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In this paper, we are concerned with the existence of periodic solutions for a class 
of damped vibration problems. By introducing some new kinds of superquadratic and 
asymptotically quadratic conditions, and making use of the generalized mountain pass 
theorem in critical point theory, we propose a unified approach when the potential 
function F (t, x) exhibits either an asymptotically quadratic or a superquadratic behavior 
at infinity, and establish some sufficient conditions on periodic solutions, which extend 
and improve some recent results in the literature, even without damped vibration term.
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Nous nous intéressons ici à l’existence de solutions périodiques pour une classe de 
problèmes de vibration amortie. Nous introduisons de nouvelles conditions de quadraticité 
asymptotique et de super-quadraticité, et nous utilisons un théorème du col généralisé 
de la théorie des points critiques. Ainsi, nous proposons une approche unifiée lorsque la 
fonction potentiel F (t, x) présente un comportement quadratique asymptotique ou super-
quadratique à l’infini, et nous établissons des conditions suffisantes pour l’existence de 
solutions périodiques, ce qui étend et améliore plusieurs résultats récents, même en 
l’absence du terme de vibration amortie.
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1. Introduction and main results

Consider the damped vibration problem{
ü(t) + q(t)u̇ + ∇ F (t, u(t)) = 0, a.e. t ∈ [0, T ],
u(0) − u(T ) = u̇(0) − u̇(T ) = 0,

(1.1)

where T > 0, q ∈ L1(0, T ; R), 
∫ T

0 q(t)dt = 0 and F : [0, T ] ×R
N → R satisfies the following assumption:

(A) F (t, x) is measurable in t for every x ∈ R
N and continuously differentiable in x for a.e. t ∈ [0, T ], and there exist a ∈

C(R+, R+), b ∈ L1(0, T ; R+) such that

|F (t, x)| ≤ a(|x|)b(t), |∇ F (t, x)| ≤ a(|x|)b(t)

for all x ∈R
N and a.e. t ∈ [0, T ].

When q(t) ≡ 0, (1.1) reduces to the following classical second order non-autonomous Hamiltonian systems{
ü(t) + ∇ F (t, u(t)) = 0, a.e. t ∈ [0, T ],
u(0) − u(T ) = u̇(0) − u̇(T ) = 0.

(1.2)

Using the variational methods, many existence results are obtained under suitable conditions, we refer the reader to [2–5,
7–11,13,15–17,19–21,23] and the references therein. In 1978, Rabinowitz [10] obtained periodic solutions under the follow-
ing well-known Ambrosetti–Rabinowitz condition (AR-condition): there exist μ > 2 and L1 > 0 such that

0 < μF (t, x) ≤ (∇ F (t, x), x) ∀|x| ≥ L1 and for a.e. t ∈ [0, T ], (AR-condition)

where (·, ·) is the usual inner product of RN . Since then, this condition has been used widely to deal with the existence of 
periodic solutions to problem (1.2), see [3,8,11] and the references therein.

Recently, many authors have devoted to weaken the AR-condition, some existence and multiplicity of results on periodic 
solutions to problem (1.2) have also been obtained under weaker conditions, see [4,7,9,13,15,16,19–24]. Particularly, in 
2002, Fei [4] studied the existence of periodic solutions to problem (1.2) under non-quadratic conditions and established 
the following result.

Theorem A. Suppose that F satisfies assumption (A) and the following conditions:

(S1) F (t, x) ≥ 0 ∀(t, x) ∈ [0, T ] ×R
N;

(S2) lim|x|→0
F (t,x)
|x|2 = 0 uniformly for a.e. t ∈ [0, T ];

(S3) lim|x|→+∞ F (t,x)
|x|2 = +∞ uniformly for a.e. t ∈ [0, T ];

(S4) lim sup|x|→+∞ F (t,x)
|x|r ≤ M < +∞ uniformly for some M > 0 and a.e. t ∈ [0, T ];

(S5) lim inf|x|→+∞ (∇ F (t,x),x)−2F (t,x)
|x|μ ≥ � > 0 uniformly for some � > 0 and a.e. t ∈ [0, T ],

where r > 2 and μ ≥ r − 1. Then problem (1.2) has at least one non-constant periodic solution.

Subsequently, Tao and Tang [15] extended Theorem A and got the following theorem.

Theorem B. Suppose that F satisfies assumptions (A), (S1), (S4), (S5) with r > 2 and μ > r − 2, and the following conditions:

(S∗
2) lim sup|x|→0

F (t,x)
|x|2 < 1

2 ω2 uniformly for a.e. t ∈ [0, T ];
(S∗

3) lim inf|x|→+∞ F (t,x)
|x|2 > 1

2 ω2 uniformly for a.e. t ∈ [0, T ],

where ω = 2π/T . Then problem (1.2) has at least one non-constant periodic solution.

For the asymptotically quadratic case, applying generalized mountain pass theorem and some techniques of analysis, Ma 
and Zhang [7] have proved that problem (1.2) has at least one non-constant periodic solution. Concretely speaking, they 
proved the following theorems.

Theorem C. Suppose that F satisfies assumptions (A), (S1), (S∗
2), (S∗

3) and the following conditions:

(S∗) lim sup|x|→+∞ F (t,x)
2 ≤ M < +∞ uniformly for some M > 0 and a.e. t ∈ [0, T ];
4 |x|
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(S6) there exists γ ∈ L1(0, T ; R+) such that

(∇ F (t, x), x) − 2F (t, x) ≥ γ (t) for all x ∈R
N and a.e. t ∈ [0, T ];

(S7) lim|x|→+∞[(∇ F (t, x), x) − 2F (t, x)] = +∞ uniformly for a.e. t ∈ [0, T ].

Then problem (1.2) has at least one non-constant periodic solution.

Theorem D. Suppose that F satisfies assumptions (A), (S1), (S∗
2)–(S∗

4) and the following conditions:

(S∗
6) there exists γ ∈ L1(0, T ; R+) such that

(∇ F (t, x), x) − 2F (t, x) ≤ γ (t) for all x ∈R
N and a.e. t ∈ [0, T ];

(S∗
7) lim|x|→+∞[(∇ F (t, x), x) − 2F (t, x)] = −∞ uniformly for a.e. t ∈ [0, T ].

Then problem (1.2) has at least one non-constant periodic solution.

