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We consider the non-local Fisher–KPP equation on a bounded domain with Neumann 
boundary conditions. Thanks to a Lyapunov function, we prove that, under a general 
hypothesis on the kernel involved in the non-local term, the homogenous steady state 1
is globally asymptotically stable. This assumption happens to be linked to some conditions 
given in the literature, which ensure that travelling waves link 0 to 1.
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r é s u m é

Nous considérons l’équation de Fisher–KPP non locale en domaine borné, avec conditions 
de Neumann au bord. À l’aide d’une fonction de Lyapunov, nous montrons que, sous une 
hypothèse générale sur le noyau présent dans le terme non local, l’état stationnaire 1 est 
globalement asymptotiquement stable. Cette hypothèse se trouve être reliée à certaines 
conditions données dans la littérature, qui assurent que les fronts de propagation relient 0
et 1.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
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1. Introduction

We consider the so-called non-local Fisher–KPP equation endowed with Neumann boundary conditions

∂u

∂t
(t, x) = μ

⎛
⎝1 −

∫
�

K (x, y)u(t, y)dy

⎞
⎠ u(t, x) + �u(t, x), x ∈ �, t > 0,

∂u

∂n
(t, x) = 0, x ∈ ∂�, t > 0,

u(0, x) = u0(x) � 0 x ∈ �,

(1)

where � is a regular bounded domain of Rd and K > 0 a kernel modelling an additional death rate due to non-local 
interactions.

We will sometimes write in short K [u] = ∫
�

K (x, y)u(y) dy for a generic function u.
Assuming

∀x ∈ �,

∫
�

K (x, y)dy = 1, (2)

and in the limit K (x, y) → δx−y , we recover the classical Fisher KPP equation

∂u

∂t
= μ(1 − u)u + �u. (3)

The assumption (2) ensures that 1 remains a homogeneous stationary solution to (1).
The classical Fisher–KPP equation (3) is often analysed on the whole space for the investigation of travelling waves, 

which are known to exist since the pioneering works of Fisher, Kolmogorov, Petrovsky, and Piskunov [7] for any speed 
above 2

√
μ. Furthermore, any non-zero initial condition eventually converges locally uniformly to 1, which is therefore a 

globally asymptotically stable for non-zero initial conditions.
When one adds a non-local term, it does not remain true that travelling waves exist and when they do, whether they 

link 0 to 1 or to another non-homogeneous steady state of the equation. 1 can indeed become unstable: Turing patterns 
appear [8,9].

A natural question is thus to understand under which conditions the status of 1 is changed due to the non-local term. 
When K (x, y) is given by a convolution φ(x − y), several results have already been obtained in the full space, in dimension 
d = 1. If the Fourier transform is everywhere positive or if μ is small enough, it is known that travelling waves necessarily 
connect 0 to 1 [2]. See also [1,5].

In this note, we provide a general result on the global asymptotic stability on 1 on a bounded domain, based on a 
Lyapunov functional. The result holds provided that the following general assumption on the kernel K is satisfied:

∀ f ∈ L2(�),

∫
�×�

K (x, y) f (x) f (y)dx dy � 0. (4)

K is then referred to as being a positive kernel, and (4) can be thought of as a strong competition assumption. These 
types of Lyapunov functionals have been used successfully in selection equations in [6,10,11], and are inspired by Lyapunov 
functions for Lotka–Volterra ODEs [4].

It remains an open question to know whether this condition leads to the same conclusion on the whole space. As such, 
our Lyapunov function requires integrability for u(t) − 1 − ln(u(t)), which is too much to ask in Rd . We still believe that 
the condition (4) is highly relevant. Indeed, when � = R

d , and if K is a convolution K (x, y) = φ(x − y), then condition (4)
becomes

∀ f ∈ L2(
R

d),
∫

Rd×Rd

φ(x − y) f (x) f (y)dx dy � 0. (5)

It is easy to check that, if φ has a non-negative Fourier transform, then condition is satisfied, see [6]. The converse is 
almost true, as evidenced by Bochner’s Theorem [12]: if φ is bounded and continuous, then (4) holds if and only if φ is the 
Fourier transform of a finite bounded measure on Rd .

Consequently, condition (4) shows that the condition on the Fourier transform of φ used in dimension 1 in the literature 
can be appropriate in any dimension, and may not only be a sufficient but also a necessary condition when it comes to the 
stability of the state 1.
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2. The Lyapunov function approach

We make the following regularity assumption on the kernel K :

K ∈ C0,1(� × �
)
, (6)

where C0,1
(
� × �

)
denotes the set of Lipschitz continuous functions on � × �.

