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In this note, we are interested in entire solutions to the semilinear biharmonic equation

�2u = −u−p, u > 0 in R
N ,

where p > 0 and N ≥ 3. In particular, the stability outside a compact set of the entire radial 
solutions will be completely studied, which resolves the remaining case in [5].
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r é s u m é

Dans cette note, on s’intéresse aux solutions radiales entières de l’équation semilinéaire 
biharmonique

�2u = −u−p, u > 0 dans RN ,

où p > 0 et N ≥ 3. En particulier, on étudie la stabilité en dehors d’un compact des 
solutions radiales entières, et on résout un cas ouvert dans [5].

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this note, we are interested in entire radial solutions to the biharmonic equation

�2u = −u−p, u > 0 in R
N (1.1)

where p > 0 and N ≥ 3.
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Recently, the fourth-order equations have attracted the interest of many researchers. In particular, the existence, mul-
tiplicity, stability, and qualitative properties of solutions to equation (1.1) are studied in many works, especially for radial 
solutions. It has been proved in [6] that, if 0 < p ≤ 1, the equation (1.1) admits no entire smooth solution. It is showed in 
[4,7] that, for any p > 1, there exist radial solutions to (1.1).

Definition 1. A solution u to (1.1) is said stable in � ⊆ R
N if there holds

∫
�

|�φ|2dx − p

∫
�

u−p−1φ2dx ≥ 0 for any φ ∈ C∞
0 (�).

Moreover, a solution u to (1.1) is said stable outside a compact set K if u is stable in RN \ K . For simplicity, we say also 
that u is stable if � = R

N .

We consider the following initial value problem
⎧⎪⎨
⎪⎩

�2u = −u−p for r ∈ [0, Rα,β)

u′(0) = u′′′(0) = 0,

u(0) = α, �u(0) = β;
(1.2)

for any α, β ∈ R, we denote by uα,β the (local) solution to (1.2) and by [0, Rα,β) the maximal interval of existence. Notice 
that the equation (1.2) is invariant under the scaling transformation

uλ(x) = λ
− 4

p+1 u(λx), λ > 0.

Therefore, we need only to consider the case α = 1. We will denote u1,β by uβ . Let p > 1, it is known from [3,5,7] that

• there is no global solution to (1.2) if N ≤ 2;
• for N ≥ 3, there exists β0 > 0 depending on N such that the solution to (1.2) is globally defined if and only if β ≥ β0. 

Furthermore, limr→∞ �uβ ≥ 0 and limr→∞ �uβ = 0 if and only if β = β0;
• for N ≥ 3, any entire solution uβ is stable outside a compact set if β > β0;
• for N = 4, uβ0 is unstable outside every compact set;
• for 5 ≤ N ≤ 12, there exists a critical value pN > 1 (see below for the precise definition) such that, if 1 < p ≤ pN , uβ is 

stable for every β ≥ β0, while for p > pN , there exists β1 > β0 such that uβ is stable if and only if β ≥ β1, and uβ0 is 
unstable outside every compact set;

• for N ≥ 13 and any p > 1, uβ is stable for every β ≥ β0.

Moreover, Warnault [8] proved that equation (1.1) admits no stable solution (radial no not) for N ≤ 4. So it remains to 
consider the eventual stability outside a compact set for N = 3 and β = β0.

The stability property of entire radial solutions is closely related to their asymptotic behaviors. Let us recall the asymp-
totic behaviors showed in [2,3,5]. For N = 3 and β = β0, the following hold:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
r→∞ uβ0(r)r

−1 = � > 0, if p > 3;
lim

r→∞ uβ0(r)r
−1(ln r)−

1
4 = 4

√
2, if p = 3;

lim
r→∞ uβ0(r)r

− 4
p+1 =

[
−Q 4

(
− 4

p + 1

)]− 1
p+1 =: L0, if 1 < p < 3,

(1.3)

where Q 4 is defined by

Q 4(m) := m(m + 2)(N − 2 − m)(N − 4 − m). (1.4)

Remark that equation (1.1) has a singular solution us(r) ≡ L0r
4

p+1 , if Q 4

(
− 4

p+1

)
< 0.

