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For Grassmann varieties, we explain how the duality between the Gelfand–Tsetlin poly-
topes and the Feigin–Fourier–Littelmann–Vinberg polytopes arises from different positive 
structures.
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r é s u m é

Nous expliquons, pour les variétés grasmanniennes, comment la dualité entre les polytopes 
de Gelfand–Tsetlin et les polytopes de Feigin–Fourier–Littelman–Vinberg émerge dans dif-
férentes structures positives.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Plabic graphs (planar bicoloured graphs) were introduced by Postnikov [8] to parametrize cells in the totally non-negative 
(TNN) Grassmannians (Grk,n(R))≥0. These graphs are drawn inside a disk with boundary vertices labelled by 1, 2, . . . , n in a 
fixed orientation and internal vertices coloured black and white. For a reduced plabic graph G corresponding to the top cell 
in the TNN-Grassmannian (Grn−k,n(R))≥0, Rietsch and Williams [10] constructed a family of polytopes for positive integers 
r as Newton–Okounkov bodies [5,7] associated with the line bundle r ∈ Z ∼= Pic(Grn−k,n(C)).

When the plabic graph G := Grec
k,n is chosen as in [10] (see Section 4.2), the corresponding Newton–Okounkov body NOG

is unimodularly equivalent to the Gelfand–Tsetlin polytope GT1
n−k,n .

The Newton–Okounkov body is by definition a closed convex hull of points; even when it is a polytope, to read off 
its defining inequalities is a hard problem. In [10], the authors used mirror symmetry of Grassmannians to obtain these 
inequalities from the tropicalization of the super-potential on an open set of the mirror Grassmannian arising from the 
Landau–Ginzburg model. By applying this symmetry, they give explicit defining inequalities of NOG .

Lattice points in Gelfand–Tsetlin polytopes parametrize the bases of finite-dimensional irreducible representations of the 
Lie algebra sln . Motivated by a conjecture of Vinberg, another family of polytopes, called FFLV polytopes, is found by Feigin, 
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the second author, and Littelmann [3], whose lattice points also parametrize the bases of finite- dimensional irreducible 
representations of sln .

For a plabic graph G , its mirror G∨ is defined by swapping the black/white colouring of internal vertices in G . When the 
plabic graph G corresponds to the top cell in (Grn−k,n(R))≥0, G∨ parametrizes the top cell in (Grk,n(R))≥0.

Theorem 1. The Newton–Okounkov body NOG∨ is unimodularly equivalent to FFLV1
k,n (see Section 4.1 for definition).

Another way to relate Gelfand–Tsetlin polytopes to FFLV polytopes is via a connection between the corresponding clusters 
in different cluster algebras. Each reduced plabic graph G gives a cluster C consisting of Plücker coordinates �I1 , . . . , �Im

where I1, . . . , Im are some (n − k)-element subsets of [n] = {1, 2, . . . , n}.
For I ⊂ [n], let Ic denote its complement. Then the set C′ = {�Ic

1
, . . . , �Ic

m
} is a cluster for Grk,n(C), corresponding to a 

plabic graph G∨ .

Corollary 1. The Newton–Okounkov body NOG∨ is unimodularly equivalent to FFLV1
k,n.

2. Plabic graphs

We recall the definition and basic properties of plabic graphs, following [8,10].

Definition 1. A plabic graph is an undirected planar graph G satisfying:

(1) G is embedded in a closed disk and considered up to homotopy;
(2) G has n vertices on the boundary of the disk, called boundary vertices, which are labelled clockwise by 1, 2, . . . , n;
(3) all other vertices of G are strictly inside the disk, they are called internal vertices and coloured in black and white;
(4) each boundary vertex is incident to a single edge.

In [8] (see also [10]), there are three local moves defined on plabic graphs: gluing two vertices of the same colour, 
removing redundant vertices, and mutating a square. For a plabic graph G , let F(G) denote the set of its faces, which is 
invariant under the local moves.

Definition 2. A plabic graph G is called reduced if there are no parallel edges after applying any sequences 
of local moves.

Definition 3. Let G be a reduced plabic graph. The trip Ti starting from a boundary vertex i is the path going through the 
edges of G , obeying the following rules:

(1) at each internal black vertex, the path turns to the rightmost direction;
(2) at each internal white vertex, the path turns to the leftmost direction.