Motivated by the results of [4,7,15,17–19], in present paper, on the one hand, employing the generalized mountain pass 
theorem, we will focus on the existence of non-constant periodic solutions to a more general damped vibration problem 
(1.1) under some new kinds of superquadratic and asymptotically quadratic conditions. On the other hand, it is worth 
noticing that the different techniques are usually used to ensure the compact conditions for the asymptotically quadratic 
case and superquadratic case, just like the methods of [7,22,23]. Here, in this paper, we will propose a unified approach 
when the potential function F (t, x) exhibits either an asymptotically quadratic or a superquadratic behavior. We stress that 
our results are all new even without damped vibration term. For the sake of convenience, we set

Q (t) =
t∫

0

q(s)ds, A1 = max
t∈[0,T ] eQ (t), A2 = min

t∈[0,T ] eQ (t).

Now, we can state our main results.

Theorem 1.1. Suppose that F satisfies assumption (A) and the following conditions:

(F1)
∫ T

0 eQ (t) F (t, x)dt ≥ 0 ∀(t, x) ∈ [0, T ] ×R
N;

(F2) lim sup|x|→0 eQ (t) F (t,x)
|x|2 < 1

2 A2ω
2 uniformly for a.e. t ∈ [0, T ];

(F3) lim inf|x|→+∞ eQ (t) F (t,x)
|x|2 > 1

2 A1ω
2 uniformly for a.e. t ∈ [0, T ];

(F4) lim sup|x|→+∞ eQ (t) F (t,x)
|x|r ≤ M < +∞ uniformly for some M > 0 and a.e. t ∈ [0, T ], where r > 2;

(F5) there exist M1 > 0, μ > r − 2 and k1 ∈ C(R+, R+) with lim|x|→+∞ k1(|x|)|x|μ+2−r = +∞, lim|x|→+∞ kr/μ
1 (|x|)|x|2 = +∞

and k1(z) is non-increasing in z for all z ∈R
+ , such that

eQ (t)[(∇ F (t, x), x) − 2F (t, x)] ≥ k1(|x|)|x|μ ∀x ∈R
N, |x| ≥ M1 and for a.e. t ∈ [0, T ].

Then problem (1.1) has at least one non-constant periodic solution.

Remark 1.2. In contrast to Theorem A and Theorem B, the main contributions of Theorem 1.1 are in three aspects. In 
the first place, we consider more general damped vibration systems (1.1) than second-order non-autonomous Hamiltonian 
systems (1.2). There is one more point that I should touch on, that (F1) is weaker than (S1) even if q(t) ≡ 0. Last but not 
the least, condition (F5) covers the case of assumption (S5) with μ > r − 2. In fact, we only need to put k1(|x|) = � > 0, 
q(t) = 0 and M1 large enough. Meanwhile, we emphasis that k1(z) permits to be zero at infinity, which means that (F5) is 
much more general than (S5). Therefore, Theorem 1.1 significantly unifies and generalizes upon Theorem A and Theorem B.

Theorem 1.3. Suppose that F satisfies assumptions (A), (F1)–(F3) and the following condition:

(F6) there exist M2 > 0, θ ≥ 1, k2 ∈ C(R+, R+) with lim|x|→+∞ k2(|x|) = +∞ and k2(z)/z2θ is non-increasing in z for all z ∈ R
+ , 

such that

eQ (t)[(∇ F (t, x), x) − 2F (t, x)] ≥ k2(|x|)
(

F (t, x)

|x|2
)θ

∀x ∈ R
N, |x| ≥ M2 and for a.e. t ∈ [0, T ].

Then problem (1.1) has at least one non-constant periodic solution.



600 Z. Wang, J. Zhang / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 597–612
Remark 1.4. (a) Even if q(t) ≡ 0, condition (F6) still seems a new superquadratic growth condition, which generalizes con-
ditions (S4) and (S5) with μ > r − 2 when (H1) holds. We will follow two steps to demonstrate this claim.

Step 1. We confirm that (H1), (S4) and (S5) could imply μ ≤ r. It follows from (S4) that there exists d1 > 0 such that

F (t, x) ≤ M|x|r ∀x ∈R
N, |x| ≥ d1 and for a.e. t ∈ [0, T ]. (1.3)

By (S5), we can choose d2 > 0 such that

(∇ F (t, x), x) − 2F (t, x) ≥ �|x|μ ∀x ∈R
N, |x| ≥ d2 and for a.e. t ∈ [0, T ]. (1.4)

Let d3 := max{d1, d2}; taking account of (1.3), (1.4) and (H1), we infer that

M|x|r ≥ F (t, x)

=
1∫

0

1

s
(∇ F (t, sx), sx)ds + F (t,0)

≥
1∫

0

1

s
[�|sx|μ + 2F (t, sx)]ds

≥ 1

μ
�|x|μ ∀x ∈R

N, |x| ≥ d3 and for a.e. t ∈ [0, T ],
which implies that μ ≤ r.

Step 2. We claim that (H1), (S4) and (S5) with μ > r − 2 could imply (F6) with q(t) = 0. In fact, let M1 := max{d1, d2, d3}, 
by (1.3), (H1) and (S5) with μ > r − 2, one has

(∇ F (t, x), x) − 2F (t, x) ≥ �|x|μ+2−r |x|r
|x|2 ≥ �

M
|x|μ+2−r F (t, x)

|x|2
for all x ∈ R

N, |x| ≥ M1, a.e. t ∈ [0, T ]. Take θ = 1, k2(|x|) = �|x|μ+2−r/M , noticing μ > r − 2, then lim|x|→+∞ k2(|x|) = +∞, 
and k2(|x|)/|x|2 = �|x|μ−r/M is non-increasing on R+ by Step 1. Therefore, (F6) with q(t) = 0 holds.

(b) From (a), it is not difficult to see that Theorem 1.3 greatly extends Theorem A and Theorem B. Here, we should point 
out that Zhang and Tang in [24] have introduced the following new non-quadratic condition:

(Z T ) there exist M2 > 0, ξ > 0, η > 0 and ν ∈ [0, 2) such that(
2 + 1

ξ + η|x|ν
)

F (t, x) ≤ (∇ F (t, x), x) ∀x ∈R
N, |x| ≥ M2 and for a.e. t ∈ [0, T ].