From [2], we know that for N = 3, there exist 3 > p+
c > pc > 1 such that, if p = pc or p = p+

c , then −p Q 4(m) = 9
16 with 

m = − 4
p+1 , and if pc < p < p+

c then −p Q 4(m) > 9
16 . For N ≥ 5, pN is the unique root of

−p Q 4

(
− 4

p + 1

)
= N2(N − 4)2

16

in (1, ∞).
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Theorem A (Theorem 1.6 in [5]). Let N = 3, p > 1. We have:

(i) if p+
c < p < 3 or 1 < p < pc , then uβ0 is stable outside a compact set;

(ii) if pc < p < p+
c , uβ0 is unstable outside every compact set;

(iii) if p ≥ 3, then uβ0 is stable outside a compact set.

Open problem: What is the stability behavior outside compact set when β = β0, N = 3, p = pc or p = p+
c ?

The following result gives the definite answer.

Theorem 1.1. Let N = 3, p = pc or p = p+
c , the solution uβ0 to equation (1.2) is stable outside a compact set.

Indeed, we will prove a refined asymptotic behavior for the radial solution uβ0 and use the following Hardy–Rellich 
inequality with weights, see Corollary 5.4 in [1].

Lemma 1.2. Let N ≥ 3, � = R
N \ B1 , then the following inequality holds

∫
�

|�φ|2dx − N2(N − 4)2

16

∫
�

φ2

|x|4 dx

≥ N2 − 4N + 8

8

∫
�

φ2

|x|4 ln2 |x|dx + 9

16

∫
�

φ2

|x|4 ln4 |x|dx, ∀ φ ∈ C∞
c (�).

(1.5)

2. Proof of Theorem 1.1

Rewrite the equation (1.1) with the radial coordinate.

u(4) + 2(N − 1)

r
u′′′ + (N − 1)(N − 3)

r2
u′′ − (N − 1)(N − 3)

r3
u′ = −u−p .

Denote α := −m = 4
p+1 . Without confusion, from now on we omit the index β0 and fix N = 3, p ∈ (1, 3). Let v(t) =

r−αu − L0 with t = ln r, then v satisfies

v(4) + 2(2α − 1)v ′′′ + (6α2 − 6α − 1)v ′′ + 2(2α − 1)(α2 − α − 1)v ′ − (p + 1)L−(p+1)
0 v + g(v) = 0, (2.1)

where g(v) = (v + L0)
−p − L−p

0 + pL−(p+1)
0 v . As 1 < p < 3, by (1.3), we have limt→∞ v(t) = 0, so g(v) = O (v2) as t → ∞.

The corresponding characteristic polynomial of equation (2.1) is

λ4 + 2(2α − 1)λ3 + (6α2 − 6α − 1)λ2 + 2(2α − 1)(α2 − α − 1)λ − (p + 1)L−(p+1)
0 = 0.

Using MATLAB, we have the following four roots of the above polynomial:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 = 1

2
− α + 1

2

√
5 + 4

√
h(p,α),

λ2 = 1

2
− α − 1

2

√
5 + 4

√
h(p,α),

λ3 = 1

2
− α + 1

2

√
5 − 4

√
h(p,α),

λ4 = 1

2
− α − 1

2

√
5 − 4

√
h(p,α),

where h(p, α) = 1 + pα(2 − α)(1 + α)(α − 1).
Recall that for p = pc or p+

c , there holds −p Q 4(−α) = 9
16 , i.e. pα(2 − α)(α + 1)(α − 1) = 9

16 . Hence h(p, α) = 25
16 and

λ1 = 1

2
− α + 1

2

√
10, λ2 = 1

2
− α − 1

2

√
10, λ3 = λ4 = 1 − 2α

2
, if p = pc or p+

c .

