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Any positive matrix M = (Mi, j)
m
i, j=1 with each block Mi, j square satisfies the symmetric 

norm inequality ‖M‖ ≤ ‖ ∑m
i=1 Mi,i +∑m−1

i=1 ωi I‖, where ωi (i = 1, . . . , m −1) are quantities 
involving the width of numerical ranges. This extends the main theorem of Bourin and 
Mhanna (2017) [4] to a higher number of blocks.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Toute matrice positive M = (Mi, j)
m
i, j=1 écrite en blocs carrés Mi, j satisfait ‖M‖ ≤

‖ ∑m
i=1 Mi,i + ∑m−1

i=1 ωi I‖, où les quantités ωi , i = 1, . . . , m − 1, font intervenir la largeur 
du domaine des valeurs numériques. Ceci étend le théorème principal de Bourin, Mhanna 
(2017) [4] aux matrices écrites avec un nombre de blocs arbitraire.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Bourin and Mhanna recently obtained a novel norm inequality for positive block matrices.

Theorem 1.1. [4] Let M =
(

M1,1 M1,2
M1,2 M2,2

)
be a positive matrix with each block square. Then for all symmetric norms

‖M‖ ≤ ‖M1,1 + M2,2 + ωI‖,
where ω is the width of the numerical range of M1,2.

The numerical range (or the field of values [7]) is a convex set on the complex plane. By the width of a numerical range, 
we mean the smallest possible ω such that the numerical range is contained in a strip of width ω. In particular, if the 
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numerical range of M1,2 is a line segment (this happens, for example, when M1,2 is Hermitian or skew-Hermitian), then 
the previous theorem gives (see [8, Theorem 2.6])

‖M‖ ≤ ‖M1,1 + M2,2‖. (1)

To the author’s best knowledge, Mhanna’s study [8] provides the first example for (1) to be true without the PPT (i.e. 
positive partial transpose) condition. We refer to [6,2] for some motivational background.

Bourin and Mhanna’s proof of Theorem 1.1 makes use of a useful decomposition for 2 × 2 positive block matrices [1, 
Lemma 3.4]. Their approach seems difficult for an extension to a higher number of blocks, as remarked in their paper [4]. 
It is the purpose of the present paper to provide such an extension. Before closing this section, we fix some notation. The 
set of m × n complex matrices is denoted by Mm×n and we use Mn for Mn×n . The n × n identity matrix is denoted by I . 
The Hermitian part of A ∈ Mn is �A := (A + A∗)/2. For two Hermitian matrices A, B ∈ Mn , we write A ≥ B to mean A − B
is positive semidefinite. The numerical range of A is denoted by W (A). If A, B ∈ Mn , then we write W (A ± B) to mean 
W (A + B) and W (A − B). It is useful to notice that if the width of W (A) is ω, then one can find a θ ∈ [0, π] such that

r I ≤ �(eiθ A) ≤ (r + ω)I

for some r ∈R. We refer the reader to Chapter 1 of [7] for basic properties of the numerical range for matrices.

2. Main result

Our extension of Theorem 1.1 to a higher number of blocks is as follows.

Theorem 2.1. Let M = (Mi, j)
m
i, j=1 be a positive matrix with each block Mi, j ∈ Mn. Then for all symmetric norms,

‖M‖ ≤ ‖
m∑

i=1

Mi,i +
m−1∑
i=1

ωi I‖,

where ωi (i = 1, . . . , m − 1) is the average of the widths of W (Mi,i+1 ± Mi,i+2 ± · · · ± Mi,m).

