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r é s u m é

L’objet de ce travail est la mise au point et l’étude d’un estimateur a posteriori pour 
les problèmes aux valeurs propres hermitiens positifs. L’estimateur proposé se base sur 
une approximation de la rélation entre l’erreur et le résidu du problème. Les propriétés 
mathématiques de l’estimateur sont étudiées. Des experiences numériques sont proposées 
afin de valider l’estimateur.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This work deals with an a posteriori error estimator for Hermitian positive eigenvalue problems. Having a sharp error 
estimator for eigenvalues is, in general, a difficult task. Several works were proposed in the literature: in [2,3], error esti-
mators are proposed for the finite element discretization of eigenvalues of elliptic operators. In the reduced basis context 
for Stokes equations, an a posteriori error estimator based on Babuška’s stability theory [1] is proposed in [8]. A general 
formulation of a posteriori error bounds that can be applied to several situations is given in [5]. We also refer the reader 
to thesis manuscript [7], where error analysis is carried on for numerous problems: coercive, noncoercive, parabolic, Stokes 
and eigenvalue. In this work, which was originally motivated by problems involving classical periodic Schrödinger operators, 
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an error estimator for the spectrum of positive self-adjoint operators is proposed, based on the problem residual and the 
definition of shifts. In particular, the aim is to estimate the error done when the problem finely discretized is projected on 
a low-dimensional basis, giving rise to a coarsely discretized problem.

The document is structured as follows: after having introduced the notation, the expression of the estimator is derived 
in section 2.1. The main results on the analysis of the estimator are presented in section 3. The implementation and some 
numerical experiments are presented in section 4.

2. Notation and problem setting

Let U be a Hilbert space and A be a linear positive self-adjoint operator A ∈ L(U , U ). Consider the associated eigenvalue 
problem:

Auexact = λexactuexact, (2.1)

where λexact ∈R
∗+ is the real positive eigenvalue, and uexact ∈ U is the associated eigenfunction.

A discrete fine approximation of Problem (2.1) is introduced as follows: let N ∈ N
∗ , and A ∈C

N×N be a matrix, obtained 
by discretizing the operator A in Eq. (2.1).

Prior to detailing the discretised versions of the problem, the Rayleigh quotient is introduced:

R(v) = vᵀAv

vᵀv
. (2.2)

The min–max Courant–Fisher theorem allows us to recover eigenvalues and eigenvectors as a result of the optimisation of 
the quotient. Let V j be the set of the vector subspaces of dimension j in RN . Then,

λ j = max
V ∈V j

min
u∈V

R(u) (2.3)

The finely discretized problem reads:

Au = λu, (2.4)

where u ∈C
N denotes the finely discretized eigenvector and λ the corresponding eigenvalue.

A coarse approximation is solved by projecting the finely discretized problem on a low-dimensional basis. More precisely, 
let N ∈ N

∗ such that N � N and denote by W ∈ C
N×N , W = [w1, . . . , w N ] the matrix whose columns are the finely 

discretized basis functions. Let AN denote the coarse matrix defined as AN := W H AW . Thus, the coarse approximation of 
the eigenpairs is obtained by solving:

ANφ = λNφ, (2.5)

which provides λN > λ, an approximation from above of λ and where uN ∈C
N , uN := W φ, an approximation of the associ-

ated eigenvector reconstructed at the fine level of discretization. The inequality between the coarsely and finely discretised 
problems derives from the optimisation of the quotient: indeed, since in a coarsely discretised problem the space on which 
the minimisation is carried out is of smaller dimension (N �N ), then the value of the eigenvalue is larger.

Throughout the whole document, the scalar product in CN will be denoted by 〈u, v〉 = uH v , for u, v ∈C
N .

In the sequel, we forget about the exact eigenvalues λexact, and our aim is to estimate the error between the finely 
approximated value λ and the coarsely approximated one λN .

