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We study the central limit theorem in the non-normal domain of attraction to symmetric 
α-stable laws for 0 < α ≤ 2. We show that for i.i.d. random variables Xi , the convergence 
rate in L∞ of both the densities and distributions of 

∑n
i Xi/(n1/α L(n)) is at best 

logarithmic if L is a non-trivial slowly varying function. Asymptotic laws for several 
physical processes have been derived using convergence of 

∑n
i=1 Xi/

√
n log n to Gaussian 

distributions. Our result implies that such asymptotic laws are accurate only for exponen-
tially large n.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous étudions le théorème central limite dans le domaine d’attraction non normal, vers 
des limites symétriques et α-stables, 0 < α ≤ 2. Nous montrons que, pour les suites Xi

i.i.d., les taux de convergence en L∞ des densités et des distributions de 
∑n

i Xi/(n1/α L(n))

sont au plus logarithmiques si L est une fonction non triviale de variation lente. Plusieurs 
lois physiques asymptotiques sont basées sur la convergence des suites 

∑n
i=1 Xi/

√
n log n

vers des distributions gaussiennes. Nos résultats montrent que ces lois ne sont précises que 
pour n d’une grandeur exponentielle.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the kinetic theory of gases and related areas, there are a number of limit laws that involve logarithmic scaling. Our 
interest in the subject was initiated by Börgers et al. [2], where we studied the evolution of free molecular flow in a 
region bounded by parallel plates with Maxwellian reflection on the boundaries. Using probabilistic methods, we showed 
that in the limit of vanishing gap height, diffusion occurs on the “anomalous” time scale 1/(h| log h|), where h is the 
properly non-dimensionalized separation of the plates. More recently, Chumley et al. [5] have obtained diffusion results, 
both standard and anomalous, for related kinetic problems in a very broad class of geometries. Anomalous diffusion results 
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involving logarithmic scaling have also been obtained for Birkhoff sums in the stadium billiard problem [1], for diffusion in 
a Lorentz gas [7], for iterations of certain one-dimensional maps [8, page 88, remark 2], and in two-dimensional turbulence 
models [9].

In the research cited above, at the core of the results are central limit theorems for random variables of infinite variance. 
The limiting distributions are Gaussian, as in the classical central limit theorem, but the infinite variance of the summands 
necessitates scaling by 

√
n log n instead of 

√
n. The summands are independent and identically distributed, or, in the deter-

ministic problems, have asymptotically vanishing correlations. The log term in the diffusion time scale is a consequence of 
the logarithmic scaling in the central limit theorem.

Here we consider, more generally, central limit theorems for random variables with infinite variance in which the limiting 
distribution is symmetric and α-stable, with 0 < α ≤ 2 [4,15]; see [13] for an extensive bibliography on stable distributions 
and applications. We consider summands outside the normal domain of attraction; that is, we assume scaling not by n1/α

but by n1/α L(n), where L is a slowly varying function such that L(n) tends to 0 or to ∞ as n → ∞. In the examples 
discussed earlier, α = 2 and L(n) = √

log n.
A natural question is how long must one wait in order for the asymptotic result to provide a good approximation of the 

physical phenomenon being modeled. We will not attempt to review the considerable body of literature concerning rates of 
convergence inside the normal domain of attraction here. In this paper, we use a scaling argument to prove that convergence 
of the distribution and density functions in L∞ is always slow outside the normal domain of attraction. We show that the 
rate of convergence cannot be better than inverse logarithmic. Hence any approximation based on a central limit theorem 
outside the normal domain of attraction of a stable distribution will be accurate only for an exponentially large number of 
summands.

The rates of convergence in central limit theorems depend critically on the shapes of the distributions and the corre-
sponding scalings of the partial sums. The main results in this paper provide general best-case bounds on the rates of 
convergence. There are several results providing exact rates of convergence for special families of distributions and scal-
ings outside the normal domain of attraction; see for instance Juozulynas and Paulauskas [10], Kuske and Keller [11], and 
Nándori [12]. We conclude this paper with an example of a family of random variables which have an O (log(log n))/ log n
rate of convergence under a natural scaling and the improved O (1/ log n) rate of convergence under an alternative scal-
ing.

