
C. R. Acad. Sci. Paris, Ser. I 356 (2018) 586–593
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical analysis/Harmonic analysis

Density of spaces of trigonometric polynomials with 

frequencies from a subgroup in Lα-spaces

Les espaces de polynômes trigonométriques avec fréquences dans un 

sous-groupe sont denses dans les espaces Lα

Juan Miguel Medina a, Lutz Peter Klotz b, Manfred Riedel b

a Universidad de Buenos Aires, Facultad de Ingeniería, Departamento de Matemática and Inst. Argentino de Matemática “A. P. Calderón” – 
CONICET, Saavedra 15, 3er piso (1083), Buenos Aires, Argentina
b Fakultät für Mathematik und Informatik, Universität Leipzig, 04109 Leipzig, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 January 2018
Accepted after revision 23 April 2018
Available online 27 April 2018

Presented by the Editorial Board

Let G be an LCA group, H a closed subgroup, Γ the dual group of G and μ be a regular 
finite non-negative Borel measure on Γ . We give some necessary and sufficient conditions 
for the density of the set of trigonometric polynomials on Γ with frequencies from H in 
the space Lα(μ), α ∈ (0, ∞).
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r é s u m é

Soit G un groupe abélien, localement compact pour une topologie séparée, H un sous-
groupe fermé, � le groupe dual de G et μ une mesure de Borel positive ou nulle, régulière 
et finie sur �. Nous donnons des conditions nécessaires et suffisantes pour que l’ensemble 
des polynômes trigonométriques sur � avec fréquences dans H soit dense dans Lα(μ), 
α ∈ (0, ∞).

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let G be an LCA group, i.e. a locally compact abelian group with Hausdorff topology, whose group operation is written 
additively. Denote by Γ the dual group of G and by 〈γ , x〉 the value of γ ∈ Γ at x ∈ G . Let H be a closed subgroup of G
and Λ := {γ ∈ Γ : 〈γ , y〉 = 1 for all y ∈ H} its annihilator. Recall that Λ is a closed subgroup of Γ and that the factor group 
Γ/Λ is (algebraically and topologically) isomorphic to the dual group of H , cf. [7].

A trigonometric H-polynomial is a function p : Γ →C which is a finite sum of the form p(·) = ∑
ak〈·, yk〉, where ak ∈C, 

yk ∈ H . Denote by P(H) the linear space of all trigonometric H-polynomials.
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If μ is a regular finite Borel measure on Γ and α ∈ (0, ∞), let Lα(μ) be the metric space of (μ-equivalence classes of) 
Borel measurable C-valued functions on Γ , which are α-integrable with respect to μ. For α ∈ (1, 2], the space Lα(μ) can be 
interpreted as the spectral domain of a harmonizable symmetric α-stable process; particularly, L2(μ) is the spectral domain 
of a certain stationary Gaussian process. From the prediction theory of such processes, it arises the problem to describe 
those measures, for which P(H) is dense in Lα(μ). The paper [9] is a special case when G = Z and prompts a result of the 
following form.

We say that a measure μ is concentrated on a transversal if there exists a Borel subset D of Γ such that μ(Γ \ D) = 0
and D ∩ (λ + D) = ∅ for all λ ∈ Λ \ {0}. Then P(H) is dense in Lα(μ) for all α ∈ (0, ∞) if and only if μ is concentrated on a 
transversal. The main goal of the present paper is to show that under several additional assumptions on Γ or Λ or μ, the 
condition that μ is concentrated on a transversal is, indeed, a necessary or sufficient condition for the density of P(H).

Moreover, this description is equivalent to the problem of sampling and reconstructing a harmonizable symmetric 
α-stable process. The first result in this direction was given by Lloyd [12] for wide-sense stationary processes on G = R

generalizing the Whittaker–Kotel’nikov–Shannon (WKS) sampling theorem for L2(R) band-limited functions. If G is an LCA 
group, the WKS theorem was proved by Kluvánek [10] for L2(G) and by Lee [11] for rather general processes of finite vari-
ance. In the context of Hilbert spaces, other advances about sampling in L2(G) can be found in, e.g., [5] and for continuous 
groups of operators in, e.g., [4].

Section 2 contains definitions and basic facts from measure theory on topological spaces. Particularly, we prove some 
results on regular measures. Although they are simple, it seems that they are not often stated explicitly in the literature. 
We also recall some properties of transition probabilities, which are applied in Section 4.