2.1. Derivation of the estimator

As for most of the methods of a posteriori estimation, a relationship between the residual of the problem and the error 
on the solution is sought. The residual reads: rN ∈ C

N , rN := AuN −λN uN . Since the coarse problem is obtained by Galerkin 
projection, it follows that 〈rN , uN 〉 = 0. Let e := uN − u denote the error in the eigenvector approximation. The following 
equation for the residual is obtained:

rN = (A − λ)e − (λN − λ)uN . (2.6)

Projecting Eq. (2.6) on uN leads to:

0 = 〈uN , (A − λ)uN − u〉 − (λN − λ) ⇒ ε := λN − λ = 〈uN , (A − λ)uN〉 ≥ 0. (2.7)

The objective is to express this quantity as 〈rN , BrN 〉, where B ∈ C
N×N is a Hermitian matrix (which is the discretization, 

at fine level, of a self-adjoint operator that will be made precise later). This is done in two steps.
First, an expression for the matrix B is derived. To do so, let us assume that λN 	= λ(i), ∀i, 1 ≤ i ≤N , so that the matrix 

(A − λN ) is invertible. Here λ(i) denotes the i-th eigenvalue of A. Thus, reintroducing the residual rN into Eq. (2.7) gives:
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λN − λ = 〈uN , (A − λ)uN〉 = 〈rN , (A − λN)−1(A − λ)(A − λN)−1rN〉. (2.8)

By direct identification, the matrix B reads:

B = (A − λN)−1(A − λ)(A − λN)−1. (2.9)

Note that, in this form, the matrix B cannot be directly used, since the eigenvalue λ is involved in its definition. Second, 
an approximation of the operator B is derived in order to obtain a computable and certified approximation of the error. Let 
a, b ∈R be two scalars (whose optimal values will be precised later). Then, the matrix B is approximated as follows

B̃ := (A − b)−1(A − a)(A − b)−1, (2.10)

so that a, b can be seen as two approximations of the eigenvalues λ and λN and they are two shifts for the spectrum of 
A − λ and A − λN respectively.

2.2. A priori estimation for eigenvalues

The proposed a posteriori error estimator is defined by exploiting an available a priori error estimator. Several of such 
estimators exist in the literature, and can be adapted to the problem of interest. For the present work, an a priori estimator 
based on traces is used, presented in [9]. Since in the present work, positive matrices are considered, the a priori lower 
value for λ is defined as:

λ̃ = max{0, λ̃W S}, (2.11)

where λ̃W S denotes the result of the estimation proposed in [9], which is not always guaranteed to be positive.

3. Analysis of the estimator: main results

An error estimator is said to be certified if the estimated error is always larger than the actual error, and it is said to be 
sharp if the estimated error is as close as possible (in some sense depending on the problem) to the actual error. In this 
section, we give a precise definition of the proposed a posteriori error estimator and investigate under which conditions it 
is certified and sharp.

Definition 3.1. The actual error ε := λ − λN is estimated by the quantity

μ(a,b) := 〈rN , B̃rN〉,
where B̃ is defined in (2.10) and the scalars a, b ∈ R depend on λN and on a priori lower and upper bounds λ̃ ≤ λ ≤ λ̃+ .

We describe, in the sequel, how to choose a, b in order to ensure that μ(a, b) is certified and sharp.

3.1. Certification

The goal of this section is to determine the values of a and b such that

� := μ(a,b) − ε = 〈rN , (B̃ − B)rN〉 ≥ 0. (3.1)

Since A is Hermitian and B, B̃ are obtained by shifts of A, they share the same eigenbasis and they commute. Hence, it 
follows that:

〈rN , (B̃ − B)rN〉 =
N∑

i=1

〈rN , u(i)〉2

(
λ(i) − a

(b − λ(i))2
− λ(i) − λ

(λN − λ(i))2

)
, (3.2)

where λ(i) and u(i) denote respectively the i-th eigenvalue and eigenvector of A. Thus, a sufficient condition for the estima-
tor μ(a, b) to be certified is:

λ(i) − a

(b − λ(i))2
− λ(i) − λ

(λN − λ(i))2
≥ 0, ∀1 ≤ i ≤ N . (3.3)

We shall now determine the values of a and b so that (3.3) is satisfied. To this aim, let λ̃ ≤ λ be the a priori lower bound 
defined in section 2.2 and let:
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xi := λN − λ(i), (3.4)

α := a − λN ,

β := b − λN ,

ε := λN − λ,

ε̃ := λN − λ̃.