We note that Cristadoro et al. [6] gave an analysis, supported by numerical simulations, of anomalous diffusion in the 
Lorentz gas, and found slow convergence to the limiting distribution.

2. Results

The two theorems in this paper demonstrate that rates of convergence outside the normal domain of attraction, with 
scaling n1/α L(n), are at best of order 1 − L(n)/L(2n). The proposition following the theorems makes clear why we call this 
convergence slow and “at best logarithmic.”

The first theorem provides a best-case bound on the rate of convergence of the error as measured by the Kolmogorov 
metric [14], d, which is defined as follows. Let X, Y be random variables, with corresponding distribution functions F X , FY . 
The Kolmogorov distance between X and Y is

d(X, Y ) = ‖F X − FY ‖∞.

The proof of Theorem 1 relies on subadditivity properties of the Kolmogorov distance [3, Section 4.2]. We recall these 
properties in the following two lemmas.

Lemma 1. Let X, Y , and Z be random variables, and assume that Z is independent of X and of Y . Then

d(X + Z , Y + Z) ≤ d(X, Y ).

Proof. The distribution function of X + Z is given by the Lebesgue–Stieltjes integral

F X+Z (s) =
∞∫

−∞
F X (s − z)dF Z (z),

and similarly

FY +Z (s) =
∞∫

FY (s − z)dF Z (z).
−∞
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Hence,

d(X + Z , Y + Z) = sup
s∈R

|F X+Z (s) − FY +Z (s)|

= sup
s∈R

∣∣∣∣∣∣
∞∫

−∞
F X (s − z)dF Z (z) −

∞∫
−∞

FY (s − z)dF Z (z)

∣∣∣∣∣∣
≤ sup

s∈R

∞∫
−∞

|F X (s − z) − FY (s − z)| dF Z (z)

≤
∞∫

−∞
sup
s∈R

|F X (s − z) − FY (s − z)| dF Z (z)

=
∞∫

−∞
d(X, Y )dF Z (z) = d(X, Y ). �

Lemma 2. Let (X1, Y1) and (X2, Y2) be independent pairs of random variables. Then

d(X1 + X2, Y1 + Y2) ≤ d(X1, Y1) + d(X2, Y2).

Proof. By the triangle inequality and Lemma 1, we have

d(X1 + X2, Y1 + Y2) ≤ d(X1 + X2, Y1 + X2) + d(Y1 + X2, Y1 + Y2)

≤ d(X1, Y1) + d(X2, Y2). �
Before stating and proving our theorems, we introduce some notation that we will use in the rest of this paper. When 

G is the distribution function of a random variable X and a ∈ R, we denote by TaG the distribution function of the scaled 
random variable aX , so

TaG(x) = G(x/a).

Similarly, if q is the density function of X , we denote by τaq the density function of aX , so

τaq(x) = (1/a)q(x/a).

Theorem 1. Let X1, X2, . . . be a sequence of independent, identically distributed, random variables. Denote by Sn the sum Sn =∑n
i=1 Xi . Assume that for some α, 0 < α ≤ 2,

Sn

n1/α L(n)
=⇒ Z ,

where Z is symmetric and α-stable with distribution function F , L is a slowly varying function, and the symbol ⇒ denotes convergence 
in distribution. Denote by Fn the distribution function

Fn(x) = P

(
Sn

n1/α L(n)
≤ x

)
.

Then for all C < 1 and z ∈ R,

2‖Fn − F‖∞ + ‖F2n − F‖∞ ≥ C
∣∣zF ′(z)

∣∣ ∣∣∣∣1 − L(n)

L(2n)

∣∣∣∣ .
Hence, provided L(n) �= L(2n) for all sufficiently large n,

lim sup
n→∞

‖Fn − F‖∞
|1 − L(n)/L(2n)| > 0 or lim sup

n→∞
‖F2n − F‖∞

|1 − L(n)/L(2n)| > 0.
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Proof. Define S̃n = ∑2n
i=n+1 Xi and let Z1, Z2 be independent copies of Z . From Lemma 2 and the α-stability and symmetry 

of Z , we have that

∥∥T L(2n)/L(n) F2n − F
∥∥∞ = d

(
L(2n)