Proof. By Fan’s dominance theorem [7, p. 206], it suffices to show that the inequality is true for the Ky Fan norms ‖ · ‖k , 
k = 1, . . . , n. The proof is by induction. The base case m = 2, i.e. Theorem 1.1 was treated in [4]. We include a proof for 

completeness. The presentation is slightly different from that in [4]. As M is positive, we may write M =
(

X∗
Y ∗

)(
X Y

)
for some X, Y ∈ M2n×n so that M1,1 = X∗ X, M1,2 = X∗Y , M2,2 = Y ∗Y . Clearly, ‖M‖k = ‖X X∗ + Y Y ∗‖k . As the norm of M is 
invariant if we replace Y with eiθ Y , we may assume that r I ≤ �(X∗Y ) ≤ (r +ω)I for some r ∈R and that ω is the width of 
W (M1,2). Compute

‖M‖k = 1

2
‖(X + Y )(X + Y )∗ + (X − Y )(X − Y )∗‖k

≤ 1

2

(
‖(X + Y )(X + Y )∗‖k + ‖(X − Y )(X − Y )∗‖k

)

= 1

2

(
‖(X + Y )∗(X + Y )‖k + ‖(X − Y )∗(X − Y )‖k

)

≤ 1

2

(
‖X∗ X + Y ∗Y + 2(r + ω)I‖k + ‖X∗ X + Y ∗Y − 2r I‖k

)
= ‖X∗ X + Y ∗Y + ωI‖k = ‖M1,1 + M2,2 + ωI‖k.

This completes the proof of the base case. Suppose the asserted inequality is true for m = � for some � > 2. Then we 
consider the m = � + 1 case. In this case, M could be written in the form

M =

⎛
⎜⎜⎜⎝

X∗
1 X1 · · · X∗

1 X� X∗
1 X�+1

...
...

...

X∗
� X1 · · · X∗

� X� X∗
� X�+1

X∗
�+1 X1 · · · X∗

�+1 X� X∗
�+1 X�+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

X∗
1
...

X∗
�

X∗
�+1

⎞
⎟⎟⎟⎠

(
X1 · · · X� X�+1

)

for some X, Y ∈ M(�+1)n×n . Again, we assume (by multiplying X�+1 with a rotation unit) that

sI ≤ �(X∗
� X�+1) ≤ (s + ω�)I (2)

for some s ∈R.
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Consider the following � × � block positive matrices

M1 =

⎛
⎜⎜⎜⎝

X∗
1
...

X∗
�−1

(X� + X�+1)
∗

⎞
⎟⎟⎟⎠

(
X1 · · · X�−1 X� + X�+1

)

and

M2 =

⎛
⎜⎜⎜⎝

X∗
1
...

X∗
�−1

(X� − X�+1)
∗

⎞
⎟⎟⎟⎠

(
X1 · · · X�−1 X� − X�+1

)
.

Let αi (i = 1, . . . , � − 2) be the average of the widths of

W (X∗
i Xi+1 ± · · · ± X∗

i X�−1 ± X∗
i (X� + X�+1)),

and let α�−1 be the width of W (X∗
�−1(X� + X�+1)). Similarly, let βi (i = 1, . . . , � − 2) be the average of the widths of

W (X∗
i Xi+1 ± · · · ± X∗

i X�−1 ± X∗
i (X� − X�+1)),

and let β�−1 be the width of W (X∗
�−1(X� − X�+1)). We observe that

ωi = αi + βi

2
, i = 1, . . . , � − 1.

By the inductive hypothesis,

‖M1‖k ≤ ‖
�−1∑
i=1

X∗
i Xi + (X� + X�+1)

∗(X� + X�+1) +
�−1∑
i=1

αi I‖k,

‖M2‖k ≤ ‖
�−1∑
i=1

X∗
i Xi + (X� − X�+1)

∗(X� − X�+1) +
�−1∑
i=1

βi I‖k.

Furthermore, by (2), we have

‖M1‖k ≤ ‖
�+1∑
i=1

X∗
i Xi + 2(s + ω�)I +

�−1∑
i=1

αi I‖k,

‖M2‖k ≤ ‖
�+1∑
i=1

X∗
i Xi − 2sI +

�−1∑
i=1

βi I‖k.