After substitution into Eq. (3.3), the following is obtained for every 1 ≤ i ≤N

Q (xi;α,β) = −α − xi

(β + xi)
2

− ε − xi

x2
i

≥ 0. (3.5)

We show that there exist values of α, β, ̃ε and consequently values of a and b such that the estimator is certified. We 
introduce the function

(α,β) ∈R
2 �→ J (α,β) := β2[β2 + 4ε̃(β − α)]

[2β − α − ε̃]2
(3.6)

and the set

T := {(α,β) ∈R
2 | J (α,β) ≤ x2

i , ∀1 ≤ i ≤ N }.
Thus, the following holds.

Proposition 3.2. If (α, β) ∈ T then the estimator μ(α + λN , β + λN ) is certified.

The proof of the proposition is presented in Appendix A. Let us remark that, in the expression of J , only quantities that 
can actually be computed appear. Moreover, it holds that J → 0 as β → 0. This means that, for values of b that are not too 
far from λN , the estimator is certified.

3.2. Sharpness

To study the sharpness of the estimator, an upper a priori bound λ̃+ ≥ λ is introduced and assumed to satisfy λ̃+ > λN ≥ λ. 
Let us recall that the difference between the estimated error μ(a, b) and the actual error ε is � = μ −ε (defined in Eq. (3.1)). 
It holds:

� =
N∑

i=1

〈rN , u(i)〉2 Q (xi;α,β), (3.7)

where the form Q is defined in (3.5). Since we do not control the term 〈rN , u(i)〉, we consider the minimization of the 
form Q , in a worst-case sense. Let x0, x1 ∈ R such that x0 < x1 and x0 < −β and consider the interval I = R \ [x0, x1]. Thus, 
the following holds:

� ≤
(

sup
x∈I

Q (x;α,β)

)
‖rN‖2

2. (3.8)

The term supx∈I Q (x; α, β) can be computed explicitly. It is reduced to find the zeros of a cubic polynomial (details in the 
proof). However, to get some insight into the estimation, some approximations are introduced. Let us consider the function

K : R � y �→ K (y;α,β) = 2β − α

(y + β)2
+ β2

y(y + β)2
,

where the parameters α and β are defined in (3.4). The second main result reads as follows.

Proposition 3.3. Let x0 = β(β−ε̃)
(2β−α)

and x1 > x0 and consider the interval I =R/[x0, x1]. Thus,

β +
(

2β − α + 2ε̃

K (x0;α,β)

)1/2

≤ λ̃+ − λN ⇒ sup
x∈I

Q (x;α,β) ≤ K (x0;α,β).

Moreover, the optimal values α∗ and β∗ are the solution to the constrained minimization problem
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(α∗, β∗) ∈ argmin
(α,β)∈R2

K (x0;α,β) (3.9)

β +
(

(2β − α + 2ε̃)

K (x0;α,β)

)1/2

≤ λ̃+ − λN . (3.10)

The proof of the proposition is presented in Appendix B. We point out that all the quantities appearing can be actually 
computed.

3.3. A simplified version

In this section, a simplified version is presented, for which some estimation can be performed analytically. Let k ∈ R
+ . 

Consider the following shifts:

b = (1 + k)λN , (3.11)

a = λ̃ + kλN .

This implies:

β = kλN , (3.12)

α = β − ε̃.

Hence, Eq. (3.9) can be expressed as a function of β only. The following proposition holds.

