 is called the pole of the model and denoted by o ∈ M
m
σ ; σ is called the 

warping function.

Important examples of model manifolds are the so called space-forms: Rm , Hm and Sm . Explicitly,

– the Euclidean space Rm is isometric to the model manifold Mm
σ with σ(r) = r : [0, +∞) → [0, +∞);

– the hyperbolic space Hm is isometric to the model manifold Mm
σ with σ(r) = sinh(r) : [0, +∞) → [0, +∞);

– the standard sphere Sm \ {N} is isometric to the model manifold Mm
σ with σ(r) = sin(r) : [0, π) → [0, +∞).

We also recall that in Mm
σ the Ricci curvature has the following explicit expression (see e.g. [14]). Given x ∈ M

m
σ and 

X ∈ ∇r(x)⊥ in TxM
m
σ a unit vector, we have

RicMm
σ
(X, X) = (m − 2)

1 − (σ ′)2

σ 2
− σ ′′

σ
,

and

RicMm
σ
(∇r,∇r) = −(m − 1)

σ ′′

σ
.

With these preliminaries, the main Theorem of this article is the following one.
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Theorem 3. Let � ⊂ M
m
σ be a smooth domain with o ∈ �. Assume that � � B R̃(o) where the ray R̃ > 0 is such that the following 

conditions on σ are satisfied on the interval [0, R̃):

(a) RicMm
σ

≥ 0, i.e. σ ′′ ≤ 0 and (m − 2) 
(
1 − (σ ′)2

) − σ σ ′′ ≥ 0;
(b) σ ′ > 0.

If � supports a solution u to (1) and u satisfies the following “compatibility” condition∫
�

(σ ′′σm−1)′

σm−1 u2 ≥ 0, (3)

then we have that � is a Euclidean ball of radius ρ centred in the pole o of the model and u has the specific form:

u(r) = 1

2m
(ρ2 − r2) (4)

where r(x) = dist(x, o).

Remark 4. We analyse the hypothesis of the Theorem.

– Condition (b) appears in other articles on the subject, see for instance [4] by Ciraolo and Vezzoni.
– The “compatibility” condition (3) describes a property of the solution in relation to the geometry of the model. It is 

automatically satisfied by any solution to (1) in the case of the Euclidean space and it can not be reduced to a simple 
condition on the model, like

(σ ′′σm−1)′ ≥ 0.

Indeed, in this case, the three conditions are compatible only with the flat case: consider f (r) := σ ′′(r)σm−1(r). Then 
f (0) = 0 and if f ′(r) ≥ 0, i.e. f (r) is non-decreasing, so f (r) ≥ 0 for r > 0. But σ ′′(r) ≤ 0 according to (a), so we have 
that σ ′′(r) = 0. In this case, the result is well known and is presented in Weinberger’s article.

– Moreover, in [1], Alessandrini and Magnanini consider a symmetry result for a overdetermined problem, and they 
assume a “compatibility” condition as an integral on the boundary of the domain involving the solution and its gradient.

Remark 5. Observe that, by the Strong Maximum Principle, a solution u to (1) is positive in �. Moreover since ∂νu =
constant �= 0 on � we obtain that |∇u| �= 0 on ∂� and the smooth hypersurface ∂� = {u = 0} has exterior normal given by

ν = − ∇u

|∇u| |∂� .

This implies that

∂νu = −|∇u| on ∂�.

2. Explicit computations towards the proof of Theorem 3

The Laplace–Beltrami operator � of Mm
σ acts on C2-functions u : Mm

σ →R as follows:

�u = ∂2
r u + (m − 1)

σ ′

σ
∂ru + 1

σ 2
�̄u (5)

= ∂r(σ
m−1∂ru)

σm−1 + 1

σ 2
�̄u,

where �̄ denotes the Laplacian on the standard sphere (Sm−1, gSm−1 ). Using this expression, we obtain the following lemma.