L(n)

S2n

(2n)1/α L(2n)
, Z

)

= d

(
Sn

(2n)1/α L(n)
+ S̃n

(2n)1/α L(n)
,

Z1

21/α
+ Z2

21/α

)

≤ 2d

(
Sn

(2n)1/α L(n)
,

Z

21/α

)

= 2d

(
Sn

n1/α L(n)
, Z

)
= 2‖Fn − F‖∞ . (1)

On the other hand,

‖T L(2n)/L(n) F2n − T L(2n)/L(n) F‖∞ = ‖F2n − F‖∞. (2)

Let C < 1 and z ∈ R. Using (1) and (2), then the triangle inequality and the smoothness of F ,

2‖Fn − F‖∞ + ‖F2n − F‖∞ ≥ ∥∥T L(2n)/L(n) F2n − F
∥∥∞ + ‖T L(2n)/L(n) F2n − T L(2n)/L(n) F‖∞

≥ ∥∥T L(2n)/L(n) F − F
∥∥∞

= sup
x∈R

∣∣∣∣F

(
L(n)

L(2n)
x

)
− F (x)

∣∣∣∣
≥

∣∣∣∣F

(
L(n)

L(2n)
z

)
− F (z)

∣∣∣∣
=

∣∣∣∣∣F ′(z)

(
L(n)

L(2n)
− 1

)
z + O

(
L(n)

L(2n)
− 1

)2
∣∣∣∣∣

≥ C |zF ′(z)|
∣∣∣∣1 − L(n)

L(2n)

∣∣∣∣
for all sufficiently large n, as claimed. �

A similar argument shows slow convergence of the density functions.

Theorem 2. Let X1, X2, . . . be a sequence of independent random variables with a common density. Denote by Sn the sum Sn =∑n
i=1 Xi . Denote by ρn the density of Sn/(n1/α L(n)), where 0 < α ≤ 2 and L is slowly varying. Assume that there is a symmetric and 

α-stable random variable Z with density ρ such that ‖ρn − ρ‖∞ → 0 as n → ∞. Then for all C < 1 and z ∈ R,

2(α+1)/α ‖ρn − ρ‖∞ + ‖ρ2n − ρ‖∞ ≥ C
∣∣zρ ′(z) + ρ(z)

∣∣ ∣∣∣∣1 − L(n)

L(2n)

∣∣∣∣ (3)

for all sufficiently large n. Hence, provided L(n) �= L(2n) for all sufficiently large n,

lim sup
n→∞

‖ρn − ρ‖∞
|1 − L(n)/L(2n)| > 0 or lim sup

n→∞
‖ρ2n − ρ‖∞

|1 − L(n)/L(2n)| > 0. (4)

Proof. From the α-stability of Z , we have that ρ = τ2−1/αρ∗τ2−1/αρ . As earlier, we write S̃n = ∑2n
i=n+1 Xi . Since τL(2n)/L(n)ρ2n

is the density of

L(2n)

L(n)

S2n

(2n)1/α L(2n)
= 2−1/α Sn

n1/α L(n)
+ 2−1/α S̃n

n1/α L(n)
,

we have that∥∥τL(2n)/L(n)ρ2n − ρ
∥∥∞ = ∥∥τ2−1/αρn ∗ τ2−1/αρn − τ2−1/αρ ∗ τ2−1/αρ

∥∥∞
= 21/α ‖ρn ∗ ρn − ρ ∗ ρ‖∞
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≤ 21/α
(‖ρn ∗ ρn − ρn ∗ ρ‖∞ + ‖ρn ∗ ρ − ρ ∗ ρ‖∞

)
≤ 21/α

(‖ρn − ρ‖∞ + ‖ρn − ρ‖∞
)

= 2(α+1)/α ‖ρn − ρ‖∞ , (5)

since 
∫

ρ = ∫
ρn = 1. On the other hand,

∥∥τL(2n)/L(n)ρ2n − τL(2n)/L(n)ρ
∥∥∞ =

∣∣∣∣ L(n)