It is clear that this new non-quadratic condition (Z T ) is a special case of assumption (F6) with k2(|x|) = |x|2
ξ+η|x|ν , q(t) = 0

and θ = 1.

Theorem 1.5. Suppose that F satisfies assumptions (A), (F1)–(F3) and the following condition:

(F7) there exist M3 > 0, σ ≥ 1, k3 ∈ C(R+, R+) with lim|x|→+∞ k3(|x|) = +∞ and k3(z)/zσ is non-increasing in z for all z ∈ R
+

such that

eQ (t)[(∇ F (t, x), x) − 2F (t, x)] ≥ k3(|x|)
( |∇ F (t, x)|

|x|
)σ

∀x ∈R
N, |x| ≥ M3 and for a.e. t ∈ [0, T ].

Then problem (1.1) has at least one non-constant periodic solution.

Remark 1.6. When q(t) ≡ 0 and σ > 1, condition (F7) was originally due to [19]. In [19], using the new saddle point 
theorem established by Schechter [12], the authors have investigated the existence of T -periodic solutions to problem (1.2)
when the potential function F (t, x) is either locally in t asymptotically quadratic or locally in t superquadratic; meanwhile, 
Theorem 1.5 will be proved with the aid of the generalized mountain pass theorem, and we will obtain the non-constant 
periodic solution under different conditions from that of [19]. Thus, Theorem 1.5 is a new result.

From Theorem 1.1, Theorem 1.3 and Theorem 1.5, for the asymptotically quadratic case, we have the following results.
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Corollary 1.7. Suppose that F satisfies assumptions (A), (F1)–(F3) and the following conditions:

(F ∗
4) lim sup|x|→+∞ eQ (t) F (t,x)

|x|2 ≤ M < +∞ uniformly for some M > 0 and a.e. t ∈ [0, T ];
(F ∗

5) there exist M1 > 0, μ > 0, k1 ∈ C(R+, R+) with lim|x|→+∞ k1(|x|)|x|μ = +∞, lim|x|→+∞ k2/μ
1 (|x|)|x|2 = +∞ and k1(z) is 

non-increasing in z for all z ∈ R
+ , such that

eQ (t)[(∇ F (t, x), x) − 2F (t, x)] ≥ k1(|x|)|x|μ ∀x ∈R
N, |x| ≥ M1 and for a.e. t ∈ [0, T ].

Then problem (1.1) has at least one non-constant periodic solution.

Remark 1.8. Corollary 1.7 itself is a meaningful outcome. Comparing Corollary 1.7 with Theorem C, we obtain the same 
conclusion under assumption (F ∗

5 ), which is slightly stronger than condition (S7), while Corollary 1.7 does not require 
assumption (S6). So, Corollary 1.7 can be viewed as a useful complement to Theorem C.

Corollary 1.9. Suppose that F satisfies assumptions (A), (F1)–(F3), (F ∗
4) and the following condition:

(F ∗∗
5 ) there exist M1 > 0, μ > 0, k1 ∈ C(R+, R+) with lim|x|→+∞ k1(|x|)|x|μ = +∞, lim|x|→+∞ k2/μ

1 (|x|)|x|2 = +∞ and k1(z) is 
non-increasing in z for all z ∈ R

+ , such that

eQ (t)[(∇ F (t, x), x) − 2F (t, x)] ≤ −k1(|x|)|x|μ ∀x ∈R
N, |x| ≥ M1 and for a.e. t ∈ [0, T ].

Then problem (1.1) has at least one non-constant periodic solution.

Corollary 1.10. Suppose that F satisfies assumptions (A), (F1)–(F3), (F ∗
4) and the following condition:

(F ∗
6) there exist M2 > 0, θ ≥ 1, k2 ∈ C(R+, R+) with lim|x|→+∞ k2(|x|) = +∞ and k2(z)/z2θ is non-increasing in z for all z ∈ R

+
such that

eQ (t)[(∇ F (t, x), x) − 2F (t, x)] ≥ k2(|x|) ∀x ∈R
N, |x| ≥ M2 and for a.e. t ∈ [0, T ].

Then problem (1.1) has at least one non-constant periodic solution.

Corollary 1.11. Suppose that F satisfies assumptions (A), (F1)–(F3), (F ∗
4 ) and the following condition:

(F ∗∗
6 ) there exist M2 > 0, θ ≥ 1, k2 ∈ C(R+, R+) with lim|x|→+∞ k2(|x|) = +∞ and k2(z)/z2θ is non-increasing in z for all z ∈ R

+
such that

eQ (t)[(∇ F (t, x), x) − 2F (t, x)] ≤ −k2(|x|) ∀x ∈R
N, |x| ≥ M2 and for a.e. t ∈ [0, T ].

Then problem (1.1) has at least one non-constant periodic solution.

Corollary 1.12. Suppose that F satisfies assumptions (A), (F1)–(F3) and the following conditions:

(F ∗∗
4 ) lim sup|x|→+∞ eQ (t) |∇ F (t,x)|

|x| ≤ M < +∞ uniformly for some M > 0 and a.e. t ∈ [0, T ];
(F ∗

7) there exist M3 > 0, σ ≥ 1, k3 ∈ C(R+, R+) with lim|x|→+∞ k3(|x|) = +∞ and k3(z)/zσ is non-increasing in z for all z ∈ R
+

such that

eQ (t)[(∇ F (t, x), x) − 2F (t, x)] ≥ k3(|x|) ∀x ∈R
N, |x| ≥ M3 and for a.e. t ∈ [0, T ].

Then problem (1.1) has at least one non-constant periodic solution.

Corollary 1.13. Suppose that F satisfies assumptions (A), (F1), (F2), (F ∗∗
4 ) and the following conditions:

(F ∗
3) lim inf|x|→+∞ eQ (t) (∇ F (t,x),x)

|x|2 > A1ω
2 uniformly for a.e. t ∈ [0, T ];

(F ∗∗
7 ) there exist M3 > 0, σ ≥ 1, k3 ∈ C(R+, R+) with lim|x|→+∞ k3(|x|) = +∞ and k3(z)/zσ is non-increasing in z for all z ∈ R

+
such that

eQ (t)[(∇ F (t, x), x) − 2F (t, x)] ≤ −k3(|x|) ∀x ∈R
N, |x| ≥ M3 and for a.e. t ∈ [0, T ].