The main result of Section 3 is the following. The space P(H) is dense in Lα(μ) for all regular finite non-negative Borel 
measures μ, which are concentrated on a transversal, and all α ∈ (0, ∞) if the annihilator group Λ is metrizable. We 
mention that Λ is metrizable if and only if the factor group G/H is σ -compact, cf. [13, Theorem 29], and that, according to 
a fundamental structure theorem of LCA groups, any compactly generated group is σ -compact, cf. [7, (9.8)].

Section 4 is devoted to the assertions that in case of a Polish space Γ or a countable set Λ, the measure μ is concen-
trated on a transversal if P(H) is dense in Lα(μ) for some α ∈ (0, ∞). If Γ is a Polish space, the proof heavily leans on 
properties of transition probabilities. If Λ is countable, the corresponding proof for the circle group, cf. [9, Theorem 3.4], 
can be adapted straightforwardly.

2. Some preliminaries from Borel measures on topological spaces

We recall some definitions and facts from measure theory on topological spaces since a few of the notions are used in 
different ways in the literature.

Let X be a topological Hausdorff space and B(X) the Borel σ -algebra of X , i.e. B(X) is the σ -algebra generated by the 
open subsets of X . If S is a subspace of X , then B(X) ∩ S = B(S), cf. [14, 13.5]. Particularly, if S ∈ B(X), then B(X) ∩ S :=
{B ∈ B(X) : B ⊆ S}. The symbol 1S stands for the indicator function of the set S .

A finite non-negative Borel measure on B(X) is called regular if, for all B ∈ B(X) and all ε > 0, there exist a compact set 
C and an open set U such that C ⊆ B ⊆ U and μ(U \ C) < ε, cf. [2, p. 206]. It is called discrete if μ(X \ S) = 0 for some 
countable subset S . Obviously, any discrete measure is regular. A C-valued measure ν on B(X) is called regular if its vari-
ation, which is denoted by |ν|, is regular. If Y is a topological Hausdorff space and π : X → Y is a (B(X), B(Y ))-measurable 
map from X to Y , we denote by νπ−1 the image measure of ν under π.

Lemma 2.1. Let X and Y be topological Hausdorff spaces, μ and ν be a finite non-negative and a C-valued, respectively, measure on 
B(X) and π : X → Y a continuous map. The following assertions are true.

(i) If S ∈ B(X) and μ is regular, then the restriction of μ to B(S) is regular.
(ii) If μ is regular, then μ π−1 is regular.

(iii) If ν is absolutely continuous with respect to μ and μ is regular, then ν is regular.
(iv) If ν is regular, then νπ−1 is regular.
(v) If (μk)k∈N is a sequence of regular non-negative measures on B(X) such that μ = ∑∞

k=1 μk, then μ is regular.

Proof. (i) Let B ∈ B(S). Since μ is regular, for ε > 0 there exist a compact set C and an open set U such that C ⊆ B ⊆ U
and μ(U \ C) < ε. Since U S := U ∩ S is an open subset of S and μ(U S \ C) ≤ μ(U \ C), the assertion follows.

(ii) Let B̃ ∈ B(Y ) and B := π−1(B̃). Let ε > 0 and C ⊆ B be compact with μ(B \ C) < ε
2 . Then μ π−1(B̃ \ π(C)) ≤

μ(B \ C) < ε
2 for the compact subset π(C) of Y . It follows that for the set B̃c := Y \ B̃ , there exists a compact set C̃ satisfying 

C̃ \ B̃c and μ(B̃ \ C̃) < ε
2 The set C̃ c is open since Y was assumed to be a Hausdorff space. We obtain π(C) ⊆ B̃ ⊆ C̃ c and 

μ π−1(C̃ c \ π(C)) ≤ μ π−1(C̃ c \ B̃) + μ π−1(B̃ \ π(C)) < ε, which implies that μ π−1 is regular.
(iii) The result is an immediate consequence of the fact that if ν is absolutely continuous with respect to μ, then for 

ε > 0 there exists δ > 0 such that, for all B ∈ B(X), from μ(B) < δ, it follows that |ν|(B) < ε, cf. [2, Lemma 4.2.1].
(iv) Apply (ii) and (iii).
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(v) For ε > 0, there exists n ∈ N such that 
∑∞

k=n+1 μk(X) < ε
2 . If B ∈ B(X), the regularity of μk yields the existence of a 

compact set Ck and an open set Uk satisfying Ck ⊆ B ⊆ Uk and μk(Uk \ Ck) < ε
2k+1 , k ∈ N. The set C := ⋃n

k=1 Ck is compact, 
the set U := ⋂n

k=1 Uk is open, C ⊆ B ⊆ U , and μ(U \ C) < ε. �
Let X and Y be Polish spaces, i.e. separable topological spaces that can be metrized by means of a complete metric. 