Proposition 3.4. When α, β are defined as in Eq. (3.12),

� ≤ 6‖rN‖2
2

λN + λ̃
.

The proof of the proposition is presented in Appendix C. Remark that, for a sufficiently small value of k, the estimator is 
certified, since k → 0 implies β → 0.

4. Implementation and numerical experiments

In this section, an efficient implementation of the proposed estimator is described and some numerical experiments are 
proposed to assess its properties.

4.1. Efficient implementation

The numerical implementation of the estimator is discussed in this section. One of the desirable properties of an a 
posteriori estimator is to be cheap from a computational point of view. The expression of the present estimator is:

μ = 〈rN , (A − b)−1(A − a)(A − b)−1rN〉. (4.1)

This expression involves the inverse of the matrix A − b. Even if the matrix A is sparse (which is the case for most of the 
applications), the computation of the inverse would be prohibitive. Instead, the following computation is performed:

(A − b)yN = rN , (4.2)

μ = 〈yN , (A − a)yN〉, (4.3)

hinting that a linear system for yN has to be solved. This is cheaper than computing the inverse. In order for it to be even 
cheaper, an iterative method is used. Since A is Hermitian, its eigenvalues are real, so that, since b induces a simple shift 
in the eigenvalues, their imaginary part remains zero. Thus, iterations of the bi-conjugate gradient stabilized method are 
effective [4]. As an initial guess for the iteration, we take y(0)

N = uN . This is a particularly good guess, which would be the 
exact solution if b = λ. By doing so, only few matrix vector products are actually needed to have a good approximation 
of yN . The cost of this operation is low, especially when A is sparse. When solving the problem, it is important to reach an 
accurate approximation of the quantity μ rather than yN per se. To this end, let μ(k) be the value of μ obtained at the k-th 
iteration of the bi-conjugate gradient stabilized method; an appropriate stopping criterion is |μ(k+1) − μ(k)| < δ, where δ is 
a user-defined tolerance that can be chosen to fix a certain number of digits in the approximation of μ.
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Table 1
Error estimator for the es-
timator derived from the 
results of Proposition 3.3.

N ε μ

200 6.95 7.74
250 5.44 6.01
300 3.82 4.14
350 2.94 3.14
400 1.89 1.92

Table 2
Error and error estimation for different values of the parameter k and basis size N .

k = 0.01 k = 0.05 k = 0.1 k = 0.2

N ε μ N ε μ N ε μ N ε μ

200 6.72 7.71 200 6.81 7.89 200 6.84 8.26 200 6.74 9.51
250 5.36 6.31 250 5.38 6.18 250 5.44 6.26 250 5.28 6.28
300 4.14 5.08 300 4.12 4.81 300 4.16 4.68 300 4.05 4.47
350 2.98 3.91 350 2.99 3.64 350 2.99 3.40 350 2.97 3.09
400 1.93 2.85 400 1.93 2.58 400 1.94 2.33 400 1.95 2.08

4.2. Random matrix smallest eigenvalue

For this first synthetic test, we create a random matrix Ã ∈ R
N×N with N = 500, and consider the positive symmetric 

matrix A defined as:

A = cI + 1

2

(
Ã + Ãᵀ

)
with c = 1 − λmin, (4.4)

where λmin is the smallest eigenvalue of the matrix Ã + Ãᵀ . As a consequence, the matrix A is Hermitian and positive 
definite, and its smallest eigenvalue, whose estimation error is investigated, is equal to 1. Then, the eigenvalue problem is 
projected in the coarse basis consisting of the first N vectors of the canonical basis with N < N , so that projecting A is 
equivalent to take the first N rows and columns of A.

Since the matrix is random, 32 samples were taken, and for each of them the test was performed. The values N =
[200, 250, 300, 350, 400] were used to compute an approximation of the spectrum.

The estimator obtained as a result of Proposition 3.3 was implemented and tested. The optimisation problem was solved 
by using a standard global optimisation algorithm. The result is presented in Table 1.