Now we proceed to estimating the norm of M ,

‖M‖k = ‖X1 X∗
1 + · · · + X�−1 X∗

�−1 + X� X∗
� + X�+1 X∗

�+1‖k

=
∥∥∥∥X1 X∗

1 + · · · + X�−1 X∗
�−1 + 1

2
(X� + X�+1)(X� + X�+1)

∗ + 1

2
(X� − X�+1)(X� − X�+1)

∗
∥∥∥∥

k

≤ 1

2
‖X1 X∗

1 + · · · + X�−1 X∗
�−1 + (X� + X�+1)(X� + X�+1)

∗‖k

+1

2
‖X1 X∗

1 + · · · + X�−1 X∗
�−1 + (X� − X�+1)(X� − X�+1)

∗‖k

= 1

2
(‖M1‖k + ‖M2‖k)

≤ 1

2

∥∥∥∥∥
�+1∑
i=1

X∗
i Xi + 2(s + ω�)I +

�−1∑
i=1

αi I

∥∥∥∥∥
k

+ 1

2

∥∥∥∥∥
�+1∑
i=1

X∗
i Xi − 2sI +

�−1∑
i=1

βi I

∥∥∥∥∥
k

=
∥∥∥∥∥

�+1∑
i=1

X∗
i Xi +

�∑
i=1

ωi I

∥∥∥∥∥
k

=
∥∥∥∥∥

�+1∑
i=1

Mi,i +
�∑

i=1

ωi I

∥∥∥∥∥
k

.

Thus the asserted inequality is true for m = � + 1, so the proof of induction step is complete. �
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The previous theorem contains an important special case of Hiroshima’s theorem [2, Corollary 2.2] when all off-diagonal 
blocks are Hermitian.

Corollary 2.2. Let M = (Mi, j)
m
i, j=1 be a positive matrix with each block Mi, j ∈ Mn. If all off-diagonal blocks are Hermitian or all 

off-diagonal blocks are skew-Hermitian, then for all symmetric norms,

‖M‖ ≤ ‖
m∑

i=1

Mi,i‖.

For general X, Y ∈ Mn , it is clear that W (X + Y ) ⊂ W (X) + W (Y ), but there is no simple comparison relation between 
the width of W (X + Y ) and the widths of W (X) and W (Y ), for example, when X is Hermitian and Y is skew-Hermitian. 
Therefore, it seems interesting to capture a special case of Theorem 2.1 for block tridiagonal matrices.

Corollary 2.3. Let A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 X1 0 · · · 0

X∗
1 A2 X2

.

.

.

0 X∗
2

. . .
. . . 0

.

.

.
. . . Am−1 Xm−1

0 · · · 0 X∗
m−1 Am

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

be a positive matrix with each block in Mn. Then for all symmetric norms

‖A‖ ≤ ‖
m∑

i=1

Ai +
m−1∑
i=1

ωi I‖,

where ωi are widths of W (Xi), i = 1, . . . , m − 1.

In [3], it was conjectured that, if M1,2 in the positive 2 ×2 block matrix M is normal, then one still has (1). The conjecture 
was denied for n ≥ 3; see [2] and [5]. Mhanna [8, Remark 2.7] pointed out, however, under the normality assumption (1) is 
true when n = 2. This is because the numerical range of a normal matrix coincides with the convex hull of its eigenvalues 
[7, Property 1.2.9], and so the width of the numerical range of a 2 × 2 normal matrix is zero. Since the sum of normal 

matrices is no longer normal in general, e.g., A =
(

0 1
1 0

)
, B =

(
0 1

−1 0

)
. We have been unable to answer the following 

question.

Question 2.4. Let M = (Mi, j)
m
i, j=1 be a positive matrix with each Mi, j ∈ M2 being normal. Is it true that for all symmetric 

norms

‖M‖ ≤ ‖
m∑

i=1

Mi,i‖?

Clearly, for Question 2.4, it suffices to show the inequality is true for the usual operator norm. On the other hand, we no-
tice Question 2.4 would be implied by an affirmative answer to the following question, which is evidenced by Corollary 2.3.

Question 2.5. Let M = (Mi, j)
m
i, j=1 be a positive matrix with each block Mi, j ∈ Mn . Is it true that for all symmetric norms

‖M‖ ≤ ‖
m∑

i=1

Mi,i +
∑
i< j

ωi, j I‖,

where ωi, j are widths of W (Mi, j), 1 ≤ i < j ≤ m?
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