

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical analysis

Super-multiplicativity and a lower bound for the decay of the signature of a path of finite length

Supermultiplicativité et une borne inférieure pour la décroissance de la signature d'un chemin de longueur finie

Jiawei Chang^a, Terry Lyons^{a,c}, Hao Ni^{b,c}

^a Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Rd, Oxford OX2 6GG, United Kingdom

^b Department of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom

^c The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, United Kingdom

ARTICLE INFO

Article history: Received 11 May 2018 Accepted 17 May 2018 Available online 22 May 2018

Presented by the Editorial Board

ABSTRACT

For a path of length L > 0, if for all $n \ge 1$, we multiply the *n*-th term of the signature by $n!L^{-n}$, we say that the resulting signature is '*normalised*'. It has been established (T. J. Lyons, M. Caruana, T. Lévy, Differential equations driven by rough paths, Springer, 2007) that the norm of the *n*-th term of the normalised signature of a bounded-variation path is bounded above by 1. In this article, we discuss the super-multiplicativity of the norm of the signature of a path with finite length, and prove by Fekete's lemma the existence of a non-zero limit of the *n*-th root of the norm of the *n*-th term in the normalised signature as *n* approaches infinity.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Pour une trajectoire de longueur L > 0, si l'on multiplie le *n*-ième terme de la signature par $n!L^{-n}$ pour tout $n \ge 1$, la signature ainsi obtenue est dite «*normalisée*». Il a été établi (T. J. Lyons, M. Caruana, T. Lévy, Differential equations driven by rough paths, Springer, 2007) que la norme du *n*-ième terme de la signature normalisée d'une trajectoire à variation bornée est majorée par 1. Dans cet article, nous étudions la super-multiplicativité de la norme de la signature d'une trajectoire de longueur finie, et nous démontrons, à l'aide du lemme de Fekete, l'existence d'une limite non nulle lorsque *n* tend l'infini pour la racine *n*-ième de la norme du *n*-ième terme de la signature normalisée.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

https://doi.org/10.1016/j.crma.2018.05.010

E-mail addresses: jiawei.chang@maths.ox.ac.uk (J. Chang), tlyons@maths.ox.ac.uk (T. Lyons), h.ni@ucl.ac.uk (H. Ni).

¹⁶³¹⁻⁰⁷³X/© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Super-multiplicativity of the signature in reasonable tensor algebra norms

Definition 1. Let $\{V_j\}_{j=1}^N$ be normed vector spaces over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Their algebraic tensor product space is defined as the vector space

$$V_1 \otimes ... \otimes V_N = \left\{ \sum_{i \in I} v_i^1 \otimes ... \otimes v_i^N : v_i^j \in V_j, \quad \forall i \in I, |I| < \infty, J = 1, ..., N \right\},\$$

where we identify $(u + v) \otimes w = u \otimes w + v \otimes w$, and $u \otimes (v + w) = u \otimes v + u \otimes w$.

Definition 2. If $\phi_j \in V'_i$ are bounded linear functionals on V_j , j = 1, ..., N, then we define the dual action of $\phi_1 \otimes ... \otimes \phi_N$ on $V_1 \otimes ... \otimes V_N \to \mathbb{F}$ by

$$(\phi_1 \otimes \ldots \otimes \phi_N)(\sum_{i \in I} v_i^1 \otimes \ldots \otimes v_i^N) := \sum_{i \in I} \prod_{j=1}^N \phi(v_i^j)$$

for all $v_i^j \in V_j$, $j = 1, ..., N, i \in I$, $|I| < \infty$. The map is well defined and independent of the representation on the right-hand side.

Now we state the properties of the norms on tensor products that are required for this article.