Note that any finite non-negative measure on B(X) is regular, cf. [2, Proposition 8.1.10]. In what follows, any regular finite 
non-negative Borel measure will be simply called a measure.

We need some facts on transition probabilities. A general theory of conditional probabilities and transition probabilities 
is given in [15]. Since we need only special cases here, we refer to the excellent introduction [14].

Definition 2.2 (Cf. [14, 35.4]). A map w : Y × B(X) → [0, 1) is called a transition probability if

(i) for all B ∈ B(X), the function y → w(y, B), y ∈ Y , is (B(Y ), B([0, 1]))-measurable,
(ii) for all y ∈ Y , the map B → w(y, B), B ∈ B(X), is a probability measure.

Theorem 2.3 (Cf. [14, 35.9, 35.11, 35.14] and [2, Proposition 7.6.2]). Let w be a transition probability on Y × B(X) and μ̃ be a measure 
on B(Y ).

(i) If f : X × Y → [0, ∞) is a (B(X × Y ), B([0, ∞]))-measurable function, then for all y ∈ Y the integral 
∫

X f (x, y)w(y, dx) ≤ ∞
exists and the function y → ∫

X f (x, y)w(y, dx), y ∈ Y , is (B(Y ), B([0, ∞]))-measurable.
(ii) Setting �(B) := ∫

Y

∫
X 1B(x, y)w(y, dx)μ̃(dy), B ∈ B(X × Y ), a measure � is defined. A (B(X × Y ), B(C))-measurable 

function g : X × Y → C is integrable with respect to � if and only if 
∫

X |g(x, y)|w(y, dx) < ∞ for μ̃-a.a. y ∈ Y and ∫
Y

∫
X |g(x, y)|w(y, dx)μ̃(dy) < ∞. In this case∫

X×Y

g(x, y)�(dx ⊗ dy) =
∫
Y

∫
X

g(x, y)w(y,dx)μ̃(dy).

Denote by δx the Dirac measure on B(X) concentrated at x ∈ X . If ψ : Y → X is a (B(Y ), B(X))-measurable function, it 
is not hard to see that by w(y, B) := δψ(y)(B), y ∈ Y , B ∈ B(X), a transition probability on Y × B(X) is defined and from 
Theorem 2.3 (ii) we can easily obtain the following result.

Corollary 2.4. If μ̃ is a measure on B(Y ), then

μ(B) :=
∫
Y

∫
X

1B×Y (x, y)δψ(y)(dx)μ̃(dy), B ∈ B(X),

defines a measure μ on B(X) satisfying∫
X

f (x)μ(dx) =
∫
Y

∫
X

f (x)δψ(y)(dx)μ̃(dy)

for all f ∈ L1(μ). Particularly, μ(B) = μ̃ψ−1(B), B ∈ B(X).

Theorem 2.5 (Cf. [14, 46.3]). Let X and Y be Polish spaces, μ a measure on B(X), and π : X → Y a (B(X), B(Y ))-measurable map. 
There exists a transition probability w on Y × B(X) with the following properties:

(i) there exists a set B̃0 ∈ B(Y ) such that μ π−1(B̃0) = 0 and moreover w(y, π−1({y}) = 1 for all y ∈ Y \ B̃0;
(ii) for all f ∈ L1(μ),∫

Y

∫
X

f (x) w(y,dx)μπ−1(dy) =
∫
X

f (x)μ(dx).

Corollary 2.6. Let α ∈ (0, ∞). Assume that the conditions of Theorem 2.3 are satisfied and let w be a transition probability on Y ×B(X)

with properties (i) and (ii) of Theorem 2.5. If a family of functions { f j : j ∈ I} is dense in Lα(μ), then there exists a set B̃ ∈ B(Y ) such 
that B̃0 ⊆ B̃ , μ π−1(B̃) = 0, and { f j : j ∈ I} is dense in Lα(w(y, ·)) for all y ∈ Y \ B̃ .

Proof. Since X is a separable space, its Borel σ -algebra is countably generated. Therefore, there exists a countable set 
S := {sk : k ∈ N} of (B(X), B(C))-measurable step functions, which is dense in Lα(w(y, ·)) for all y ∈ Y \ B̃0, cf. the proof of 
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Proposition 3.4.5 of [2]. Since { f j : j ∈ I} is dense in Lα(μ), for any k ∈ N, there exists a sequence ( jn,k)n∈N of indices such 
that

lim
n→∞

∫
X

|sk(x) − f jn,k (x)|αμ(dx) = 0.