The estimator described in Section 3.3 was used for different values of k = [0.01, 0.05, 0.1, 0.2]. The mean of the true 
error and the mean of its a posteriori estimation are reported in Table 2. The estimator is rather sharp, and this is true 
in general for all the values of k and N . An interesting trend can be observed. For better discretizations (higher N), the 
parameter k that allows for better estimations is larger. This is in accordance with the theoretical estimation provided in 
Eq. (5.18). Indeed, for better discretization, λN is closer to λ, meaning that, the larger N , the lower λN . Consequently, the 
ratio λ̃+

λN
becomes larger and so does the optimal value of k.

The results of the simplified estimator are, in general, less sharp than the estimator obtained by solving the optimi-
sation problem. However, the latter, despite the fact that only two scalars have to be determined, might be cumbersome 
to be solved for, because of the large number of inequality constraints involved. Thus, the simplified estimator is a good 
trade-off between simplicity and sharpness. In the application to the Schrödinger operator, only the results for the simpli-
fied estimator are reported. The study of the definition of estimators based on optimisation problems similar to the one in 
Proposition 3.3 will be the object of further investigations.

4.3. Lowest energy bands of a periodic Schrödinger operator

The second test case is related to the application that first motivated this work, the approximation of the lower energy 
states of the Schrödinger operator. For all j ∈ Z, let e j(x) := 1√

2π
ei jx . For all s ∈N

∗ , let us define

Xs := Span
{

e j| j ∈ Z, | j| ≤ s
}

(4.5)

and denote by Ns := 2s + 1 the dimension of Xs and by 	Xs : L2
per → Xs the L2

per(0, 2π) orthogonal projector onto Xs . We 
consider the 2π-periodic real valued potential V ∈ L2

per(0, 2π) (plotted in Fig. 1a) and defined by the Fourier expansion

V (x) =
3∑

V̂ je j, V̂ 0 = 2 and V̂ j = 1 + 0.5 i, V̂− j = V̂ j, ∀ j > 0.
j=−3
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Fig. 1. A posteriori error estimator for the three lowest energy bands of a one-dimensional periodic Schrödinger operator.

The absolutely continuous spectrum (see [6] for the details) of the periodic Shcrödinger operator A = − d
dx2 + V is obtained 

as the union of the discrete spectra of the Bloch operators Aq := (−i d
dx + q)2 + V , where q ∈ [−1/2, 1/2[. Thus, for every 

q ∈ [−1/2, 1/2[, an eigenvalue problem

Aqu = λu (4.6)

is solved in the Hilbert space U = H1
per(0, 2π). The solutions to the eigenvalue problem (4.6) are numerically approximated 

using a Galerkin method in Fourier space Xs . For all s ∈ N
∗ , we denote by λs

q,1 ≤ · · · ≤ λs
q,Ns

the eigenvalues (ranked in 
increasing order, counting multiplicity) of the operator As

q := 	Xs Aq	
∗
Xs

. For Q ∈ N
∗ , we introduce a regular discretization 

grid of the Brillouin zone [−1/2, 1/2] and denote by 
∗
Q := {q0 = − 1

2 , q1, q2, · · · , qQ = 1
2 }.

In the present test, we investigate the a posteriori error estimator presented in Section 3.3 on the first three energy 
bands q ∈ 
∗

Q �→ λs
q,m for m = 1, 2, 3, where the fine discretization of the operator is obtained with N = 501 and the coarse 

discretization with N = 13 corresponding respectively to sref = 250 and s = 6. The a posteriori estimation of the error 
εq,m = λs

q,m − λ
sref
q,m for the points q in the Brillouin zone and the first three bands (m = 1, 2, 3) is denoted by μs

m,q . In Fig. 1

are plotted the true error εq,m = λs
q,m −λ

sref
q,m and the a posteriori error estimator μs

m,q computed as explained previously for 
different values of the coefficient k > 0, namely k = 0.1, 0.5, 1.
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5. Conclusions and perspectives