Definition 3 (*Reasonable tensor algebra norm*). Let $V, V \otimes V, ..., V^{\otimes n}$ be normed vector spaces. We assume that, for all $v \in V$ $V^{\otimes n}, w \in V^{\otimes m},$

$$\|v \otimes w\| \le \|v\| \|w\| \tag{1}$$

and the norm induced on the dual spaces satisfies that for all $\phi \in (V^{\otimes m})', \psi \in (V^{\otimes n})'$,

$$\|\phi \otimes \psi\| \le \|\phi\| \|\psi\|. \tag{2}$$

Moreover, if S(n) denotes the symmetric group over $\{1, 2, ..., n\}$, we assume that, for all n > 1,

 $\|\sigma(v)\| = \|v\| \quad \forall \sigma \in S(n), v \in V^{\otimes n}.$

Proposition 1 (Ryan [4]). Let X and Y be normed vector spaces. If $\|\|\|$ is a tensor norm on $X \otimes Y$ that satisfies

 $\|v \otimes w\| < \|v\| \|w\| \quad \forall v \in X, w \in Y;$

and the norm induced on the dual spaces satisfies

 $\|\phi \otimes \psi\| \le \|\phi\| \|\psi\| \quad \forall \phi \in X', \psi \in Y',$

then || || is called a reasonable cross norm, and $||x \otimes y|| = ||x|| ||y||$ for every $x \in X$ and $y \in Y$; for every $\phi \in X'$ and $\psi \in Y'$, the norm of the linear functional $\phi \otimes \psi$ on $(X \otimes Y, || ||)$ satisfies $||\phi \otimes \psi|| = ||\psi|| ||\psi||$.

Using Proposition 1 implies that the inequalities in Equation (1) and (2) imply equality.

Remark 1. Note that under the assumptions of Definition 3 for all $a \in V^{\otimes m}$, $b \in V^{\otimes n}$, $c \in V^{\otimes l}$,

 $\|(a \otimes b) \otimes c\| = \|a \otimes (b \otimes c)\| = \|a\| \|b\| \|c\|.$

(

We provide some examples of tensor norms that are reasonable tensor algebra norms.

Definition 4. Let $\{V_i\}_{i=1}^N$ be normed vector spaces over \mathbb{F} . The *projective tensor norm* on $V_1 \otimes ... \otimes V_N$ is defined such that, for $x \in V_1 \otimes ... \otimes V_N$,

$$\|x\|_{\pi} := \inf \left\{ \sum_{i \in I} \|v_i^1\| \dots \|v_i^N\| : x = \sum_{i \in I} v_i^1 \otimes \dots \otimes v_i^N, v_i^j \in V_j \, \forall i \in I, \, |I| < \infty \right\}.$$

The injective tensor norm on $V_1 \otimes ... \otimes V_N$ is defined such that for $x = \sum_{i \in I} v_i^1 \otimes ... \otimes v_i^N \in V_1 \otimes ... \otimes V_N$, $i \in I$, $|I| < \infty$,

$$\|x\|_{\delta} := \sup\{|\sum_{i \in I} \prod_{j=1}^{N} \phi_j(v_i^j)| : \phi_j \in V'_j, \|\phi_j\| \le 1 \,\forall j = 1, ..., N\}$$

for any representation of *x*.

Lemma 1. The projective tensor norm and the injective tensor norm defined in Definition 4 both satisfy the properties stated in Definition 3. Moreover, if α is a reasonable cross norm on $X \otimes Y$, and $u \in X \otimes Y$, then

$$\|x\|_{\delta} \leq \alpha(x) \leq \|x\|_{\pi}.$$

Furthermore, any reasonable tensor algebra norm is sandwiched between the injective and projective tensor norms.

The proof of Lemma 1 is omitted here.

Lemma 2. The Hilbert-Schmidt norm is a reasonable tensor algebra norm.

The proof of Lemma 2 is omitted here.

Definition 5. Let $V, V \otimes V, ..., V^{\otimes n}$ be Banach completed spaces equipped with a reasonable tensor algebra norm compatible with the norm on V, and $\gamma : J \to V$ be a continuous path with finite length. The *signature* of γ is denoted by

$$S = (1, S_1, S_2, ..., S_n, ...),$$
 (3)

where, for each $n \ge 1$, $S_n = \int_{u_1 < ... < u_n, u_1, ..., u_n \in J} d\gamma_{u_1} \otimes ... \otimes d\gamma_{u_n}$.

Remark 2. Note that the *n*-th term of *S* lives in the completed Banach space $V^{\otimes n}$ whenever the algebraic tensor product is completed with a reasonable tensor algebra norm.