Define a function gn,k : Y → [0, ∞] by gn,k(y) := ∫
X |sk(x) − f jn,k (x)|α w(y, dx), y ∈ Y . According to Theorem 2.5 (ii), for all 

k ∈N, the sequence (gn,k)n∈N tends to zero in L1(μ π−1). Proceeding to a suitable subsequence if necessary, we can assume 
that for k ∈ N, there exists B̃k ∈ B(Y ) such that B̃k ⊆ Y \ B̃0, μ π−1(B̃k) = 0, and limn→∞ gn,k(y) = 0 for all y ∈ B̃k . Obviously, 
the set B̃ = ⋃∞

k=0 B̃k has all properties claimed. �
3. Conditions under which P(H) is dense if μ is concentrated on a transversal

Let G be an LCA group, H a closed subgroup, Γ the dual group of G , Λ the annihilator of H , π the canonical homeo-
morphism from Γ onto Γ/Λ, and denote π(γ ) =: γ̃ , γ ∈ Γ .

Lemma 3.1. Let ν be a C-valued measure on B(Γ ). Assume that |ν|π−1 is discrete. If |ν| is concentrated on a transversal and ∫
Γ

〈γ , y〉ν(dγ ) = 0 for all y ∈ H, then ν is the zero measure.

Proof. The elements of the dual group of Γ/Λ are precisely all functions χy : Γ/Λ →C, y ∈ H , of the form χy(γ̃ ) = 〈γ , y〉, 
γ̃ ∈ Γ/Λ, where γ can be chosen arbitrarily from π−1({γ̃ }). By the integral transformation formula∫

Γ/Λ

χy(γ̃ )νπ−1(dγ̃ ) =
∫
Γ

〈γ , y〉ν(dγ ),

for all y ∈ H , and from the uniqueness theorem of the Fourier transform, cf. [6, (31.5)], it follows that ν π−1 is the zero 
measure. Suppose that |ν| is not the zero measure, then it is not hard to see that if |ν|π−1 is discrete and |ν| is concentrated 
on a transversal, then there exists a finite or countably infinite subset B := {γk : k ∈ K } of Γ , which meets each Λ-coset 
at most once and such that |ν|(Γ \ B) = 0 and |ν|({γk}) > 0, k ∈ K . Indeed, there exists B̃ = {γ̃k : k ∈ K } of Γ/Λ such that 
|ν|π−1(Γ /Λ \ B̃) = 0 and |ν|π−1({γ̃k}) = |ν|(π−1{γ̃k} ∩ D) > 0, for each k ∈ K . Thus, there exists at least one γk ∈ π−1{γ̃k} ∩ D; 
otherwise |ν|(π−1{γ̃k} ∩ D) = 0. Moreover, as D + λ ∩ D = ∅ if λ �= 0, then {γk} = π−1{γ̃k} ∩ D , and so we can take B = {γk :
k ∈ K }. Now, let h be the Radon–Nikodym derivative of ν with respect to |ν|. We can assume that h = 0 on Γ \ B , and we 
define a function f̃ : Γ/Λ →C by setting

f̃ (γ̃ ) =
{

h(γk)
−1, if γk ∈ π−1({γ̃ }), k ∈ K ,

0, else.

Obviously, f̃ is a (B(Γ /Λ), B(C))-measurable function and on the other hand, since ν π−1 is the zero measure

|ν|(Γ ) = |ν|(B) =
∫
B

h(γ )−1ν(dγ )

=
∫
B

f̃ (γ̃ )ν(dγ ) =
∫
Γ

f̃ (πγ )ν(dγ )

=
∫

Γ/Λ

f̃ (γ̃ )νπ−1(dγ̃ ) = 0

by the integral transformation formula, contradicting the fact that |ν|(B) > 0. �
Theorem 3.2. Let μ be a measure on B(Γ ) and α ∈ (0, ∞). Assume that μ π−1 is discrete. If μ is concentrated on a transversal, then 
P(H) is dense in Lα(μ).