Lemma 6. The following general formula holds:

�(σ ∂ru) = σ ∂r�u + 2σ ′ �u + (2 − m)σ ′′ ∂ru. (6)

Remark 7. In particular, if σ(r) = r and, hence, Mm
σ =R

m , we obtain

�(r ∂ru) = r ∂r�u + 2�u, (7)

which is the traditional formula used by Weinberger to prove Serrin’s result.
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Proof. We compute

σ∂r(�u) =σ

{
∂3

r u + (m − 1)
σ ′′σ − (σ ′)2

σ 2
∂ru + (m − 1)

σ ′

σ
∂2

r u − 2
σ ′

σ 3
�̄u + 1

σ 2
∂r(�̄u)

}

=σ∂3
r u + (m − 2)σ ′′∂ru + σ ′′∂ru − 2(m − 1)

(σ ′)2

σ
∂ru + (m − 1)

(σ ′)2

σ
∂ru+

+ (m + 1)σ ′∂2
r u − 2σ ′∂2

r u − 2
σ ′

σ 2
�̄u + 1

σ
∂r(�̄u) + 1

σ 2
�̄(σ ∂ru) − 1

σ 2
�̄(σ ∂ru)

=�(σ∂ru) + (m − 2)σ ′′∂ru − 2σ ′�u + 1

σ
∂r(�̄u) − 1

σ 2
�̄(σ ∂ru),

i.e.

�(σ∂ru) = σ∂r(�u) + (2 − m)σ ′′∂ru + 2σ ′�u. �
Now we focus on the solution u to (1) (from now on, we put the constant in (1) equal to c) and we show the following 

lemma.

Lemma 8. Let � and u satisfy (1). Then:

(m + 2)

∫
�

u σ ′ = mc2
∫
�

σ ′ + (m − 2)

2

∫
�

(σ ′′σm−1)′

σm−1 u2. (8)

Remark 9. In particular, if σ(r) = r and, hence, Mm
σ = R

m , we obtain

(m + 2)

∫
�

u = mc2|�|, (9)

as in the original Weinberger argument, where |�| is the volume of the domain �.

Proof. First of all we observe that, in this setting, formula (6) becomes

�(σ ∂ru) = −2σ ′ + (2 − m)σ ′′ ∂ru.

So by Green’s Theorem∫
�

−2σ ′ u + (2 − m)σ ′′ ∂ru u + σ ∂ru =
∫
�

�(σ ∂ru)u − σ ∂ru �u

=
∫
∂�

∂ν(σ ∂ru)u − σ ∂ru ∂νu

= −
∫
∂�

σ (∂νu)2∂νr

= − c2
∫
∂�

σ ∂νr

= − c2
∫
�

σ �r + gMm
σ
(∇r,∇σ)

= − c2
∫
�

σ (m − 1)
σ ′

σ
+ σ ′

= − c2m

∫
�

σ ′,

where we have used the fact that u = 0 on ∂� and that ∂νu = c on ∂�.



652 A. Roncoroni / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 648–656
Now note that

∫
�

σ∂ru =
∫
�

gMm
σ
(∇u,∇(

r∫
0

σ(s)ds))

= −
∫
�

u�(

r∫
0

σ(s)ds)

= −m

∫
�

uσ ′.

Using this and the previous computation we have

(m + 2)

∫
�

u σ ′ = mc2
∫
�

σ ′ + (2 − m)

∫
�

σ ′′ u∂ru. (10)

Finally we observe that∫
�

σ ′′ u∂ru =
∫
�

gMm
σ
(∇σ ′,∇(

1

2
u2)) (11)

= −1

2

∫
�

�σ ′ u2

= −1

2

∫
�

(σ ′′σm−1)′

σm−1 u2,

where the second and the third equations are obtained using the condition u = 0 on ∂� and the expression (5), respec-
tively. �
3. Proof of Theorem 3

Now we are ready to prove the main result of this paper.

Proof of Theorem 3. Let u and � as in the statement of Theorem 3; by the Bochner–Weitzenboch formula and the Cauchy–
Schwarz inequality, we get

�
(

m|∇u|2 + 2u
)

= 2m|Hess(u)|2 + 2mRicMm
σ
(∇u,∇u) + 2�u (12)

≥ 2(m|Hess(u)|2 + �u)

= 2
(

m|Hess(u)|2 − (�u)2
)

≥ 0 on �,

and the equality holds if and only if

Hess(u) = �u

m
gMm

σ

and

RicMm
σ
(∇u,∇u) = 0.

