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In this article, we construct a commutative unital Banach algebra, in which the property 
‖a2‖ = ‖a‖2 is true for the invertible elements, but cannot be extended to the whole 
algebra.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note, nous construisons une algèbre de Banach unitaire, commutative, dans 
laquelle l’identité ‖a2‖ = ‖a‖2 est vraie pour les éléments inversibles, mais ne peut être 
étendue à toute l’algèbre.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let (A, ‖.‖) be a complex unital Banach algebra with unit 1. Let G(A) and Sing(A) denote the invertible and singular 
elements of A, respectively. The spectrum, the spectral radius, and the resolvent of an element a in A are denoted by σ(a), 
r(a), and ρ(a), respectively. The fact that, in a Banach algebra, r(a) = ‖a‖ if and only if ‖a2‖ = ‖a‖2 for every a ∈ A will be 
used throughout.

It is known that G(A) is an open subset of A, as the open ball of radius 1
‖a−1‖ centered at any invertible element a, 

denoted by B 
(

a, 1
‖a−1‖

)
, is contained in G(A). Hence,

1

‖a−1‖ ≤ dist(a, Sing(A) ≤ 1

r(a−1)

for every a ∈ G(A).
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Definition 1.1 (Condition (B)). An element a ∈ G(A) is said to satisfy condition (B) if

B

(
a,

1

‖a−1‖
)

∩ Sing(A) �= φ.

A Banach algebra A satisfies condition (B) if every a ∈ G(A) satisfies condition (B).

Note that if a ∈ G(A) satisfies condition (B), then the biggest open ball centered at a, contained in G(A), is of radius 
1

‖a−1‖ . If ‖a2‖ = ‖a‖2 for every invertible element a ∈ A, then A satisfies condition (B). C*-algebras also satisfy condition (B). 
For further examples and characterization of such algebras, see [4].

Let X be a compact Hausdorff space. Then the set of complex-valued, continuous functions on X , denoted by C(X), with 
point wise multiplication and the uniform norm 

(‖ f ‖∞ = supx∈X | f (x)|), is a commutative Banach algebra.
A uniform algebra U on a compact Hausdorff space X is a Banach subalgebra of C(X) under the uniform norm, such that 

U separates the points of X and contains the constants. Note that r ( f ) = ‖ f ‖∞ or equivalently ‖ f 2‖∞ = ‖ f ‖2∞ for every 
element f in U . It is known that, if the spectral radius is a norm on a Banach algebra, then the Banach algebra must be 
commutative. This holds in particular if the spectral radius is equal to the original norm. Hence if (A, ‖.‖) is a unital Banach 
algebra such that ‖a2|| = ‖a||2 for all a ∈ A, then there exists a compact Hausdorff space X such that A is isometrically
isomorphic (via the Gelfand map) as a Banach algebra to a uniform algebra on X .

A Banach algebra may be isomorphic to a uniform algebra, but r(a) may not be equal to ‖a‖ or equivalently ‖a2|| �= ‖a||2, 
for some a ∈ G(A), as seen in the following example.

Example 1.2. Let X be a locally compact Hausdorff space and X∞ = X ∪ {∞} denote the one-point compactification of X . 
Then X∞ is a compact Hausdorff space and (C(X∞), ‖.‖∞) is a uniform algebra. Let C0(X) denote the vector space of all 
continuous functions on X that vanish at infinity. C0(X) is a Banach algebra with pointwise multiplication and the uniform 
norm. Since it is not unital, consider the standard unitization of C0(X), which is C0(X)e := C0(X) ×C with multiplication

(a, λ)(b,μ) = (ab + λb + μa, λμ)

and norm defined as

‖(a, λ)‖ = ‖a‖ + |λ|.
(C0(X)e, ‖.‖) is a Banach algebra with unit element (0, 1). For X = [1, ∞), consider the map ψ : C0([1, ∞))e → C([1, ∞)∞)

defined by

ψ( f , λ) = f + λ e,

where e(x) = 1 for every x ∈ [1, ∞)∞ , and each f ∈ C0([1, ∞)) is extended by zero to [1, ∞)∞ . We see that ψ is an 

isomorphism. But 
∥∥∥( −1

1+x2 ,1
)∥∥∥2 �=

∥∥∥∥
( −1

1+x2 ,1
)2

∥∥∥∥, where 
( −1

1+x2 ,1
)

is invertible in (C0([1, ∞))e, ‖.‖), with the inverse 
(

1
x2 ,1

)
.

In [4], Theorem 3, the authors proved that, if A is a commutative Banach algebra that satisfies condition (B), then A
is isomorphic to a uniform algebra (via the Gelfand map) as ‖a‖ ≤ exp(1) r(a) for every a ∈ A, with r(a) = ‖a‖ for every 
a ∈ G(A). In [4], Corollary 1, where the fact that invertible elements are dense in a finite dimensional Banach algebra was 
used, it is proved that if A is a finite-dimensional Banach algebra that satisfies condition (B), then A is commutative if and 
only if ‖a2‖ = ‖a‖2 for every a ∈ A.