Proof. First let α ∈ [1, ∞) and β := α
α−1 ∈ (1, ∞]. If f ∈ Lβ(μ) is such that∫

Γ

〈γ , y〉 f (γ )μ(dγ ) = 0,

for all y ∈ H , then by Lemma 3.1 the C-valued measure f dμ is the zero measure, which implies that P(H) is dense in 
Lα(μ). Since μ is finite, it follows easily that, for α ∈ (0, 1), the space P(H) is dense in Lα(μ) as well. �
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The preceding proof shows that, if the assumption of discreteness of ν π−1 could be dropped, one could establish The-
orem 3.2 for all measures μ on B(Γ ). In fact, a result similar to that of Lemma 3.1 was formulated by Lee [11, Lemma 2]
without assuming that |ν|π−1 is discrete. However, his proof seems to contain a gap, since he did not prove the Borel mea-
surability of a function that corresponds to the function f̃ of our proof of Lemma 3.1. The remaining part of the present 
section is devoted to the proof of the assertion that if Λ is metrizable, then P(H) is dense in Lα(μ) for all measures μ, 
which are concentrated on a transversal, and all α ∈ (0, ∞). To obtain such a result, we apply a theorem of Feldman and 
Greenleaf on the existence of a Borel transversal and a Borel measurable cross-section, cf. [3].

A subset T of Γ is called a transversal (with respect to Λ) if it meets each Λ-coset just once. A map τ : Γ/Λ → T
is called a cross-section if π ◦ τ is the identical map on Γ/Λ. We mention that Kluvánek’s sampling theorem and related 
results, cf. [1,10], clarify the relationship between transversals and sampling theorems.

Lemma 3.3. A subset T of Γ is a transversal if and only if

π−1(π(T )) =
⋃
λ∈Λ

(λ + T ) = Γ

and T ∩ (λ + T ) = ∅ for all λ ∈ Λ \ {0}.

Proof. Let T be a transversal. Then, for γ ∈ Γ , there exists t ∈ T such that t ∈ γ + Λ; hence, γ ∈ λ + T for some λ ∈ Λ, 
which yields Γ = π−1(π(T )). If γ ∈ T ∩ (λ + T ) for some γ ∈ Γ and λ ∈ Λ, then γ = λ + t for some t ∈ T ; hence, γ ∈ t + Λ. 
Since t ∈ t + Λ, it follows γ = t and λ = 0. Let T be a subset of Γ , which is not a transversal. Then there exists γ ∈ Γ such 
that (γ + Λ) ∩ T = ∅ or there exist t1, t2 ∈ T , t1 �= t2, with t1, t2 ∈ γ + Λ. In the first case,

(γ + Λ) ∩ (λ + T ) = (γ + λ + Λ) ∩ (λ + T ) = λ + [(γ + Λ) ∩ T ] = ∅
for all λ ∈ Λ, which yields π−1(π(T )) �= Γ . In the second case, there exist λk ∈ Λ such that tk = γ + λk , k ∈ {1, 2}; hence, 
T ∩ (λ1 − λ2 + T ) �= ∅, where λ1 − λ2 �= 0 since t1 �= t2. �
Lemma 3.4. If R is a transversal and S is a subset of Γ such that S ∩ (λ + S) = ∅ for all λ ∈ Λ \ {0}, then the set T := S ∪ [R ∩
(Γ \ π−1(π(S)))] is a transversal.

Proof. If γ ∈ λ + S for some λ ∈ Λ, then, of course, γ ∈ λ + T . If γ /∈ λ + S for all λ ∈ Λ, then

γ ∈ Γ \ π−1(π(S)) = λ + [Γ \ π−1(π(S))]
for all λ ∈ Λ. Since R is a transversal, γ ∈ λ + R for some λ ∈ Λ; hence, γ ∈ λ + T , which implies Γ = π−1(π(T )). If we have 
λ + t1 = t2 for some λ ∈ Λ, t1, t2 ∈ T , then either t1, t2 ∈ S or t1, t2 ∈ [R ∩ (Γ \ π−1(π(S)))]. In both cases λ = 0 by properties 
of S or the transversal R , respectively. Thus, T is a transversal by Lemma 3.3. �
Theorem 3.5 (Cf. [3, Theorem 1 and Remark 3 (ii)]). Let Λ be a metrizable subgroup of Γ . There exists a transversal, which belongs to 
B(Γ ). If T is such a transversal, then the corresponding cross-section τ can be chosen (B(Γ /Λ), B(T ))-measurable.

Lemma 3.6. Let μ be a measure on B(Γ ) and B ∈ B(Γ ). There exists a set A ∈ B(Γ ) such that A ⊆ B, μ(B \ A) = 0, and π−1(π(A)) ∈
B(Γ ).

Proof. By regularity of μ, there exists a sequence (Ck)k∈N of compact subsets of B such that limk→∞ μ(Ck) = μ(B). The 
set A := ⋃∞

k=1 Ck belongs to B(Γ ), A ⊆ B , and μ(B \ A) = 0. Since π is continuous, π(Ck) is compact; hence, π−1(π(A)) ∈
B(Γ ). �
Lemma 3.7. Let ν be a C-valued measure on B(Γ ). Assume that Λ is metrizable. If |ν| is concentrated on a transversal and ∫
Γ

〈γ , y〉ν(dγ ) = 0 for all y ∈ H, then ν is the zero measure.