Since, according to Remark 5,(
m|∇u|2 + 2u

)
= mc2 on ∂�, (13)

we conclude from the Strong Maximum Principle that either(
m|∇u|2 + 2u

)
< mc2 on � (14)
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or (
m|∇u|2 + 2u

)
≡ mc2 on �. (15)

By contradiction, assume that condition (14) is satisfied. According to (b), we can multiply both members of (14) by σ ′ and 
integrate in order to obtain

m

∫
�

|∇u|2σ ′ + 2
∫
�

u σ ′ < mc2
∫
�

σ ′. (16)

Now we use the identity (8) to deal with the second term, i.e.

2
∫
�

u σ ′ = mc2
∫
�

σ ′ + (m − 2)

2

∫
�

(σ ′′σm−1)′

σm−1 u2 − m

∫
�

uσ ′. (17)

Note that, by the divergence theorem,

m

∫
�

σ ′div(u∇u) = −m

∫
�

σ ′′u ∂ru. (18)

Moreover,

m

∫
�

σ ′div(u∇u) = m

∫
�

σ ′|∇u|2 − m

∫
�

σ ′u.

So

m

∫
�

σ ′|∇u|2 = m

∫
�

σ ′u − m

∫
�

σ ′′u ∂ru. (19)

Substituting (17) and (19) in (16), we obtain:

−m

∫
�

σ ′′u ∂ru + m

∫
�

σ ′u + mc2
∫
�

σ ′ + (m − 2)

2

∫
�

(σ ′′σm−1)′

σm−1 u2 − m

∫
�

uσ ′ < mc2
∫
�

σ ′.

Lastly, we use the identity (11) to deduce

m

2

∫
�

(σ ′′σm−1)′

σm−1 u2 + (m − 2)

2

∫
�

(σ ′′σm−1)′

σm−1 u2 < 0,

i.e.

−(m − 1)

∫
�

(σ ′′σm−1)′

σm−1 u2 > 0; (20)

and this contradicts the “compatibility” condition (3).
Therefore, (15) holds true and m|∇u|2 + 2u must be constant in �. Since its Laplacian then vanishes, we conclude from 

(12) that equality must hold in the Cauchy–Schwarz inequality, i.e. we have proved that u is a solution to (recall that 
�u = −1 in �)

Hess(u) = − 1

m
gMm

σ
in �. (21)

Now, let ρ := dist(o, ∂�) and take Bρ(o) ⊂ �. Since ∂� is compact, there exists p ∈ ∂� such that p ∈ ∂� ∩ ∂ Bρ(o). In 
particular, since u = 0 on ∂�, we have that

u(p) = 0.

If we prove that u is a radial function in Bρ(o) then

u = 0 on ∂ Bρ(o).
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On the other hand, by the Strong Maximum Principle,

u > 0 in �.

Therefore we can conclude that ∂ Bρ(o) ∩ � = ∅ and, hence, � = Bρ(o).
So the keypoint is to prove that u : Bρ(o) →R, solution to (21), is a radial function in Bρ(o). To this end, take x ∈ Bρ(o). 

Since Mm
σ is geodesically complete there exist a minimizing and normalized geodesic γ ⊂ Bρ(o) from o to x. Let y(t) :=

u ◦ γ (t) and note that, along γ , equation (21) implies:

y′′(t) = d2

dt2
(u ◦ γ )(t)

= d

dt
gMm

σ
(∇u(γ (t)), γ̇ (t))

= gMm
σ
(D γ̇ ∇u(γ (t)), γ̇ (t)) + gMm

σ
(∇u(γ (t)), D γ̇ γ̇ (t))

= gMm
σ
((D γ̇ (t)∇u)(γ (t)), γ̇ (t))

= Hess(u) |γ (t) (γ̇ (t), γ̇ (t))

= − 1

m
.