The trip Ti ends at a boundary vertex π(i). We associate in this way a trip permutation πG := (π(1), . . . , π(n)) with G . Let 
πk,n = (n − k + 1, n − k + 2, . . . , n, 1, 2, . . . , n − k). The face labelling of G is the injective map λG : F(G) → ([n]

k

)
(the set of 

k-element subsets of {1, . . . , n}) defined as follows: for a face F ∈ F(G), λG(F ) consists of those i such that F is to the left 
of the trip Ti . We set VG := λG(F(G)).

See Fig. 1 for an example.

3. Polytopes arising from plabic graphs

We associate polytopes with plabic graphs following [10]. Let K = R or C be the base field.

3.1. Positive Grassmannians

For 0 < k < n, let Matk,n denote the set of k × n-matrices with entries in K. For J ∈ ([n]
k

)
and A ∈ Matk,n , let � J (A)

denote the maximal minor of A corresponding to columns in J .
Let Grk,n be the Grassmann variety embedded into PN−1 via the Plücker embedding where N = (n

k

)
. The minors {� J |

J ∈ ([n]
k

)} give the Plücker coordinates on Grk,n . When the base field is R, the totally non-negative (resp. totally positive) 
Grassmannian (Grk,n(R))≥0 consists of those elements in Grk,n having non-negative (resp. positive) Plücker coordinates.
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Fig. 1. Plabic graph G of trip permutation π4,7 and face labelling λG .

3.2. Perfect orientations

To study flow models on plabic graphs, we fix a perfect orientation O on G . Such an orientation requires that, at 
each black (resp. white) internal vertex, there is exactly one edge going out (resp. going in). It is shown in [9] that each 
reduced plabic graph admits an acyclic perfect orientation. Once such an orientation is fixed, we denote the source set by 
IO := {i ∈ [n] | i is a boundary source of O}; its complement Ic

O is the set of boundary sinks.

For I ∈ ([n]
k

)
, let xI be a variable. For i ∈ IO and j ∈ Ic

O , let Pi, j be the set of directed paths from i to j. For such a 
directed path γ , let Fγ (G) denote the set of faces to the left of γ . A flow F from IO to J ∈ ([n]

k

)
is a collection of pairwise 

vertex-disjoint directed paths in G going from IO\(IO ∩ J ) to J\(IO ∩ J ).
For a directed path γ ∈Pi, j , we define the weight of γ in C[xI | I ∈ ([n]

k

)] by:

wt(γ ) :=
∏

F∈Fγ (G)

xλG (F ).

The weight of a flow is the product of the weights of the paths it contains. For J ∈ ([n]
k

)
, we define P J to be the sum of the 

weights of all flows from IO to J .
For a reduced plabic graph G of trip permutation πn−k,k with perfect orientation O, there exists only one face F∅

to the right of all directed paths with λG(F∅) = {n − k + 1, · · · , n}. We set V◦
G := VG\{λG(F∅)}, �G := {xI | I ∈ VG} and 

�◦
G := {xI | I ∈ V◦

G}.

Theorem 2 ([8,12]). Let X := Grk,n(C) and C(X) be the field of rational functions on X. There exists an isomorphism of fields:

C(X) ∼=C(xI | xI ∈ �◦
G), � J �→ P J .

The choice of the perfect orientation O will only change the formula of P J by a scalar. We always assume that the 
choice IO = {1, 2, · · · , k} is made.

Let < be a total order on �G . It induces a term order < on monomials in �G by taking the lexicographic order. Let f
be a polynomial in Plücker coordinates of X. By Theorem 2, f can be written as a polynomial in �◦

G :

f =
∑

a∈ZV◦
G

caxa, where xa =
∏

I∈V◦
G

xaI
I if a = (aI )I∈V◦

G .

Let νG : C(X)∗ → Z
V◦

G be the minimal term valuation on C(X) with respect to the above total order.
Let Lk denote the very ample line bundle on X generating Pic(X). It gives the Plücker embedding. The space of global 

sections H0(X, Lr
k), as a representation of GLn(C), is isomorphic to V (r�k)

∗ , where the latter is the dual of the finite-
dimensional irreducible representation of highest weight r�k (�k is the k-th fundamental weight). The homogeneous 
coordinate ring C[X] := ⊕

r≥0 H0(X, Lr
k) is embedded into C(X) by sending s ∈ H0(X, Lr

k) to s/�r
[k] .

Definition 4. The Newton–Okounkov body associated with Lk , νG and the lexicographic order is defined by:

NOG := conv

⎛
⎝⋃

r≥1

{
νG(s)/r | s ∈ H0(X,Lr

k)\{0}}
⎞
⎠.
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We set NO1
G := conv({νG(s) | s ∈ H0(X, Lk)\{0}}) ⊆ NOG . For the issue on whether this inclusion is proper (i.e., whether 

NOG is integral), see [10, Theorem 15.17].