An a posteriori error estimator has been proposed, based on the residual and on the definition of shifts of the spectrum 
of the matrix. It is shown to be conditionally certified, and it provides a sharp estimation. Future directions of investigation 
consist in extending this type of estimator to non-positive and potentially non-Hermitian eigenvalue problems, and to apply 
this to realistic cases.
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Appendix A. Proof of Proposition 3.2

The aim is to prove that if (α, β) belongs to the set T , then the estimator μ(a, b) is certified where a = α + λN and 
β = b + λN . As we already mentioned in Section 3.1, a sufficient condition for the estimator to be certified is that the 
function R � x �→ Q (x; α, β) defined in (3.5) in nonnegative.

Let assume that x 	= 0 and β 	= −x. The first condition corresponds to the fact that the estimated eigenvalue λN is exactly 
equal to one of the true eigenvalues of A. This is related to the approximation of the problem, not to the estimator. It can 
happen either if N is too small and the approximation is poor, or if λN = λ. This latter case, which corresponds to a zero 
error, is solvable. Indeed, the denominator in Q vanishes, but the residual is orthogonal to the eigenvector, thus making the 
whole term vanishing in the series in Eq. (3.2). The condition β 	= −x is an actual condition for b, which will be analyzed 
later on. This condition impacts the sharpness more than the fact that the method is certified.

The expression of Q is developed, leading to

Q (x;α,β) = (2β − α − ε)x2 − β(2ε − β)x − εβ2

x2(β + x)2
. (5.1)

The sign of Q is determined by the sign of the numerator. The discriminant of the numerator is

�(α,β) = β2(2ε − β)2 + 4εβ2(2β − α − ε) = β2[β2 + 4ε(β − α)]. (5.2)

Two cases are possible for Q to be nonnegative. The first case is when �(α, β) < 0 and (2β − α − ε) ≥ 0. The values of α
and β given by this situation are not useful in our context. The second case, which is more interesting, is when �(α, β) ≥ 0
and (2β − α − ε) ≥ 0.

Assume that (2β − α − ε) ≥ 0, which translates to

2β − α ≥ ε ⇐ 2β − α ≥ λN − λ̃, (5.3)

meaning that, if a, b are chosen such that 2β − α is larger than the difference between the estimated value and the a 
priori lower bound, then the condition will be automatically satisfied. Let x1,2, x2 ≤ x1 denote the two real zeros of the 
numerator:

x1,2 = β(2ε − β) ± β[β2 + 4ε(β − α)]1/2

2[2β − α − ε] . (5.4)

Thus, Q (x; α, β) is nonnegative if x ∈ R \(x2, x1), which automatically implies that x 	= 0, since the zeros are of opposite sign. 
Observe that the case β = 0 ⇒ b = λN leads to a certified estimator x1,2 = 0, along with the condition x 	= 0. Nevertheless, 
this estimator is not sharp.

Finally, we consider the gap between the two zeros:

(x1 − x2)
2 = β2[β2 + 4ε(β − α)]

[2β − α − ε]2
, (5.5)

which can not be computed, since it depends upon ε. Nevertheless, the following holds

(x1 − x2)
2 ≤ β2[β2 + 4ε̃(β − α)]

[2β − α − ε̃]2
= J (α,β), (5.6)

where J was defined in Eq. (3.6). To conclude the proof, if x2 ≥ (x1 −x2)
2 then x ∈ R \(x2, x1), which ensures that Q (x; α, β)

is nonnegative implying that the estimator μ(α + λN , β + λN ) is certified.
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Fig. 2. Picture of the functions involved: the function Q (x) is in solid black line, the functions K , K− are in dashed red line; the points x0, x1,2 and x∗ are 
depicted as well.