Then problem (1.1) has at least one non-constant periodic solution.
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The remainder of this paper is organized as follows. In Section 2, some necessary notations and preliminaries are pre-
sented. In Section 3, we firstly observe that although the energy functional of problem (1.1) may possess an unbounded 
(PS) sequence (see Definition 2.1 below), we can prove that all (C) sequences (see Definition 2.1 below) of this functional 
are bounded (see Lemma 3.1 and Lemma 3.3 below), then we adopt the route of [15] to prove our main results by the 
generalized mountain pass theorem in [11]. Finally, in Section 4, we will give some examples to illustrate our results.

2. Preliminaries

Let

H1
T :=

{
u : [0, T ] → R

N| u is absolutely continuous , u(0) = u(T ), u̇ ∈ L2(0, T ;RN)
}

be a Hilbert space with the inner product

(u, v) :=
T∫

0

(u̇(t), v̇(t))dt +
T∫

0

(u(t), v(t))dt ∀u, v ∈ H1
T .

The corresponding norm is

‖u‖ :=
⎛⎝ T∫

0

|u̇(t)|2dt +
T∫

0

|u(t)|2dt

⎞⎠
1
2

∀u, v ∈ H1
T .

For u ∈ H1
T , let ū := 1

T

∫ T
0 u(t)dt, ũ(t) := u(t) − ū and H̃1

T be the subspace of H1
T given by H̃1

T := {u ∈ H1
T | ̄u = 0}. Then 

one has

‖̃u‖2∞ ≤ T

12
‖u̇‖2

L2 , (Sobolev’s inequality)

and

‖̃u‖2
L2 ≤ T 2

4π2
‖u̇‖2

L2 , (Wirtinger’s inequality)

where

‖u‖L2 :=
⎛⎝ T∫

0

|u(t)|2dt

⎞⎠
1
2

and ‖̃u‖∞ := max
t∈[0,T ] |̃u(t)|.

Since the embedding of H1
T into C(0, T ; RN) is compact, there exists d > 0 such that

‖u‖∞ ≤ d‖u‖ (2.1)

for all u ∈ H1
T .

Consider the functional ϕ : H1
T →R defined by

ϕ(u) := 1

2

T∫
0

eQ (t)|u̇(t)|2dt −
T∫

0

eQ (t) F (t, u(t))dt. (2.2)

Then ϕ is continuously differentiable on H1
T (see [8]). Moreover,

(ϕ′(u), v) =
T∫

0

eQ (t)(u̇(t), v̇(t))dt −
T∫

0

eQ (t)(∇ F (t, u(t)), v(t))dt (2.3)

for any u, v ∈ H1
T . It is well known that the periodic solutions to problem (1.1) correspond to the critical points of ϕ

(see [8]).

Definition 2.1. Let E be a real Banach space, we say that {un} in E is a Palais–Smale sequence ((PS) sequence) for ϕ if ϕ(un)

is bounded and ϕ′(un) → 0 as n → +∞. The functional ϕ ∈ C1(E, R) satisfies the Palais–Smale condition ((PS) condition) if 
any Palais–Smale sequence contains a convergent subsequence.
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Definition 2.2. Let E be a real Banach space, we say that {un} in E is a Cerami sequence ((C) sequence) for ϕ if ϕ(un) is 
bounded and ϕ′(un)(1 + ‖un‖) → 0 as n → +∞. The functional ϕ ∈ C1(E, R) satisfies the Cerami condition ((C) condition) 
if any Cerami sequence contains a convergent subsequence.

We shall use the following generalized mountain pass theorem to prove our results.

Theorem 2.3. Let E be a real Banach space with E = V ⊕ X, where V is finite dimensional. Suppose ϕ ∈ C1(E, R) satisfies the (PS) 
condition, and

(i) there exist ρ, α > 0 such that ϕ|∂ Bρ∩X ≥ α, where Bρ := {u ∈ E| ‖u‖ ≤ ρ}, ∂ Bρ denotes the boundary of Bρ ;

(ii) there exist e ∈ ∂ B1 ∩ X and s0 > ρ such that if Q ≡ (B̄s0 ∩ V ) ⊕ {se| 0 ≤ s ≤ s0}, then ϕ|∂ Q ≤ 0.
Then ϕ possesses a critical value c ≥ α which can be characterized as

c := inf
h∈�

max
u∈Q

ϕ(h(u)),

where � := {h ∈ C(Q̄ , E)| h = id on ∂ Q }, here, id denotes the identity operator.

Remark 2.4. As shown in [1], a deformation lemma can be proved with the weaker condition (C) replacing the usual (PS) 
condition, and it turns out that the generalized mountain pass theorem holds true under condition (C).

3. Proofs of main results

In this section, we start with some compactness conditions, which play crucial roles in establishing our results. For the 
sake of convenience, in the following, we will denote various positive constants as Ci , i = 1, 2, 3, · · · .

Lemma 3.1. Assume that (A), (F3)–(F5) hold, then the functional ϕ satisfies condition (C).

Proof. Assume that {un} is a (C) sequence of ϕ , then one has

ϕ(un) ≤ C1, ‖ϕ′(un)‖(H1
T )∗(1 + ‖un‖) ≤ C1, (3.1)

where (H1
T )∗ is the dual space of H1

T .
To begin with, by (F4), there exists M4 > 0 such that

eQ (t) F (t, x) ≤ M|x|r

for all |x| ≥ M4 and a.e. t ∈ [0, T ], which jointly with assumption (A) that

eQ (t) F (t, x) ≤ M|x|r + A1h1(t) (3.2)

for all x ∈R
N and a.e. t ∈ [0, T ], where h1(t) := max|x|≤M4 a(|x|)b(t) ≥ 0. It follows from (2.2), (3.1) and (3.2) that

C1 ≥ ϕ(un) = 1

2

T∫
0

eQ (t)|u̇n(t)|2dt −
T∫

0

eQ (t) F (t, un(t))dt

≥ 1

2
A2‖u̇n‖2

L2 − M

T∫
0

|un(t)|rdt − A1

T∫
0

h1(t)dt. (3.3)