Proof. From the proof of Lemma 3.1, we know that ν π−1 is a zero measure. Let R be a transversal, which belongs to B(Γ ), 
cf. Theorem 3.5. Since |ν| is concentrated on a transversal, there exists D ∈ B(Γ ) such that |ν|(Γ \ D) = 0 and D ∩(λ + D) = ∅
for all λ ∈ Λ \ {0}. By Lemma 3.4, the set T := D ∪ [R ∩ (Γ \ π−1(π(D))] is a transversal, and by Lemma 3.6 we can assume 
that T ∈ B(Γ ). Let τ be a corresponding (B(Γ /Λ), B(T ))-measurable cross-section. Let h be the Radon–Nikodym derivative 
of ν with respect to |ν|. We can assume that h is a (B(Γ ), B(C))-measurable function, |h| = 1 on D and h = 0 on Γ \ D . 
Therefore, the function h+ defined by

h+(γ ) =
{

h(γ )−1, γ ∈ D,

0, γ ∈ Γ \ D,
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is (B(Γ ), B(C))-measurable, f̃ := h+ ◦ τ is (B(Γ /Λ), B(C))-measurable and we can complete the proof similarly to that of 
Lemma 3.1, supposing that |ν|(T ) > 0 and noting that τ ◦ π is the identical map over T . Again, since ν π−1 is the zero 
measure and by the integral transformation formula

|ν|(Γ ) = |ν|(T ) =
∫
T

h(γ )+ν(dγ ) =
∫
T

f̃ (πγ )ν(dγ )

=
∫

Γ/Λ

f̃ (γ̃ )νπ−1(dγ̃ ) = 0,

contradicting the fact that |ν|(T ) > 0. �
As a consequence of the preceding lemma, we obtain the following assertion, cf. the proof of Theorem 3.2.

Theorem 3.8. Let μ be a measure on B(Γ ) and α ∈ (0, ∞). Assume that the annihilator group Λ is metrizable. If μ is concentrated 
on a transversal, then P(H) is dense in Lα(μ).

4. Conditions under which μ is concentrated on a transversal if P(H) is dense

To motivate our approach, we again start with the case when μ π−1 is discrete.

Theorem 4.1. Let μ be a measure on B(Γ ) and α ∈ (0, ∞). Assume that μ π−1 is a discrete measure. Then P(H) is dense in Lα(μ) if 
and only if μ is concentrated on a transversal.

Proof. The “if-part” was stated in Theorem 3.2. To prove the converse, let S̃ := {γ̃k : k ∈ K } be a finite or countably infinite 
subset of Γ/Λ such that μ π−1((Γ /Λ) \ S̃) = 0 and μ π−1(γ̃k) > 0, k ∈ K . Let μk be the restriction of μ to B(π−1({γ̃k})), 
pk be the restriction of p ∈ P(H) to π−1({γ̃k}) =: Bk , and let Pk(H) be the linear space of all such restrictions, k ∈ K . Then∫

Γ

| f (γ )|αμ(dγ ) =
∑
k∈K

∫
Bk

| f (γ )|αμk(dγ )

for all f ∈ Lα(μ). It follows that if P(H) is dense in Lα(μ), then for all k ∈ K the space Pk(H) is dense in Lα(μk). Since the 
functions of Pk(H) are constants, the measure μk has the form μk = akδγk for some ak ∈ (0, ∞), γk ∈ π−1({γ̃k}), k ∈ K . The 
set D := {γk : k ∈ K } belongs to B(Γ ), μ(Γ \ D) = 0, and D ∩ (λ + D) = ∅ for all λ ∈ Λ \ {0}. �

The preceding proof is based on the fact that if μ π−1 is discrete, then the space Lα(μ) can be written as a direct sum 
of certain Lα-spaces over Λ-cosets. Assuming that Γ is a Polish space and applying the theory of transition probabilities, 
this idea can be generalized as follows.

Lemma 4.2. If Γ is a Polish space, then Γ/Λ is a Polish space.

Proof. A Polish space Γ can be metrized by means of an invariant metric σ , cf. [7, (8.3)]. Therefore, the topology of Γ/Λ

can be metrized by a metric σ̃ defined by

σ̃ (γ̃ , β̃) := inf{σ(γ ,β) : γ ∈ π−1{γ̃ }, β ∈ π−1{β̃}},
cf. [7, (8.14)(a), (b)]. Let (γ̃n)n∈N be a Cauchy sequence with respect to the metric σ̃ . Since σ is an invariant metric, one can 
construct a Cauchy sequence (γn)n∈N such that γn ∈ π−1{γ̃n} and

σ(γn, γn+1) < σ̃ (γ̃n, γ̃n+1) + 1

2n
, n ∈N.