As α ∈ (1, 2) for 1 < p < 3, we see that λ1 > 0, λ2 < λ3 = λ4 < 0. By the variation of parameters method, the solution v to 
(2.1) is given by
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v(t) =
3∑

i=1

Aie
λi t +

3∑
i=1

Bi

t∫
0

eλi(t−s)g(v(s))ds + A4teλ4t + B4

t∫
0

(t − s)eλ4(t−s)g(v(s))ds

= A′
1eλ1t + A2eλ2t + A3eλ3t + A4teλ4t − B1

∞∫
t

eλ1(t−s)g(v(s))ds

+
3∑

i=2

Bi

t∫
0

eλi(t−s)g(v(s))ds + B4

t∫
0

(t − s)eλ4(t−s)g(v(s))ds

where we used the fact that e−λ1s g(v(s)) ∈ L1(R+). As limt→∞ v(t) = 0 and λ1 > 0, there holds A′
1 = 0. Therefore, for any 

ε ∈ (0, −λ4), there exists Cε > 0 such that, for all t ≥ 0,

|v(t)| ≤ Cεe(λ4+ε)t + Cε

∞∫
t

eλ1(t−s)|g(v)(s)|ds + Cε

t∫
0

e(λ4+ε)(t−s)|g(v)(s)|ds.

Moreover, for any δ > 0, there exists M > 0 such that |g(v)(s)| ≤ δ|v(s)| if s ≥ M . Then for t ≥ M ,

|v(t)| ≤ O (e(λ4+ε)t) + Cεδ

∞∫
t

eλ1(t−s)|v(s)|ds + Cεδ

t∫
M

e(λ4+ε)t |v(s)|ds,

= O (e(λ4+ε)t) + CεδK1(t) + CεδK2(t)

(2.2)

with

K1(t) :=
t∫

M

e(λ4+ε)(t−s)|v(s)|ds, K2(t) :=
∞∫

t

eλ1(t−s)|v(s)|ds.

Thanks to (2.2), if we fix δ > 0 small enough such that 2Cεδ ≤ min(λ1, −λ4 − ε), there holds

(K1 − K2)
′(t) = 2|v(t)| + (λ4 + ε)K1(t) − λ1 K2(t)

≤ 2Cεδ(K1 + K2) + (λ4 + ε)K1(t) − λ1 K2 + O (e(λ4+ε)t)

≤ O (e(λ4+ε)t).

Using again limt→∞ v(t) = 0, we have readily

lim
t→∞ K1(t) = lim

t→∞ K2(t) = 0.

Hence, (K2 − K1)(t) ≤ O (e(λ4+ε)t) as t → ∞. Going back to (2.2),

|v(t)| ≤ O (e(λ4+ε)t) + 2CεδK1(t). (2.3)

Consequently,

K ′
1(t) = |v(t)| + (λ4 + ε)K1(t) ≤ O (e(λ4+ε)t) + (2Cεδ + λ4 + ε)K1(t).

So K1(t) = O (e(λ4+ε+2Cεδ)t); we get |v(t)| = O (e(λ4+ε+2Cε δ)t) by (2.3). Let σ = −λ4 − ε − 2Cεδ > 0, we obtain

u(r) = L0rα + rα O (r−σ ), as r → ∞. (2.4)

Finally, let R > 0 be large enough, we apply Lemma 1.2 with N = 3. Recall that p = pc or p+
c , for any φ ∈ C∞

c (R3 \ B R), 
we have then
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∫

R3\B R

|�φ|2dx − p

∫

R3\B R

u−p−1φ2dx

≥
∫

R3\B R

|�φ|2dx − p

∫

R3\B R

r−4
[

L−(p+1)
0 − O (r−σ )

]
φ2dx

=
∫

R3\B R

|�φ|2dx − pL−(p+1)
0

∫

R3\B R

r−4φ2 −
∫

R3\B R

r−4 O (r−σ )φ2dx

=
∫

R3\B R

|�φ|2dx + p Q 4

(
− 4

p + 1

) ∫

R3\B R

r−4φ2 −
∫

R3\B R

r−4 O (r−σ )φ2dx

=
∫

R3\B R

|�φ|2dx − 9

16

∫

R3\B R

r−4φ2 −
∫

R3\B R

O (r−4−σ )φ2dx ≥ 0.

This implies that u is stable outside a compact set. The proof is completed. �
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