The solutions to y′′(t) = − 1

m
are given by

y(t) = − 1

2m
t2 + αt + β

where α, β ∈ R. Now taking t = r(x) we get

u(x) = u ◦ γ (r(x)) = y(r(x)) = − 1

2m
r(x)2 + αr(x) + β (22)

which is radial. To determine the two constant in (22), we recall that u satisfies the following,{
u(ρ) = 0

u(r) > 0 for 0 < r < ρ

i.e., using the explicit formula of u, we obtain⎧⎪⎨
⎪⎩

− 1

2m
ρ2 + αρ + β = 0

− 1

2m

(ρ

2

)2 + α
ρ

2
+ β > 0 for r = ρ

2

substituting the expression β = 1

2m
ρ2 − αρ in the second equation, we get

α <
3

4m
ρ.

But, since u must be a C2-function, we have that α = 0; indeed, if we consider the Euclidean case where r(x) = d(x, 0) = |x|, 
the gradient of u becomes

∇u(x) = − 1

m
x + α

x

|x| (23)

which is not a C1 function in the origin (i.e. the pole of the Euclidean space) unless α = 0. In a generic model, the expression 

(23) holds in a system of normal coordinates in the pole. So the same conclusion holds and β = 1

2m
ρ2; with this constants 

the function u becomes

u(r) = − 1

2m
r2 + 1

2m
ρ2

which is exactly the expression (4); observe that, since u is radial, ∂νu = u′(r) and the condition ∂νu = constant in ∂� =
∂ Bρ(o) is automatically satisfied.

Moreover, we recall that if f :Mm
σ →R is a smooth radial function, then its Hessian takes the following expression

Hess( f ) = f ′′dr ⊗ dr + f ′σσ ′gSm−1 . (24)
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Using this expression with the function u we get

Hess(u) = − 1

m
dr ⊗ dr − 1

m
rσσ ′ gSm−1 , (25)

and using this latter in (21) we obtain

− 1

m
dr ⊗ dr − 1

m
rσσ ′gSm−1 = − 1

m
(dr ⊗ dr + σ 2 gSm−1)

i.e.

− 1

m
rσσ ′gSm−1 = − 1

m
σ 2 gSm−1 .

It follows that σ(r) = r, so, in the ball Bρ(o), not only the solution to (21) is radial, but also the metric gMm
σ

is the Euclidean 
metric. This implies that the ball Bρ(o) is a Euclidean ball, and the claim follows. �
Remark 10 (An alternative end of the proof). From the equality sign in the Bochner inequality (12) we get

RicMm
σ
(∇u,∇u) = 0. (26)

From the explicit expression of u (formula (4)), we see that the only critical point is in r = 0, i.e. in the pole o of the model. 
So the condition on the Ricci curvature becomes

RicMm
σ
(∇r,∇r) = 0 in Bρ(o) \ {o}. (27)

From the explicit expression of RicMm
σ
(∇r, ∇r), we get σ ′′ = 0 in (0, ρ), and we conclude that σ(r) = r, i.e. Bρ(o) is a 

Euclidean ball.

Remark 11. In [15], by Ros, we can find a similar spirit where, using the Reilly’s formula, he obtained a generalization of 
Alexandrov theorem for compact hypersurfaces with constant higher order mean curvatures; in this article, equation (21) is 
used to prove a Euclidean symmetry result on a generic compact Riemannian manifold of non-negative Ricci curvature with 
smooth boundary with mean curvature positive everywhere.

Remark 12. In this remark, we provide an example that shows that if the “compatibility” condition (3) is not satisfied, 
then we can not have Euclidean symmetry. According to the result of Kumaresan and Prajapat [11] we know that if we 
take a domain � ⊂ S

m such that �̄ ⊂ S
m+ , and there exist a solution u to the Serrin’s symmetry problem (1), then � must 

be a geodesic ball and u must be radially symmetric. We know that the hemisphere is isometric to the model Mm
σ with 

σ(r) = sin(r) |[0,π/2]; so in this example, conditions (a) and (b) of Theorem 3 are clearly satisfied and the “compatibility” 
condition (3) becomes:∫

�

(σ ′′σm−1)′

σm−1 u2 =
∫
�

−m cos(r)u2(r),

which is negative due to the monotonicity of the integral and to the fact that the function r �→ cos(r)u2(r) is positive in �.
In conclusion, the “compatibility” condition is not satisfied, and the symmetry result is not Euclidean, since the ball � is 

a geodesic ball, i.e. the metric in this ball is the metric of the sphere.