The authors raised a question that if Corollary 1 can be generalized to the following: let (A, ‖.‖) be a complex unital 
Banach algebra satisfying condition (B), is it true that A is commutative iff ‖a2‖ = ‖a‖2 for every a ∈ A?

The answer to the above question is in the negative. We give an example of a commutative unital Banach algebra that 
satisfies condition (B) (and hence is isomorphic to a uniform algebra with ‖a2‖ = ‖a‖2 for every a ∈ G(A)), but still there 
exists an a ∈ A such that ‖a2‖ �= ‖a‖2. Note that the answer to the above question is positive if G(A) is dense in (A, ‖.‖). 
Regarding denseness, there is a complete characterization for commutative Banach algebra ([2] Proposition 3.1): let (A, ‖.‖)
be a commutative Banach algebra, then A has dense invertible group if and only if the topological stable rank of A is one. 
Recently, Dawson and Feinstein [1] also investigated the condition that a complex commutative Banach algebra has dense 
invertible group.

2. Example

Example 2.1. Let D̄ = {z ∈ C : |z| ≤ 1} and D = {z ∈ C : |z| < 1}. Let A(D̄) be the set of those functions in C(D̄) that are 
analytic on D . Consider U = (A(D̄), ‖.‖∞), the disc algebra on D̄ , where ‖.‖∞ denotes the uniform norm,

‖ f ‖∞ = sup{| f (t)| : t ∈ D̄}
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and multiplication is pointwise. U is a uniform algebra and r( f ) = ‖ f ‖∞ for every f ∈ U . Note that, in this case, G(U ) is 
not dense in U , as any element in G(U ) is either identically zero or has all its zeros contained in the unit circle (see [3]).

For any f ∈ U , let

p( f ) := inf

{ n∑
i=1

‖ f i‖∞ : f =
n∑

k=1

f i, f i ∈ G(U )

}

where the infimum is taken over all representations of f as a finite combination of elements of G(U ). The set of such 
representations is non empty as f = ( f − λ 1) + λ 1 for f ∈ U and λ ∈ ρ( f ). Now (A(D̄), p(.)) is a normed algebra with the 
following properties:

(1) p( f ) = ‖ f ‖∞ = r( f ) ( f ∈ G(U ))

(2) ‖ f ‖∞ ≤ p( f ) ≤ 3‖ f ‖∞ ( f ∈ A(D̄)). We have p( f ) ≤ 3‖ f ‖∞ , as every 0 �= f ∈ A(D̄) can be expressed as f + (1 +
ε)‖ f ‖∞ − (1 + ε)‖ f ‖∞ for any ε > 0.

Clearly, (A(D̄), p(.)) is isomorphic to the disc algebra, but not isometrically isomorphic. That is, ‖ f ‖∞ �= p( f ) for some 
f ∈ A(D̄).

In fact, we have p( f ) ≥ e
2 | f ′(0)| for every f (where e = exp(1)).1 To show this, consider a non-constant function 

f ∈ G(U ). Since f (z) �= 0 for every z ∈ D̄ , there exists an analytic function g : D̄ −→ C such that f = eg . We can scale f
such that f (0) = 1 (since we are estimating ‖ f ‖∞

| f ′(0)| ). We may assume g(0) = 0. Therefore, g(z) = αz + . . . , where α = f ′(0). 
Now ‖ f ‖∞ = esup(�g) . Let β = sup(�g), and define the conformal map h from D onto the region �z < β as h(z) = 2βz

1+z . 
Note that β > 0 by the open mapping theorem. Applying Schwarz Lemma to h−1 ◦ g , we get |g′(0)| ≤ |h′(0)| i.e. |α|

2 ≤ β . 
Hence

e
|α|
2 ≤ eβ = esup�g = ‖ f ‖∞.

Thus

min|α|∈R
e

|α|
2

|α| ≤ min
f ∈G(U )

‖ f ‖∞
| f ′(0)| .

Since min|α|∈R e
|α|
2

|α| = e
2 , we have ‖ f ‖∞ ≥ e

2 | f ′(0)| for every f ∈ G(U ).

Now let f ∈ A(D̄) and let f = ∑n
i=1 f i , where f i ∈ G(U ). Then we have

n∑
i=1

‖ f i‖∞ ≥ e

2

n∑
i=1

| f i
′(0)| = e

2
| f ′(0)|

and hence p( f ) ≥ e
2 | f ′(0)|. Considering the function f (z) = z for all z ∈ D̄ , we get p( f ) ≥ e

2 | f ′(0)| = e
2 ‖ f ‖∞ , i.e. 

p( f ) �= r( f ).
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