L(2n)

∣∣∣∣‖ρ2n − ρ‖∞ . (6)

Let z ∈R. Using (5) and (6), then the triangle inequality, and then the smoothness of ρ , we have

2(α+1)/α ‖ρn − ρ‖∞ +
∣∣∣∣ L(n)

L(2n)

∣∣∣∣‖ρ2n − ρ‖∞ (7)

≥∥∥τL(2n)/L(n)ρ2n − ρ
∥∥∞ + ∥∥τL(2n)/L(n)ρ2n − τL(2n)/L(n)ρ

∥∥∞
≥∥∥τL(2n)/L(n)ρ − ρ

∥∥∞

= sup
x∈R

∣∣∣∣ L(n)

L(2n)
ρ

(
L(n)

L(2n)
x

)
− ρ(x)

∣∣∣∣
≥

∣∣∣∣ L(n)

L(2n)
ρ

(
L(n)

L(2n)
z

)
− ρ(z)

∣∣∣∣
=

∣∣∣∣ L(n)

L(2n)
ρ

(
z +

(
L(n)

L(2n)
− 1

)
z

)
− ρ(z)

∣∣∣∣
=

∣∣∣∣∣
(

L(n)

L(2n)
− 1

)
ρ(z) + L(n)

L(2n)
ρ ′(z)

(
L(n)

L(2n)
− 1

)
z + O

(
L(n)

L(2n)
− 1

)2
∣∣∣∣∣

= ∣∣zρ ′(z) + ρ(z)
∣∣ ∣∣∣∣1 − L(n)

L(2n)

∣∣∣∣ + O

(
1 − L(n)

L(2n)

)2

.

This implies the estimate (3); note that the factor of |L(n)/L(2n)| appearing in (7) becomes irrelevant in the limit as n → 1, 
as its limit equals 1. This in turn implies eq. (4) because zρ ′(z) +ρ(z) is not identically zero, as ρ is not a constant multiple 
of 1/z. �

As discussed earlier, scaling by 
√

n log n is frequently encountered in the literature. As an example of an application of 
the above theorems, we state the bounds on rates of convergence for a generalization of this scaling.

Corollary. Let X1, X2, . . . be a sequence of independent, identically distributed, random variables. Denote by Sn the sum Sn = ∑n
i=1 Xi , 

and by Fn and ρn the distribution and density, respectively, of Sn/ 
(
n1/α (log n)r), for some α with 0 < α ≤ 2 and r > 0. Let F and ρ

be symmetric, α-stable distribution and density functions. Then

lim sup
n→∞

log n‖Fn − F‖∞ > 0

and

lim sup
n→∞

log n‖ρn − ρ‖∞ > 0.

Proof. This follows immediately from the two theorems above, since

lim
n→∞ log n

(
1 −

(
log n

log(2n)

)r)
= r log 2. �

The following proposition makes clear why we characterize the rates of convergence in the two theorems as being “at 
best logarithmic.”

Proposition. Let L be a slowly varying function such that L(x) → ∞ or L(x) → 0 as x → ∞. Then for any ε > 0,

lim sup
n→∞

(log n)1+ε

∣∣∣∣1 − L(n)

L(2n)

∣∣∣∣ = ∞. (8)
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Proof. Assume first that L(x) → ∞ as x → ∞. Then for all integers n ≥ 1, K ≥ 1,

K−1∑
k=0

log
L
(
2kn

)
L
(
2k+1n

) = log L (n) − log L
(

2K n
)

. (9)

Since, for fixed n, log L 
(
2K n

) → ∞ as K → ∞, the sum on the left-hand side of (9) goes to negative infinity. Hence, the 
series tends to infinity absolutely, and we have, for all n ≥ 1,

∞∑
k=0

∣∣∣∣∣log
L
(
2kn

)
L
(
2k+1n

)
∣∣∣∣∣ = ∞.