From now on, we will fix a Banach space V, a reasonable tensor algebra norm, and we will take $V^{\otimes n}$ to be the completion of the algebraic tensor product with respect to that reasonable tensor algebra norm.

Definition 6 (Shuffle product). The shuffle product is defined inductively to be bilinear, and so that

$$u \otimes a \sqcup v \otimes b := (u \sqcup v \otimes b) \otimes a + (u \otimes a \sqcup v) \otimes b$$

for any $a, b \in V$.

Definition 7 (Group-like elements). Define

$$\tilde{T}((V)) := \{(a_0, a_1, a_2, ...) : a_n \in V^{\otimes n} \, \forall n \ge 1, a_0 = 1\}.$$

An element $\mathbf{a} \in \tilde{T}((V))$ is called *group-like* if for all $\phi, \psi \in (\tilde{T}((V)))'$,

 $\phi \sqcup \! \sqcup \! \psi(\mathbf{a}) = \phi(\mathbf{a})\psi(\mathbf{a}).$

Theorem 1. Suppose $\gamma : J \to V$ is a path of finite length. Then, for $m, n \ge 0$, the signature of γ satisfies

 $||(m+n)!S_{m+n}|| \ge ||n!S_n|| ||m!S_m|| \quad \forall m, n \ge 0,$

where || || is any reasonable tensor algebra norm. $V^{\otimes 0}$ is defined to be \mathbb{F} , and $S_0 = 1$.

Proof. By Hahn–Banach's Theorem, there exists $\phi_n \in (V^{\otimes n})'$, $\phi_m \in (V^{\otimes m})'$ such that $\|\phi_n\| = 1$, $\|\phi_m\| = 1$, and

$$\phi_n(S_n) = ||S_n||, \ \phi_m(S_m) = ||S_m||.$$

Equivalently, we can write

$$\phi_n(S) = \|S_n\|, \ \phi_m(S) = \|S_m\|,$$

where we define $\phi_k(x) = 0$ for $x \notin V^{\otimes k}$ for all $k \ge 0$. From [3], we know that *S* is group-like; hence,

$$\phi_m \sqcup \downarrow \phi_n(S) = \phi_m(S)\phi_n(S) = \|S_m\| \|S_n\|.$$

(4)

Also,

$$\phi_m \sqcup \phi_n(S_{m+n}) = \sum_{\sigma \in \text{Shuffles}(m,n)} \sigma(\phi_m \otimes \phi_n)(S_{m+n})$$
$$= \sum_{\sigma \in \text{Shuffles}(m,n)} (\phi_m \otimes \phi_n)(\sigma^{-1}(S_{m+n})),$$

SO

 $|\phi_m \sqcup \phi_n(S_{m+n})| \leq \# \text{shuffles}(m, n) \|\phi_m \otimes \phi_n\| \|S_{m+n}\|.$

Note that #shuffles $(m, n) = \frac{(m+n)!}{n!m!}$, and by Definition 3 we know that

$$\|\phi_m \otimes \phi_n\| \le \|\phi_m\| \|\phi_n\| = 1.$$

Hence

 $||(m+n)!S_{m+n}|| \ge ||n!S_n|| ||m!S_m||$

as expected. \Box

Corollary 1. *If* $S_j = 0$, *then* $S_k = 0$ *for* k = 1, ..., j.

Proof. The proof follows from Theorem 1. \Box

2. Limiting behaviour

We note the following lemma by Fekete [5].

Theorem 2 (Fekete's Lemma). If a sequence of real numbers $\{a_n\}_{n\in\mathbb{N}}$ satisfies the sub-additivity condition

 $a_{m+n} \leq a_m + a_n \quad \forall m, n \in \mathbb{N}.$

Then

$$\lim_{n\to\infty}\frac{a_n}{n}=\inf_{n\in\mathbb{N}}\frac{a_n}{n}.$$

Theorem 3 (Asymptotic behaviour of the signature). If $\gamma : J \to V$ is a continuous tree-reduced path of finite length L > 0, then, under any reasonable tensor algebra norm $\| \|$, there exists a non-zero limit \tilde{L} such that

$$\begin{split} &\lim_{n \to \infty} \|n! S_n\|^{1/n} \\ &= \sup_{k \ge 1} \|k! S_k\|^{1/k} \\ &= \tilde{L} > 0. \end{split}$$