Since the topology of Γ can be metrized by means of a complete metric, a theorem of Klee [8, (2.4)] asserts that σ is 
complete. It follows

lim
n→∞σ(γ0, γn) = 0

for some γ0 ∈ Γ ; hence,

lim
n→∞ σ̃ (γ̃0, γ̃n) = 0,

which means that σ̃ is complete. Clearly, the image of a dense subset of Γ under the map π is dense in Γ/Λ. Thus, if Γ is 
separable, then Γ/Λ is separable. �
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Lemma 4.3. Let Γ be a Polish space. A measure μ on B(Γ ) is concentrated on a transversal if and only if there exists a 
(B(Γ /Λ), B(Γ ))-measurable function τ : Γ/Λ → Γ satisfying τ (γ̃ ) ∈ π−1({γ̃ }), γ̃ ∈ Γ/Λ, and∫

Γ

f (γ )μ(dγ ) =
∫

Γ/Λ

∫
Γ

f (γ )δτ(γ̃ )(dγ )μπ−1(dγ̃ )

for all f ∈ L1(μ).

Proof. If there exists a function τ with the described properties, according to [14, 24.23] there exists a set D ∈ B(Γ ) with 
D ⊆ τ (Γ/Λ), and we have μ π−1(τ−1(Γ \ D)) = 0. Since τ (Γ/Λ) contains just one element from each Λ-coset, one has 
D ∩ (λ + D) = ∅ for λ ∈ Λ \ {0}. The equality μ(Γ \ D) = μ π−1(τ−1(Γ \ D)) = 0 is a consequence of Corollary 2.4. Assume, 
conversely, that there exists D ∈ B(Γ ) such that μ(Γ \ D) = 0 and D ∩ (λ + D) = ∅ for λ ∈ Λ \ {0}. Choose a transversal 
R ∈ B(Γ ) according to Theorem 3.5 and construct a transversal T := D ∪ [R ∩ (Γ \ π−1(π(D))], T ∈ B(Γ ), by Lemmas 3.4
and 3.6. Let τ be a corresponding (B(Γ /Λ), B(Γ ))-measurable cross-section, and define a measure � by

�(B) :=
∫

Γ/Λ

∫
Γ

1B×Γ/Λ(x, β̃)δτ (β̃)(dγ )μπ−1(dβ̃), B ∈ B(Γ ),

according to Corollary 2.4. Since

�(B) = μπ−1(τ−1(B)) = μπ−1(τ−1(B ∩ D)) = μ(B ∩ D) = μ(B), B ∈ B(Γ ),

and since τ (γ̃ ) ∈ π−1({γ̃ }), for all γ̃ ∈ Γ/Λ, it follows∫
Γ

f (γ )μ(dγ ) =
∫
Γ

f (γ )�(dγ ) =
∫

Γ/Λ

∫
Γ

f (γ )δτ(β̃)(dγ )μπ−1(dβ̃)

=
∫

Γ/Λ

∫
Γ

f (γ )δτ(γ̃ )(dγ )μπ−1(dγ̃ )

by Corollary 2.4. �
Theorem 4.4. Let μ be a measure on B(Γ ) and α ∈ (0, ∞). Assume that Γ is a Polish space. The set P(H) is dense in Lα(μ) if and 
only if the measure μ is concentrated on a transversal.

Proof. The “if-part” is a special case of Theorem 3.8. Assume, conversely, that P(H) is dense in Lα(μ) for some α ∈ (0, ∞). 
It is enough to show that there exists a function τ : Γ/Λ → Γ satisfying the conditions of Lemma 4.3. Choose a transition 
probability w on (Γ /Λ) × B(Γ ) satisfying conditions (i) and (ii) of Theorem 2.5 and a set B̃ ∈ B(Γ /Λ) such that B̃0 ⊆ B̃ , 
μ π−1(B̃) = 0 and P(H) is dense in Lα(w(γ̃ , ·)) for all γ̃ ∈ (Γ /Λ) \ B̃ , cf. Corollary 2.6. Since the functions of P(H) are 
constant on each Λ-coset, there exists a function ψ : (Γ /Λ) \ B̃ → Γ satisfying w(γ̃ , ·) = δψ(γ̃ )(·) for all γ̃ ∈ (Γ /Λ) \ B̃ . It 
is not difficult to see that ψ is (B(Γ /Λ), B(Γ ))-measurable. Choose an arbitrary (B(Γ /Λ), B(Γ ))-measurable cross-section 
χ according to Theorem 3.5. The function τ , which is equal to ψ on (Γ /Λ) \ B̃ and equal to χ on B̃ , has all desired 
properties. �

We conclude the present section by proving an analogous result if Γ is an arbitrary LCA group and Λ is countable.