Since L is slowly varying, L 
(
2kn

)
/L 

(
2k+1n

) → 1 as k → ∞. It follows that

∞∑
k=0

∣∣∣∣∣1 − L
(
2kn

)
L
(
2k+1n

)
∣∣∣∣∣ = ∞. (10)

Now assume that eq. (8) is false. Then for some ε > 0, C > 0, and all n ≥ 2,∣∣∣∣1 − L(n)

L(2n)

∣∣∣∣ ≤ C

(log n)1+ε
.

Then

∞∑
k=0

∣∣∣∣∣1 − L
(
2kn

)
L
(
2k+1n

)
∣∣∣∣∣ ≤

∞∑
k=0

C(
log

(
2kn

))1+ε
=

∞∑
k=0

C

(k log 2 + log n)1+ε
< ∞,

which contradicts eq. (10) and thereby establishes eq. (8) for L(x) → ∞.
Now assume that L(x) → 0 as x → ∞. Set L(x) = 1/L(x). Then L is slowly varying and L(x) → ∞ as x → ∞. Hence,

∞ = lim sup
n→∞

(log n)1+ε

∣∣∣∣1 − L(n)

L(2n)

∣∣∣∣
= lim sup

n→∞
(log n)1+ε

∣∣∣∣1 − L(2n)

L(n)

∣∣∣∣
= lim sup

n→∞
(log n)1+ε

∣∣∣∣1 − L(n)

L(2n)

∣∣∣∣ .
The second equality follows from

lim
n→∞

L(2n)/L(n) − 1

L(n)/L(2n) − 1
= lim

n→∞

(
−L(2n)

L(n)

)
= −1. �

Note that the hypotheses of the proposition do not imply (8) for ε = 0. For example, in the canonical case discussed 
above, L(n) = √

log n, we find

lim
n→∞ log n

∣∣∣∣1 − L(n)

L(2n)

∣∣∣∣ = lim
n→∞ log n

(
1 −

√
log(n)

log(2n)

)
= log 2

2
.

As discussed earlier, our theorems are only best-case estimates. The precise rates of convergence depend on the slowly 
varying functions in the scalings. As an example, fix a constant A > 0 and consider a sequence X1, X2, . . . of identically 
distributed random variables which have a common smooth, symmetric density function, which for large |x| is equal to 
A/(2|x|3). Denote by qn the density of∑n

i=1 Xi

h(n)
,

where the function h is defined by h2 = n log h and limn→∞ h(n) = ∞, and by ρ the Gaussian density with mean 0 and 
variance A. Kuske and Keller [11] proved that ‖qn − ρ‖∞ = O  (1/ log n). However, consider the natural scaling 

√
(n log n)/2

and denote by ρn the density of∑n
i=1 Xi√

(n log n)/2
.
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Then it can be shown that the convergence of the scaled partial sums deteriorates slightly, namely we have

c
log log n

logn
≤ ‖ρn − ρ‖∞ ≤ C

log log n

log n

with 0 < c < C < ∞. This follows from the fact that h(n) = (1 + cn)
√

(n log n)/2, with cn asymptotic to log log n/(2 log n). 
We note that Nándori [12, Theorem 1] proved an analogous result for a random walk on a lattice, with the same rate of 
convergence.

Acknowledgements

We are grateful to Gérard Ben Arous for very helpful suggestions. The second author thanks the Courant Institute for 
hosting him during the 2017/2018 academic year as a Visiting Scholar.

References

[1] P. Bálint, S. Gouëzel, Limit theorems in the stadium billiard, Commun. Math. Phys. 263 (2) (2006) 461–512.
[2] C. Börgers, C. Greengard, E. Thomann, The diffusion limit of free molecular flow in thin plane channels, SIAM J. Appl. Math. 52 (4) (1992) 1057–1075.
[3] M.V. Boutsikas, M.V. Koutras, Compound Poisson approximation for sums of dependent random variables, in: C.A. Charalambides, M.V. Koutras, N. 