On the other hand, by (F5), one has

eQ (t)[(∇ F (t, x), x) − 2F (t, x)] ≥ k1(|x|)|x|μ

for all |x| ≥ M1 and a.e. t ∈ [0, T ], which combining with assumption (A) yields

eQ (t)[(∇ F (t, x), x) − 2F (t, x)] ≥ k1(|x|)|x|μ − A1h2(t) (3.4)

for all x ∈ R
N and a.e. t ∈ [0, T ], where h2(t) := (2 + M1) max|x|≤M1 a(|x|)b(t) ≥ 0. It follows from (2.2), (2.3), (3.1) and (3.4)

that
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3C1 ≥ 2ϕ(un) − (ϕ′(un), un)

=
T∫

0

eQ (t)[(∇ F (t, un), un) − 2F (t, un)]dt

≥
T∫

0

k1(|un|)|un|μdt − A1

T∫
0

h2(t)dt

for all n ∈N. Hence, we have

T∫
0

k1(|un|)|un|μdt ≤ C2 (3.5)

for all n ∈N.
Next, we have to discuss two cases:

Case 1. μ > r. By (3.5), Hölder inequality and the properties of k1(z), one has

T∫
0

|un|rdt ≤ T
μ−r
μ

⎛⎝ T∫
0

|un|μdt

⎞⎠
r
μ

= T
μ−r
μ

⎡⎣ T∫
0

1

k1(|un|)k1(|un|)|un|μdt

⎤⎦
r
μ

≤ T
μ−r
μ

⎡⎣ T∫
0

1

k1(‖un‖∞)
k1(|un|)|un|μdt

⎤⎦
r
μ

≤ T
μ−r
μ

[
1

k1(d‖un‖)
] r

μ

⎡⎣ T∫
0

k1(|un|)|un|μdt

⎤⎦
r
μ

≤ C3

k
r
μ

1 (d‖un‖)
. (3.6)

Then, from (3.3) and (3.6), we have

C1 ≥ ϕ(un) ≥ 1

2
A2‖u̇n‖2

L2 − MC3

k
r
μ

1 (d‖un‖)
− A1

T∫
0

h1(t)dt. (3.7)

Case 2. μ ≤ r. By (2.1), (3.5) and the properties of k1(z), we deduce that

T∫
0

|un|rdt ≤ ‖un‖r−μ∞
T∫

0

|un|μdt

≤ dr−μ‖un‖r−μ

T∫
0

1

k1(|un|)k1(|un|)|un|μdt

≤ dr−μ‖un‖r−μ C2

k1(d‖un‖)
= C4

k1(d‖un‖)‖un‖r−μ,
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using (3.3), which implies

C1 ≥ ϕ(un) ≥ 1

2
A2‖u̇n‖2

L2 − MC4

k1(d‖un‖)‖un‖r−μ − A1

T∫
0

h1(t)dt. (3.8)

Finally, we claim that{un} is bounded; otherwise, going if necessary to a subsequence, we assume that ‖un‖ → +∞ as 
n → +∞. Set vn := un‖un‖ , then {vn} is bounded in H1

T . Hence, there exists a subsequence, again denoted by {vn}, such that

vn ⇀ v0 weakly in H1
T , (3.9)

vn → v0 strongly in C(0, T ;RN). (3.10)

Dividing both sides of (3.7) and (3.8) by ‖un‖2 respectively, using the properties of k1(z), we can find that

‖v̇n‖L2 → 0 as n → +∞. (3.11)

Hence, (3.11) always holds true whenever μ > r or μ ≤ r. So, it follows from (3.10) and (3.11) that

vn → v̄0 as n → +∞,

which implies that

v0 = v̄0 and T |v̄0|2 = ‖v̄0‖2 = 1.

Consequently,

|un(t)| → +∞ as n → +∞ uniformly for a.e. t ∈ [0, T ]. (3.12)

It follows from (F3) that there exists M5 > 0 such that

F (t, x) ≥ 0 ∀x ∈R
N, |x| ≥ M5 and for a.e. t ∈ [0, T ], (3.13)

which implies that

F (t, x) ≥ −h3(t) ∀x ∈ R
N, and for a.e. t ∈ [0, T ]

by assumption (A), where h3(t) := max|x|≤M5 a(|x|)b(t) ≥ 0. Denote �n := {t ∈ [0, T ]| |un(t) ≥ M5}, by (3.12), we have 
meas(�n) > 0. So, from (F3), (3.12), (3.13) and Fatou’s Lemma, we get

lim inf
n→+∞

∫ T
0 eQ (t) F (t, un(t))dt

‖un‖2
= lim inf

n→+∞

[∫
�n

eQ (t) F (t, un(t))dt

‖un‖2
+

∫
[0,T ]\�n

eQ (t) F (t, un(t))dt

‖un‖2

]

≥ lim inf
n→+∞

[∫
�n

eQ (t) F (t, un(t))dt

‖un‖2
− A2

∫ T
0 h3(t)dt

‖un‖2

]

≥
∫
�n

lim inf
n→+∞

eQ (t) F (t, un(t))

|un(t)|2 |vn(t)|2dt

=
∫
�n

lim inf|un(t)|→+∞
eQ (t) F (t, un(t))

|un(t)|2 |v̄0(t)|2dt

> 0. (3.14)

However, by (3.1) and (3.11), we have

lim inf
n→+∞

∫ T
0 eQ (t) F (t, un)dt

‖un‖2
= 0,

which contradicts (3.14). Thus, {un} is bounded in H1
T .

Since H1
T is a reflexive Banach space, there exist u ∈ H1

T and a subsequence of {un}, denoted again by {un}, such that

un ⇀ u weakly in H1 . (3.15)
T
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By Proposition 1.2 in [8], we see that

un → u strongly in C(0, T ;RN). (3.16)

Then,

T∫
0

|un(t) − u(t)|2dt → 0 as n → +∞. (3.17)

It follows from (3.16) and assumption (A) that

T∫
0

eQ (t)(∇ F (t, un(t)) − ∇ F (t, u(t)), un(t) − u(t))dt → 0 (3.18)

as n → +∞. In view of (3.15) and ϕ′(un) → 0, we obtain

(ϕ′(un) − ϕ′(u), un − u) → 0 as n → +∞. (3.19)

In addition, by (2.3), we have that

(ϕ′(un) − ϕ′(u), un − u)

=
T∫

0

eQ (t)(u̇n(t) − u̇(t), u̇n(t) − u̇(t))dt

−
T∫

0

eQ (t)(∇ F (t, un(t)) − ∇ F (t, u(t)), un(t) − u(t))dt. (3.20)

Thus, in light of (3.18)–(3.20), one arrives

0 ≤ A2

T∫
0

|u̇n(t) − u̇(t)|2dt ≤
T∫

0

eQ (t)|u̇n(t) − u̇(t)|2dt → 0

as n → +∞. Therefore,

T∫
0

|u̇n(t) − u̇(t)|2dt → 0 as n → +∞,

which combining (3.17) yields that

‖un − u‖ =
⎛⎝ T∫

0

|un(t) − u(t)|2dt +
T∫

0

|u̇n(t) − u̇(t)|2dt

⎞⎠
1
2

→ 0 as n → +∞.