Acknowledgements

The author wishes to thank Stefano Pigola for his precious help and useful discussions. The author has been supported 
by the “Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni” (GNAMPA) of the “Istituto Nazionale 
di Alta Matematica” (INdAM).

References

[1] G. Alessandrini, R. Magnanini, Symmetry and non-symmetry for the overdetermined Stekoff problem II, in: Nonlinear Problems in Applied Mathematics, 
SIAM, Philadelphia, PA, USA, 1995.

[2] A.D. Alexandrov, Uniqueness theorem for surfaces in large I, Vestn. Leningr. Univ., Math. 11 (1956) 5–17.
[3] L. Caffarelli, N. Garofalo, F. Segàla, A gradient bound for entire solutions of quasi-linear equations and its consequences, Commun. Pure Appl. Math. 47 

(1994) 1457–1473.
[4] G. Ciraolo, L. Vezzoni, A rigidity problem on the round sphere, Commun. Contemp. Math. 19 (2016) 1750001.
[5] G. Ciraolo, L. Vezzoni, On Serrin’s overdetermined problem in space forms, preprint, arXiv:1702 .05277.
[6] A. Farina, B. Kawohl, Remarks on an overdetermined boundary value problem, Calc. Var. Partial Differ. Equ. 31 (2008) 351–357.

http://refhub.elsevier.com/S1631-073X(18)30126-2/bib416C657373616E6472696E692D4D61676E616E696E69s1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib416C657373616E6472696E692D4D61676E616E696E69s1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib416C6578616E64726F76s1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib434753s1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib434753s1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib435631s1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib435632s1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib464Bs1


656 A. Roncoroni / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 648–656
[7] A. Farina, E. Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature, Adv. Math. 225 (5) (2010) 
2808–2827.

[8] I. Fragalà, F. Gazzola, B. Kawohl, Overdetermined problems with possibly degenerate ellipticity, a geometric approach, Math. Z. 254 (2006) 117–132.
[9] N. Garofalo, J.L. Lewis, A symmetry result related to some overdetermined boundary value problems, Amer. J. Math. 111 (1989) 9–33.

[10] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys. 68 (3) (1979) 209–243.
[11] S. Kumaresan, J. Prajapat, Serrin’s result for hyperbolic space and sphere, Duke Math. J. 91 (1998) 17–28.
[12] C. Nitsch, C. Trombetti, The classical overdetermined Serrin problem, Complex Var. Elliptic Equ. (2017), https://doi .org /10 .1080 /17476933 .2017.1410798.
[13] L.E. Payne, Some remarks on maximum principles, J. Anal. Math. 30 (1976) 421–433.
[14] P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, 1998.
[15] A. Ros, Compact hypersurfaces with constant higher order mean curvature, Rev. Mat. Iberoam. 3 (1987) 447–453.
[16] J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43 (1971) 304–318.
[17] R.P. Sperb, Maximum Principles and Their Applications, Mathematics in Science and Engineering, vol. 157, Academic Press Inc. [Harcourt Brace Jo-

vanovich Publishers], New York, 1981.
[18] H. Weinberger, Remark on the preceding paper of Serrin, Arch. Ration. Mech. Anal. 43 (1971) 319–320.

http://refhub.elsevier.com/S1631-073X(18)30126-2/bib4656s1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib4656s1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib46474Bs1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib474Cs1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib474E4Es1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib4B50s1
https://doi.org/10.1080/17476933.2017.1410798
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib50s1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib506574657273656Es1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib526F73s1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib53657272696Es1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib53s1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib53s1
http://refhub.elsevier.com/S1631-073X(18)30126-2/bib5765696E626572676572s1

	A Serrin-type symmetry result on model manifolds: An extension of the Weinberger argument
	1 Preliminaries and statement of the result
	2 Explicit computations towards the proof of Theorem 3
	3 Proof of Theorem 3
	Acknowledgements
	References