Balakrishnan (Eds.), Probability and Statistical Models with Applications: A Volume in Honour of Prof. T. Cacoullos, 2001, pp. 63–86.
[4] G. Christoph, W. Wolf, Convergence Theorems with a Stable Limit Law, Akademie Verlag, Berlin, 1992.
[5] T. Chumley, R. Feres, H.-K. Zhang, Diffusivity in multiple scattering systems, Trans. Amer. Math. Soc. 368 (1) (2016) 109–148.
[6] G. Cristadoro, T. Gilbert, M. Lenci, D.P. Sanders, Measuring logarithmic corrections to normal diffusion in infinite-horizon billiards, Phys. Rev. E 90 (2) 

(2014) 022106.
[7] C.P. Dettmann, Diffusion in the Lorentz gas, Commun. Theor. Phys. 62 (4) (2014) 521–540.
[8] S. Gouëzel, Central limit theorem and stable laws for intermittent maps, Probab. Theory Relat. Fields 128 (1) (2004) 82–122.
[9] J. Jiménez, Algebraic probability density tails in decaying isotropic two-dimensional turbulence, J. Fluid Mech. 313 (1996) 223–240.

[10] A. Juozulynas, V. Paulauskas, Some remarks on the rate of convergence to stable laws, Lith. Math. J. 38 (4) (1998) 335–347.
[11] R. Kuske, J.B. Keller, Rate of convergence to a stable law, SIAM J. Appl. Math. 61 (4) (2001) 1308–1323.
[12] P. Nándori, Recurrence properties of a special type of heavy-tailed random walk, J. Stat. Phys. 142 (2) (2011) 342–355.
[13] J.P. Nolan, Bibliography on stable distributions, processes and related topics, http://fs2 .american .edu /jpnolan /www /stable /stable .html, 2017.
[14] S.T. Rachev, et al., The Methods of Distances in the Theory of Probability and Statistics, Springer Science & Business Media, 2013.
[15] V.M. Zolotarev, One-Dimensional Stable Distributions, Translations of Mathematical Monographs, vol. 65, American Mathematical Society, Providence, 

RI, USA, 1986; Nauka, 1983 (in Russian).

http://refhub.elsevier.com/S1631-073X(18)30127-4/bib62616C696E74323030366C696D6974s1
http://refhub.elsevier.com/S1631-073X(18)30127-4/bib626F726765727331393932646966667573696F6Es1
http://refhub.elsevier.com/S1631-073X(18)30127-4/bib626F757473696B617332303031636F6D706F756E64s1
http://refhub.elsevier.com/S1631-073X(18)30127-4/bib626F757473696B617332303031636F6D706F756E64s1
http://refhub.elsevier.com/S1631-073X(18)30127-4/bib4368726973746F7068576F6C66s1
http://refhub.elsevier.com/S1631-073X(18)30127-4/bib6368756D6C6579323031366469666675736976697479s1
http://refhub.elsevier.com/S1631-073X(18)30127-4/bib637269737461646F726F323031346D6561737572696E67s1
http://refhub.elsevier.com/S1631-073X(18)30127-4/bib637269737461646F726F323031346D6561737572696E67s1
http://refhub.elsevier.com/S1631-073X(18)30127-4/bib646574746D616E6E32303134646966667573696F6Es1
http://refhub.elsevier.com/S1631-073X(18)30127-4/bib676F75657A656C3230303463656E7472616Cs1
http://refhub.elsevier.com/S1631-073X(18)30127-4/bib6A696D656E657A31393936616C67656272616963s1
http://refhub.elsevier.com/S1631-073X(18)30127-4/bib6A756F7A756C796E617331393938736F6D65s1
http://refhub.elsevier.com/S1631-073X(18)30127-4/bib6B656C6C65723230303172617465s1
http://refhub.elsevier.com/S1631-073X(18)30127-4/bib6E616E646F726932303131726563757272656E6365s1
http://fs2.american.edu/jpnolan/www/stable/stable.html
http://refhub.elsevier.com/S1631-073X(18)30127-4/bib5261636865766574616Cs1
http://refhub.elsevier.com/S1631-073X(18)30127-4/bib5A6F6C6Fs1
http://refhub.elsevier.com/S1631-073X(18)30127-4/bib5A6F6C6Fs1

	Slow convergence in generalized central limit theorems
	1 Introduction
	2 Results
	Acknowledgements
	References