That is, {un} strongly converges to u on H1
T . Hence, {un} possesses a strong convergent subsequence, which means that ϕ

satisfies condition (C). �
Lemma 3.2. Assume that (A), (F3) and (F6) hold, then the functional ϕ satisfies condition (C).

Proof. From the arguments of Lemma 3.1, we only need to prove that {un} is bounded in H1
T . It follows from (F6) that

eQ (t)[(∇ F (t, x), x) − 2F (t, x)] ≥ k2(|x|)
(

F (t, x)

|x|2
)θ

(3.21)

for all x ≥ M2 and a.e. t ∈ [0, T ]. Bearing in mind that (3.13), let M6 := max{M2, M5} and denote �∗
n := {t ∈ [0, T ]| |un(t)| ≥

M6}. By (2.1)–(2.3), (3.1), (3.21) and the properties of k2(z), we obtain
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3C1 ≥ 2ϕ(un) − (ϕ′(un), un)

=
T∫

0

eQ (t)[(∇ F (t, un), un(t)) − 2F (t, un)]dt

=
∫
�∗

n

eQ (t)[(∇ F (t, un), un(t)) − 2F (t, un)]dt +
∫

[0,T ]\�∗
n

eQ (t)[(∇ F (t, un), un(t)) − 2F (t, un)]dt

≥
∫
�∗

n

k2(|un|)
(

F (t, un)

|un|2
)θ

dt − A1

T∫
0

h4(t)dt

≥
∫
�∗

n

k2(d‖un‖) F θ (t, un)

d2θ‖un‖2θ
dt − A1

T∫
0

h4(t)dt,

where h4(t) := (2 + M6) max|x|≤M6 a(|x|)b(t) ≥ 0. Hence, we get that∫
�∗

n

F θ (t, un(t))dt ≤ C5

k2(d‖un‖)‖un‖2θ ,

noticing assumption (A) and (3.13), suggests that

T∫
0

|F (t, un(t))|θ dt =
∫
�∗

n

F θ (t, un(t))dt +
∫

[0,T ]\�∗
n

|F (t, un(t))|θ dt

≤ C5

k2(d‖un‖)‖un‖2θ +
T∫

0

hθ
5(t)dt (3.22)

for all n ∈N, where h5(t) := max|x|≤M6 a(|x|)b(t) ≥ 0. Furthermore, by (3.1), (3.22) and Hölder inequality, one has

C1 ≥ ϕ(un) = 1

2

T∫
0

eQ (t)|u̇n(t)|2dt −
T∫

0

eQ (t) F (t, un(t))dt

≥ 1

2
A2‖u̇n‖2

L2 − A1C6

⎛⎝ T∫
0

|F (t, un(t))|θ dt

⎞⎠
1
θ

≥ 1

2
A2‖u̇n‖2

L2 − A1C6

⎛⎝ C5

k2(d‖un‖)‖un‖2θ +
T∫

0

hθ
5(t)dt

⎞⎠
1
θ

≥ 1

2
A2‖u̇n‖2

L2 − C7

k
1
θ

2 (d‖un‖)
‖un‖2 − C8 (3.23)

for all n ∈N.
Now we claim {un} is bounded, otherwise, going if necessary to a subsequence, we can assume that ‖un‖ → +∞ as 

n → +∞. With the same manner of Lemma 3.1, dividing both sides of (3.23) by ‖un‖2, using the properties of k2(z), we 
conclude that |un(t)| → +∞ as n → +∞ uniformly for a.e. t ∈ [0, T ]. From (F3), assumption (A) and Fatou’s Lemma, we 
infer that

lim inf
n→+∞

∫ T
0 eQ (t) F (t, un)dt

‖un‖2
> 0. (3.24)

On the other hand, note that (3.1) and (3.11), one has

lim inf
n→+∞

∫ T
0 eQ (t) F (t, un)dt

‖un‖2
= 0,

which contradicts (3.24). Then, {un} is bounded in H1 . Therefore, ϕ satisfies condition (C). �
T



608 Z. Wang, J. Zhang / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 597–612
Lemma 3.3. Assume that (A), (F3) and (F7) hold, then the functional ϕ satisfies condition (C).

Proof. It follows from (3.1), (F7) and the properties of k3(|x|) that

3C1 ≥ 2ϕ(un) − (ϕ′(un), un)

=
T∫

0

eQ (t)[(∇ F (t, un), un) − 2F (t, un)]dt

≥
T∫

0

k3(|un|) |∇ F (t, un)|σ
|un|σ dt − A1

T∫
0

h6(t)dt

≥
T∫

0

k3(d‖un‖) |∇ F (t, un)|σ
dσ ‖un‖σ

dt − A1

T∫
0

h6(t)dt (3.25)

for all n ∈N, where h6(t) := (2 + M3) max|x|≤M3 a(|x|)b(t) ≥ 0. As a consequence,

T∫
0

|∇ F (t, un)|σ dt ≤ C9

k3(d‖un‖)‖un‖σ . (3.26)

Since H1
T could be embedded into Lp(0, T ; RN) for 1 ≤ p ≤ +∞, hence there exists τp > 0 such that

‖u‖L p ≤ τp‖u‖ ∀u ∈ H1
T , (3.27)

which together with (2.3), (3.1), (3.26) and Hölder inequality, we infer that

C1 ≥ (ϕ′(un), un)