4. Duality between Newton–Okounkov bodies

4.1. Order polytopes and chain polytopes

Let (P , ≤P ) be a poset with covering relation ≺. Stanley [11] associated two Ehrhart equivalent polytopes, the order 
polytope and the chain polytope, with this poset. We recall here a dilated version of them.

For r ∈ N>0, we denote the dilated order polytope O(P , r) to be the representation of the poset P on the interval [0, r]
with the order on real numbers:

O(P , r) := HomPoset((P ,≤P ), ([0, r],≤)) ⊆ R
P .

The dilated chain polytope C(P , r) ⊆R
P has the following facets: for any p ∈ P , xp ≥ 0; for any maximal chain p1 ≺ · · · ≺ ps , 

xp1 + · · · + xps ≤ r, where xp is the coordinate of p ∈ P in RP .
Stanley [11] showed that the integral points of the chain polytope C(P , 1) are given by the characteristic functions of 

the anti-chains in P . In particular, the element p ∈ P gives an integral point χp in C(P , 1).
In the following, we fix 1 ≤ k ≤ n − 1, and let (Pk,n, ≤) be the poset given by the elements pi, j , where 1 ≤ i ≤ k and 

k + 1 ≤ j ≤ n, with covering relations

pi+1, j ≺ pi, j and pi, j+1 ≺ pi, j.

The polytope O(Pk,n, r) is the Gelfand–Tsetlin polytope GTr
k,n for the representation V (r�k) of sln ([4]); while C(Pk,n, r) is 

the Feigin–Fourier–Littelmann–Vinberg polytope FFLVr
k,n ([1,3]) of the same representation.

For a polytope Q ⊂ R
m , let S(Q ) := Q ∩ Z

m denote the set of integral points in it. The following integer decompo-
sition properties hold: the r-fold Minkowski sum of S(O(Pk,n, 1)) (resp. S(C(Pk,n, 1))) coincides with S(O(Pk,n, r)) (resp. 
S(C(Pk,n, r))).

Moreover, if a = {pi1, j1 , . . . , pis, js } is an anti-chain in Pk,n , then one has, for the corresponding lattice points, χa =
χpi1, j1

+ . . . + χpis , js
∈ C(Pk,n, 1).

Proposition 1. Suppose that Q is an integral polytope in RPk,n such that

• #S(Q ) = #S(FFLV1
k,n);

• there is a parametrization of the lattice points in Q by anti-chains in Pk,n sending an anti-chain a to ya ∈ R
Pk,n such that, for any 

anti-chain a = {pi1, j1 , . . . , pis, js }, the relation ya = ypi1, j1
+ . . . + ypis , js

holds;
• there is a linear map of determinant 1 expressing ypi, j in terms of χpi, j .

Then the assignment χpi, j �→ ypi, j induces a unimodularly equivalence from FFLV1
k,n to Q .

4.2. Duality of polytopes from positive structures

We refer the reader to [10, Section 7.1] for the definition of the rec-plabic graph Grec
k,n . For example, the plabic graph in 

Fig. 1 is Grec
4,7.

The following has been shown in [10, Lemma 15.2]:

Proposition 2. The Newton–Okounkov body NOGrec
k,n

is unimodularly equivalent to the Gelfand–Tsetlin polytope GT1
n−k,n.

We define the dual rec-plabic graph (Grec
k,n)∨ by swapping the black/white colour of the internal vertices, reversing the 

perfect orientation and changing the boundary labelling r �→ r + n − k mod n. The dual rec-plabic graph is a plabic graph of 
trip permutation πk,n with a perfect orientation. The face labelling in (Grec

k,n)∨ of a face F in Grec
k,n is given by the complement:

λ(Grec
k,n)∨(F ) = (λGrec

k,n
(F ))c .

Notice that in (Grec
k,n)∨ , for a boundary source i and a boundary sink j, the flow from i to j of strongly minimal weight 

(we borrow the notion of strongly minimal from [10, Definition 5.13]) is given by a “vertical” path starting from i followed 
by a “horizontal” path ending in j. We denote this path by γ min

i, j (see Fig. 2 for an example for γ min
3,6 ).