Theorem 4.5. Let μ be a measure on B(Γ ) and α ∈ (0, ∞). Assume that Λ is countable. The set P(H) is dense in Lα(μ) if and only if 
the measure μ is concentrated on a transversal.

Proof. Since Λ is countable, it is discrete, cf. [13, Corollary to Theorem 2]; hence, it is metrizable and the “if-part” is 
a special case of Theorem 3.8. To prove that μ is concentrated on a transversal if for some α ∈ (0, ∞), P(H) is dense 
Lα(μ), choose a transversal T ∈ B(Γ ) according to Theorem 3.5. For λ ∈ Λ, let μλ be the restriction of μ to B(λ + T ), 
μ̃λ be the translate of μλ to B(T ), i.e. μ̃λ(B) = μλ(λ + B), B ∈ B(T ). Setting μ̃λ(B) := μ̃λ(B ∩ T ), B ∈ B(Γ ), we can extend 
μ̃λ to B(Γ ) and define μ̃ := ∑

λ∈Λ μ̃λ . By Lemma 2.1, all measures just defined are regular. Since μ̃ is concentrated on 
a transversal, the linear space P(H) is dense in Lα(μ̃). For f̃ ∈ Lα(μ̃), define (V f̃ )(γ ) := f̃ (γ − λ) if γ ∈ λ + T , λ ∈ Λ. 
It is not difficult to show that V establishes an isometric isomorphism from Lα(μ̃) into Lα(μ), that V is the identity 
on P(H) and that V −1 f = f μ̃-a. e. for all elements f ∈ Lα(μ) that belong to the range of V , cf. [9, Lemma 2.2]. Let 
hλ be a (B(Γ ), B([0, ∞))-measurable Radon–Nikodym derivative of μ̃λ with respect to μ̃. We can assume that hλ = 0
on Γ \ T and define Tλ := {γ ∈ Γ : hλ(γ ) �= 0}, Tλκ := Tλ ∩ Tκ , λ, κ ∈ Λ, λ �= κ . Since P(H) is assumed to be dense in 
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Lα(μ), there exists f̃ ∈ Lα(μ̃) such that V f̃ = 1λ+Tλκ . From the definition of V f̃ , it follows that for μ̃-a. a. γ ∈ Tλκ one 
has f̃ (γ ) = 1λ+Tλκ (λ + γ ) = 1 as well as f̃ (γ ) = 1κ+Tλκ (κ + γ ) = 0, which yields μ̃(Tλκ ) = 0. Set T ′

λ = ⋃
κ∈Λ\{λ} Tλκ , 

T d
λ := Tλ \ T ′

λ , λ ∈ Λ, D := ⋃
λ∈Λ(λ + T d

λ). Then

μ(Γ \ D) = μ

(⋃
λ∈Λ

(λ + T ) \
⋃
λ∈Λ

(λ + T d
λ)

)

= μ

(⋃
λ∈Λ

((λ + T ) \ (λ + T d
λ)

)
=

∑
λ∈Λ

μ
(
(λ + T ) \ (λ + T d

λ)
)

=
∑
λ∈Λ

μ
(
λ + (T \ T d

λ)
)

=
∑
λ∈Λ

μ̃λ(T \ T d
λ) =

∑
λ∈Λ

μ̃λ

(
(T \ (Tλ \ T ′

λ)
)
)

=
∑
λ∈Λ

μ̃λ

(
(T \ Tλ) ∪ T ′

λ

) =
∑
λ∈Λ

μ̃λ (T \ Tλ) +
∑
λ∈Λ

μ̃λ

(
T ′

λ

) = 0.

If D ∩ (λ + D) �= ∅ for some λ ∈ Λ, there exist λ j ∈ Λ, γ j ∈ Tλ j \ T ′
λ j

, j ∈ {1, 2}, such that λ1 + γ1 = λ + λ2 + γ2; hence, 
λ1 + (T ∩ (λ + λ2 − λ1 + T )) �= ∅. Since T is a transversal, we get λ1 = λ + λ2 and then γ1 = γ2, which implies that λ = 0. 
Thus, μ is concentrated on a transversal. �
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