Appendix B. Proof of Proposition 3.3

The objective of this proof is to provide a bound for the infinity norm of Q (x; α, β) defined in Eq. (3.5). The proof is 
divided into two steps consisting in studying the function Q (see Fig. 2) on two intervals, namely x > x1 and −∞ < x < x∗ , 
where x∗ will be defined later on.

First, let x > x1. Let us bound Q from above by means of a monotonically non-increasing function. It holds:

Q (x;α,β) = (2β − α − ε)x2 − β(2ε − β)x − εβ2

x2(β + x)2
≤ 2β − α

(x + β)2
+ β2

x(x + β)2
:= K (x). (5.7)

The maximum of Q (x), in the interval x > x1 is reached for a point x, which is strictly larger than x1, since Q (x1) = 0. 
Furthermore, one can easily check that ∂x K ≤ 0, so that K is monotonically non-increasing. Thus, if x0 < x1, then K (x0) >
K (x1) > Q (x), ∀x > x1.

A point x0 < x1 is provided by x0 = β(β−ε̃)
(2β−α)

. Thus, the infinity norm of Q , on the interval x > x1, is bounded by K (x0), 
which is a function of α, β, ̃ε.

The second part of the proof consists in studying Q for x < −β . This interval is relevant, especially when the lower 
eigenvalues are estimated. Indeed, x = λN − λ(i) , so that most of the x are negative. Let λ be the n-th eigenvalue, the one 
we are currently estimating, and let λ+ be the successive eigenvalue different from λ, i.e. λ+ > λ.

First, it can be checked that:

Q ≤ 2β − α + 2ε̃)

(x + β)2
:= K−(x), (5.8)

by considering that x < −β and ε̃ > ε.
A point x∗ is looked for, such that:

K−(x∗) = K (x0), (5.9)

leading to:

x∗ = −β ± (2β − α + 2ε̃)1/2

K 1/2(x0)
. (5.10)

To be sure that there are no values in proximity of the asymptotes, the sign minus can be picked.
To conclude, if x < x∗ , then Q (x) ≤ K−(x) ≤ K−(x∗) = K (x0) and hence ‖Q ‖∞ ≤ K (x0) in the interval (−∞ ≤ x ≤ x∗) ∪

(x ≥ x1).
Lastly, the condition relating (α, β) to x < x∗ is detailed. Let us consider that, the x closer to −β is the one for which 

x = λN − λ+ . Let λ̃+ be a lower bound for the eigenvalue λ+ , that, we recall, it is the first successive eigenvalue different 
from λ. Then, it holds:

β + (2β − α + 2ε̃)1/2

K 1/2(x0)
≤ λ̃+ − λN . (5.11)

Appendix C. Proof of the Proposition 3.4

The values of α, β for the simplified estimator are substituted into the System (3.9), leading to:

x0 = β(β − ε̃)
, (5.12)
(3β − ε̃)
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K (x0;α,β) = 3β − ε̃

(x0 + β)2
+ β2

x0(x0 + β)2
, (5.13)

β + (3β + ε̃)1/2

K 1/2(x0)
≤ λ̃+ − λN . (5.14)

At the expense of a little bit of sharpness, this system can be further simplified:

x0 = (β − ε̃)

3
, (5.15)

K (x0;α,β) ≤ 6

β − ε̃
, (5.16)

β ≤ 1

1 + 2/
√

6

(
λ̃+ − λN

)
. (5.17)

Thus, if the estimated gap between λ and the successive eigenvalue different from λ is λ̃+ − λN , then, the optimal β is:

β = 1

1 + 2/
√

6

(
λ̃+ − λN

)
⇒ k = 1

1 + 2/
√

6

(
λ̃+

λN
− 1

)
. (5.18)

For this:

� ≤ 6‖rN‖2
2

(1 + 2/
√

6)λ̃+ − 2/
√

6λN + λ̃
≤ 6‖rN‖2

2

λN + λ̃
. (5.19)

The last inequality is derived by considering that λ̃+ > λN .
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