=
T∫

0

eQ (t)|u̇n|2dt −
T∫

0

eQ (t)(∇ F (t, un), un)dt

≥ A2‖u̇n‖2
L2 − A1

⎛⎝ T∫
0

|∇ F (t, un)|σ dt

⎞⎠
1
σ

‖un‖Lσ ′

≥ A2‖u̇n‖2
L2 − A1τσ ′

(
C9

k3(d‖un‖)
) 1

σ ‖un‖2 (3.28)

for all n ∈N, where 1
σ + 1

σ ′ = 1.
Finally, we claim that {un} is bounded; otherwise, going if necessary to a subsequence, we assume that ‖un‖ → +∞ as 

n → +∞. In the same way as in the proof of Lemma 3.1, multiplying both sides of (3.28) by ‖un‖−2, using the properties of 
k3(z), we can obtain that |un(t)| → +∞ as n → +∞ uniformly for a.e. t ∈ [0, T ], and then from (F3), assumption (A) and 
Fatou’s Lemma, we have

lim inf
n→+∞

∫ T
0 eQ (t) F (t, un)dt

‖un‖2
> 0. (3.29)

On the other hand, thanks to (3.1) and (3.11), implies that

lim inf
n→+∞

∫ T
0 eQ (t) F (t, un)dt

‖un‖2
= 0,

which contradicts (3.29). Thus, {un} is bounded in H1
T . Using the same arguments as in Lemma 3.1, we can get that ϕ

satisfies condition (C). �
Now we are in a position to prove our main results. We only give the proofs of Theorem 1.1, Theorem 1.3, Theorem 1.5, 

Corollary 1.7, Corollary 1.10, Corollary 1.12, and Corollary 1.13; the other results can be proved similarly.
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Proof of Theorem 1.1. Let H1
T := H̃1

T ⊕R
N , where dimR

N < +∞. From Lemma 3.1, we know that ϕ satisfies condition (C). 
By virtue of Theorem 2.3 and Remark 2.4, we only need to verify the assertions:

(ϕ1) infu∈S ϕ(u) > 0;

(ϕ2) supu∈Q ϕ(u) < +∞, supu∈∂ Q ϕ(u) ≤ 0,

where S := H̃1
T ∩ ∂ Bρ , Q := {x ∈R

N | |x| ≤ s0} ⊕ {se | 0 ≤ s ≤ s0, e(t) ∈ H̃1
T } and ρ < s0.

Firstly, from (F2), we can find ε1 := 1
2

(
1
2 A2ω

2 − lim sup
|x|→0

eQ (t) F (t,x)
|x|2

)
> 0 and δ > 0 such that

eQ (t) F (t, x) ≤
(

1

2
A2 − ε1

)
ω2|x|2 ∀|x| ≤ δ and for a.e. t ∈ [0, T ].

For u ∈ H̃1
T with ‖u‖ ≤ 12δ/T , by Sobolev’s inequality, we have ‖u‖∞ ≤ δ. Consequently, using Wirtinger’s inequality, one 

has

ϕ(u) = 1

2

T∫
0

eQ (t)|u̇(t)|2dt −
T∫

0

eQ (t) F (t, u(t))dt

≥ 1

2
A2‖u̇‖2

L2 −
(

1

2
A2 − ε1

)
ω2

T∫
0

|u(t)|2dt

≥ ε1‖u̇‖2
L2

≥ ε1C10‖u‖2.

Let ρ ∈ (0, 12δ/T ), then

inf
u∈S

ϕ(u) ≥ ε1C10ρ
2 > 0,

which implies (ϕ1) holds.

Finally, we check (ϕ2). Let ε2 := 1
2

(
lim inf|x|→+∞ eQ (t) F (t,x)

|x|2 − 1
2 A1ω

2
)

, from (F3), we could get ε2 > 0, and we can choose 

M7 > 0 such that

eQ (t) F (t, x) ≥
(

1

2
A1 + ε2

)
ω2|x|2 ∀|x| ≥ M7 and for a.e. t ∈ [0, T ].

Therefore, for all x ∈R
N and a.e. t ∈ [0, T ], by assumption (A), we obtain

eQ (t) F (t, x) ≥
(

1

2
A1 + ε2

)
ω2|x|2 − A1h7(t),

where h7(t) := max|x|≤M7 a(|x|)b(t) ≥ 0. Let H̄1
T := span{e} ⊕ R

N with e := (sin(ωt), 0, . . . , 0) ∈ H̃1
T . Observe that, for 

x + se ∈ H̃1
T ,

ϕ(x + se) = 1

2

T∫
0

eQ (t)|sė|2dt −
T∫

0

eQ (t) F (t, x + se)dt

≤ 1

2
A1ω

2s2

T∫
0

cos2 ωtdt −
(

1

2
A1 + ε2

)
ω2

T∫
0

|x + se|2dt + M∗

≤ −ε2ω
2s2

T∫
0

sin2 ωtdt − 1

2
A1ω

2

T∫
0

|x|2dt + M∗

= −1

2
ε2ω

2s2T − 1

2
A1ω

2|x|2T + M∗, (3.30)

where M∗ := A1
∫ T h7(t)dt . Let Q = {x ∈R

N | |x| ≤ R1} ⊕ {se | 0 ≤ s ≤ R2} with R2 > ρ and R1 > 0. Define
0
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Q 1 := {x ∈R
N | |x| ≤ R1},

Q 2 := {x + R2e | x ∈R
N, |x| ≤ R1},

Q 3 := {x + se | x ∈ R
N, |x| = R1, 0 ≤ s ≤ R2}.

It is easy to check that ∂ Q = Q 1 ∪ Q 2 ∪ Q 3.

(1) By (F1), we have

ϕ(x) = −
T∫

0

eQ (t) F (t, x)dt ≤ 0

for all x ∈ R
N . Hence, one has ϕ(u) ≤ 0 for all u ∈ Q 1.

(2) Let R2 ≥
√

2M∗
ε2ω2 T

, from (3.30), we get

ϕ(x + R2e) ≤ −1

2
ε2ω

2 R2
2T − 1

2
A1ω

2|x|2T + M∗

≤ −1

2
ε2ω

2 R2
2T + M∗

≤ 0,

which implies ϕ(u) ≤ 0 for all u ∈ Q 2.