Proposition 3. In the dual rec-plabic graph (Grec
k,n)∨ , let {i1 < . . . < ir} be a subset of the sources and { j1 > . . . > jr} be a subset of the 

sinks. Let J = {i1, . . . , ir, j1, . . . , jr}. Then the unique flow F( J ) of strongly minimal weight is given by {γ min , . . . , γ min}.
i1, j1 ir , jr
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Fig. 2. Plabic graph G∨ , with a minimal path from 3 to 6.

Proof. Since the paths of strongly minimal weight do not intersect, the flow of minimal weight is given by the union of 
these paths. �
Theorem 3. The Newton–Okounkov body NO(Grec

k,n )∨ is unimodularly equivalent to the FFLV polytope FFLV1
k,n.

Proof. We first set Q = NO1
(Grec

k,n )∨ and verify the conditions in Proposition 1 to show that Q is unimodularly equivalent to 

FFLV1
k,n by a linear map.

The polytope Q is a lattice polytope satisfying #S(Q ) = #S(FFLV1
k,n) (the valuation images of the Plücker coordinates are 

different). Let f i× j := ν(Grec
k,n )∨ (γ min

i, j ). We define a linear map

ψ : FFLV1
k,n −→ Q , χpi, j �→ f i× j.

We label a basis on the right-hand side indexed by the faces of the plabic graph and a basis on the left-hand side indexed 
by the elements pi, j . Using row operations, one can show straightforwardly, that the matrix of ψ corresponding to these 
bases has determinant 1.

Since ψ is linear, NO(Grec
k,n )∨ is unimodularly equivalent to FFLV1

k,n . �
Remark 1. We set (Grec

k,n)w0 to be the plabic graph obtained from Grec
k,n by replacing each I = {i1, . . . , in−k} by I w0 = {n + 1 −

in−k, . . . , n +1 − i1}. This is nothing but applying a maximal Green sequence of mutations [6] to the cluster variables in Grec
k,n . 

Then one can show similarly to the theorem above, that the Newton–Okounkov body NO(Grec
k,n)w0

is unimodularly equivalent 
to FFLV1

n−k,n .
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[7] R.K. Lazarsfeld, M. Mustaţă, Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009) 783–835.
[8] A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math /0609764.
[9] A. Postnikov, D. Speyer, L. Williams, Matching polytopes, toric geometry, and the non-negative part of the Grassmannian, J. Algebraic Comb. 30 (2) 

(2009) 173–191.
[10] K. Rietsch, L. Williams, Newton–Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians, arXiv:1712 .00447, 2017, preprint.
[11] R. Stanley, Two poset polytopes, Discrete Comput. Geom. 1 (1) (1986) 9–23.
[12] K. Talaska, A formula for Plücker coordinates associated with a planar network, Int. Math. Res. Not. (2008), rnn-081.

http://refhub.elsevier.com/S1631-073X(18)30154-7/bib4142533131s1
http://refhub.elsevier.com/S1631-073X(18)30154-7/bib4142533131s1
http://refhub.elsevier.com/S1631-073X(18)30154-7/bib463136s1
http://refhub.elsevier.com/S1631-073X(18)30154-7/bib4665466F4C3131s1
http://refhub.elsevier.com/S1631-073X(18)30154-7/bib47543530s1
http://refhub.elsevier.com/S1631-073X(18)30154-7/bib4B4Bs1
http://refhub.elsevier.com/S1631-073X(18)30154-7/bib4B4Bs1
http://refhub.elsevier.com/S1631-073X(18)30154-7/bib4B656Cs1
http://refhub.elsevier.com/S1631-073X(18)30154-7/bib4B656Cs1
http://refhub.elsevier.com/S1631-073X(18)30154-7/bib4C4D3039s1
http://refhub.elsevier.com/S1631-073X(18)30154-7/bib506F73s1
http://refhub.elsevier.com/S1631-073X(18)30154-7/bib5053573039s1
http://refhub.elsevier.com/S1631-073X(18)30154-7/bib5053573039s1
http://refhub.elsevier.com/S1631-073X(18)30154-7/bib5257s1
http://refhub.elsevier.com/S1631-073X(18)30154-7/bib5374s1
http://refhub.elsevier.com/S1631-073X(18)30154-7/bib54616C3038s1

	Symmetries on plabic graphs and associated polytopes
	1 Introduction
	2 Plabic graphs
	3 Polytopes arising from plabic graphs
	3.1 Positive Grassmannians
	3.2 Perfect orientations

	4 Duality between Newton-Okounkov bodies
	4.1 Order polytopes and chain polytopes
	4.2 Duality of polytopes from positive structures

	Acknowledgements
	References