Under the previous assumption (6), for u0 ∈ L1(�), we know from [3] that there exists a unique non-negative classical 
solution in C([0, +∞), L1(�)) ∩ C1((0, +∞), C2,α(�)), which we denote t �−→ St u0.

It will also be convenient to introduce the set Z := {u ∈ C2,α(�), u � 0}. Finally, we define the non-negative function 
H(w) := w − 1 − ln(w) for w > 0, and for u in Z

V (u) :=
∫
�

(u(x) − 1 − ln(u(x)) dx, (7)

the last integral possibly being equal to +∞.
Our result is then the following.

Theorem 1. Assume (4), (6), (2). Then, for any initial datum u0 in L1(�), u0 � 0, u0 	= 0, the solution to (1) satisfies

u(t, ·) −→ 1

uniformly in �.

Proof. First step: computation of the Lyapunov functional.
First, let us remark that by the parabolic strong maximum principle, u(t, x) > 0 for all t > 0, x ∈ �. Now, let us check 

that this holds true also for x ∈ ∂�, from which we will infer that V (u(t)) is well defined for all t > 0. By the parabolic 
strong maximum principle at the boundary, we have the following alternative for x ∈ ∂�: either u(t, x) > 0 or u(t, x) = 0

and 
∂u

∂n
(t, x) < 0. Only u(t, x) > 0 can hold due to the Neumann boundary conditions.

We now consider g(t) := V (u(t)) for t > 0, where {u(t)}t�0 is the trajectory emanating from u0. Let us prove that this is 
a Lyapunov functional, by computing for t > 0

g′(t) =
∫
�

∂u

∂t
(t)

(
1 − 1

u(t)

)

=
∫
�

�u(t)

(
1 − 1

u(t)

)
− μ

∫
�

(1 − K [u(t)]) (1 − u(t)))

= −
∫
�

|∇(u(t, x))|2
u2(t, x)

dx − μ

∫

�2

K (x, y) (1 − u(t, x))) (1 − u(t, y)) dx dy,

after integration by part for the first term. For the second one, we used 1 − K [u] = K [1 − u], owing to (2).
Thanks to (4), this yields g′(t) � 0, that is, g is non-increasing over R+ . Since g � 0, we infer the convergence of g(t) as 

t tends to +∞, and we denote by l its limit.
Second step: compactness of trajectories.
Since C2,α(�) is compactly embedded into C

(
�

)
, the trajectory {St u0}t�δ (for some fixed δ > 0) is relatively compact in 

C(�), meaning that one can find ū � 0 in C(�) and a sequence (tk) tending to +∞ in k, such that u(tk) converges to ū as 
k goes to +∞, in C

(
�

)
. Note that the limit cannot be identically 0, since otherwise g(t) would go to +∞, in contradiction 

with its convergence to l.
Our aim is to prove that ū = 1, which will mean that the whole trajectory converges to ū, hence the expected result.
Third step: identifying the limit.
Let us now consider the trajectory starting from the initial datum ū, namely {St ū}t�0, which we also denote by {ũ(t)}t�0. 

Because ū � 0, ū 	= 0, we again have ũ(t, x) > 0 for all t > 0, x ∈ �. Let us prove that V is constant along the trajectory 
{St ū}t�0 for t > 0.

For this, we write V (ũ(t)) = V (St ū) = V
(

St limk→+∞ Stk u0
) = V

(
limk→+∞ St+tk u0

)
. It is also easy to see that, for any 

u in C
(
�

)
which is furthermore positive on �, V (seen as acting on C

(
�

)
) is continuous at u, and this implies V (ũ(t)) =

limk→+∞ V
(

St+tk u0
) = l. As claimed, the function t �−→ V (St ū) is constant (equal to l) for t > 0.

Hence its derivative must be zero for t > 0: from the computations made in the first step, it must hold that both ∫ ∣∣∇(
ũ(t)

)∣∣2

2 and 
∫

2 K (x, y) 
(
ũ(t, x) − 1)

) (
ũ(t, y) − 1

)
dx dy vanish identically for t > 0. Let us now fix t > 0, and from the 
� ũ (t) �
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first term, we know that ũ(t) is a constant. From the second term and owing to K > 0, this constant must be equal to 1. By 
continuity of the trajectory, this also holds true at t = 0, i.e. ū = 1, which ends the proof. �
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