(3) Let R1 ≥
√

2M∗
A1ω2 T

, from (3.30), we obtain

ϕ(x + se) ≤ −1

2
ε2ω

2s2T − 1

2
A1ω

2 R2
1T + M∗

≤ −1

2
A1ω

2 R2
1T + M∗

≤ 0,

which implies ϕ(u) ≤ 0 for all u ∈ Q 3.

From the above discussions in (1)–(3), put s0 := max{R1, R2} > ρ > 0, we can infer that supu∈∂ Q ϕ(u) ≤ 0. Furthermore, 
by (3.30), we have supx+se∈Q ϕ(x + se) ≤ M∗ < +∞, that is, (ϕ2) holds. From Theorem 2.3, we know that ϕ possesses a 
critical point u(t) whose critical value c satisfies c ≥ α > 0. By (F1) and (2.2), we can see that u(t) is non-constant. Hence, 
problem (1.1) has at least one non-constant periodic solution in H1

T . �
Proof of Theorem 1.3. From Lemma 3.2, using the same arguments as in Theorem 1.1, we see that problem (1.1) has at least 
one non-constant periodic solution in H1

T . �
Proof of Theorem 1.5. Clearly, with the aid of Lemma 3.3 and the arguments of Theorem 1.1, we can easily get that prob-
lem (1.1) has at least one non-constant periodic solution in H1

T . �
Proof of Corollary 1.7. Take r = 2, by Theorem 1.1, we can obtain that problem (1.1) has at least one non-constant periodic 
solution in H1

T immediately. �
Proof of Corollary 1.10. From (F3) and (F ∗

4 ), we conclude that F (t, x) at infinity is positive for all x ∈ R
N , a.e. t ∈ [0, T ]

and asymptotically quadratic, thus (F6) is equivalent to (F ∗
6 ). By Theorem 1.3, we have that problem (1.1) has at least one 

non-constant periodic solution in H1
T . �

Proof of Corollary 1.12. Applying (F3), (F ∗∗
4 ) and (F ∗

7 ), we have

M ≥ eQ (t)|∇ F (t, x)|
|x| ≥ eQ (t)(∇ F (t, x), x)

|x|2 ≥ 2eQ (t) F (t, x)

|x|2 > A1ω
2 (3.31)

for |x| large enough and a.e. t ∈ [0, T ]. From (3.31), we deduce that |∇ F (t, x)| at infinity is positive for all x ∈ R
N , a.e. 

t ∈ [0, T ] and asymptotically linear, which means that (F7) and (F ∗
7 ) are equivalent. Then, by Theorem 1.5, one has that 

problem (1.1) has at least one non-constant periodic solution in H1
T . �
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Proof of Corollary 1.13. By (F ∗
3) and (F ∗∗

7 ), one has

eQ (t) F (t, x)

|x|2 ≥ eQ (t)(∇ F (t, x), x)

2|x|2 >
1

2
A1ω

2

for |x| large enough and a.e. t ∈ [0, T ], which implies (F3) holds. Moreover, utilizing (F ∗
3 ) and (F ∗∗

4 ), we have:

M ≥ eQ (t)|∇ F (t, x)|
|x| ≥ eQ (t)(∇ F (t, x), x)

|x|2 > A1ω
2.

Therefore, we know that |∇ F (t, x)| at infinity is also positive for all x ∈ R
N , a.e. t ∈ [0, T ] and asymptotically linear. Using 

the similar arguments of Corollary 1.12, we can deduce that problem (1.1) has at least one non-constant periodic solution 
in H1

T . �
4. Examples

In this section, we will give two examples to illustrate the fact that our results could deal with both the superquadratic 
and asymptotical quadratic cases. To do this, for simplicity, we only address problem (1.2), that is, in what follows, we are 
concerned with problem (1.1) without damped vibration term.

Example 4.1 (Superquadratic case at infinity). Let D := 4 − (4 ln 5 + sin 4 − ln2 5) > 0. Consider

F (t, x) = g1(t)h(x) ∀x ∈R
N and for a.e. t ∈ [0,2π],

where g1(t) ∈ C(0, 2π; R+), inft∈[0,2π] g1(t) > 0 and

h(x) =
{ 1

4 |x|4, |x| ≤ 2,

|x|2 ln(1 + |x|2) + sin |x|2 − ln2(1 + |x|2) + D |x| > 2.

Then, we have

lim inf|x|→+∞
(∇ F (t, x), x) − 2F (t, x)

|x|λ = 0 uniformly for a.e. t ∈ [0, T ] and all λ > 0,

which implies that F (t, x) does not satisfy the results of Theorem A, Theorem B and the conclusions of [6,15,16,22,23]. 
But, put k2(|x|) = ln(1 + |x|2), θ = 1, q(t) = 0, T = 2π, a direct computation shows that F (t, x) satisfies all conditions of 
Theorem 1.3. Hence, problem (1.2) has at least one non-constant periodic solution.

Example 4.2 (Asymptotically quadratic case at infinity). Consider

F (t, x) = g2(t)[|x|2 − ln(1 + |x|2)] ∀x ∈R
N and for a.e. t ∈ [0,2π],

where g2(t) ∈ C(0, 2π; R+), inft∈[0,2π] g2(t) > 1/2. Then we can also choose k2(|x|) = ln(1 + |x|2), θ = 1, q(t) = 0, T = 2π; it 
is easy to check that F (t, x) satisfies all conditions of Theorem 1.3 (or Corollary 1.10). So, problem (1.2) has at least one 
non-constant periodic solution.

Remark 4.3. In [14], Tang and Wu have introduced a class of new superquadratic condition:

(T W ) there exist a > 0 and L2 > 0 such that

(∇ F (t, x), x) − 2F (t, x) ≥ a

|x|2 F (t, x) ∀x ∈R
N, |x| ≥ L2 and for a.e. t ∈ [0, T ].

We should mention that condition (T W ) is weaker than (F6) with q(t) = 0. But the result of [14] is essential to rely on 
the assumption (S3). In other words, the main theorem in [14] only can handle the superquadratic potential functions and 
cannot treat the asymptotically quadratic potential functions like Example 4.2. At the same time, we note that F (t, x) in 
Example 4.2 also satisfies all conditions of Theorem C, however, Theorem C only work in the asymptotically quadratic case 
rather than in the superquadratic case. Here, Theorem 1.3 can deal with both superquadratic and asymptotical quadratic 
cases. In this sense, Theorem 1.3 is a new result.
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