Proof. By Theorem 1, we know that, for all $m, n \ge 0$,

 $||(m+n)!S_{m+n}|| \ge ||n!S_n|| ||m!S_m||.$

Taking logarithm gives

 $-\log(\|(m+n)!S_{m+n}\| \le -\log(\|n!S_n\|) - \log(\|m!S_m\|).$

So the function $f(n) := -\log(||n!S_n||/L^n)$ satisfies $f(m+n) \le f(m) + f(n)$ for all $m, n \in \mathbb{N}$. Then, by Fekete's lemma [5], $\frac{1}{n}\log(||n!S_n||)$ converges to $\sup_{k\ge 1}\log(||k!S_k||)/k$; hence, $||n!S_n||^{1/n}$ converges to $\sup_{k\in \mathbb{N}}||k!S_k||^{1/k}$. Note that, by Hambly and Lyons [2], every path of finite length has a unique tree-reduced¹ version with the same signature if the tree-reduced path is non-trivial, then there will be at least one term in the signature of the path which is non-zero. Hence $\sup_{k\ge 1}||k!S_k||^{1/k}$ is non-zero. Therefore, $||n!S_n||^{1/n}$ converges to a non-zero limit as n increases. \Box

¹ Roughly speaking, a tree-reduced path is a path where it does not go back on cancelling itself over any interval.

Corollary 2. Let V be a Banach space. For any element

$$\mathbf{a} = (a_0, a_1, a_2, \ldots) \in \left\{ (b_0, b_1, b_2, \ldots) : b_0 = 1, b_n \in V^{\otimes n} \, \forall n \ge 1 \right\}$$

which is group-like, we have

 $||(m+n)!a_{m+n}|| \ge ||m!a_m|| ||n!a_n|| \quad \forall m, n \ge 0,$

and $||n!a_n||^{1/n}$ converges to $\sup_{k \in \mathbb{N}} ||k!a_k||^{1/k}$ as n increases under any reasonable tensor algebra norm ||||.

Proof. Note that since **a** is group-like, the same arguments apply as in Theorem 1 and Theorem 3. \Box

Remark 3. It is an interesting question to ask whether there is a nice and simple form of the limit of $||n!S_n||^{1/n}$ mentioned in Theorem 3, and whether the limit is the same under any reasonable tensor algebra norm. Moreover, we know from [3] that for a path with finite length L > 0, an upper bound of $||n!S_n||$ is L^n . Furthermore, Lyons and Hambly [2] proved that, for a smooth enough path of finite length, the ratio $||n!S_n||/L^n$ converges to 1 under certain norms. Therefore, we have the following conjecture.

Conjecture 1. Let V be a Banach space, and $\gamma : J \rightarrow V$ be a path with finite length L > 0. Then the signature of γ satisfies that

 $||n!S_n||^{1/n} \to L \text{ as } n \to \infty,$

under any reasonable tensor algebra norm.

Remark 4. An interesting tensor norm to consider is the *Haagerup tensor norm* [1]. Clearly, the Haagerup norm is not a reasonable tensor algebra norm; however, under the Haagerup norm, for a path of finite length L > 0, we still have $n! || S_n || \le L^n$. Therefore, it is an interesting question to ask whether the signature will have the same behaviour as described in Theorem 3 under the Haagerup tensor norm, or the symmetrised forms of the Haagerup tensor norm.

Remark 5. Although it has been shown that $||n!S_n||$ eventually behaves like L^n under certain norms for well-behaved paths (see [2]), some simple examples show that, in general, for a path with finite length, $||n!S_n||/L^n$ does not necessarily converge to 1 as *n* increases. The result in Theorem 3 is the best description we have found about the decay of the signature for a path with finite length.

For a *p*-variation path where p > 1, by considering simple examples, we can see that we cannot have a non-zero limit for $||(n/p)!S_n||^{1/n}$ as *n* increases.

Acknowledgements

The authors thank Yves Le Jan, who provided a translation into French of the abstract. We also thank Xi Geng and David Blecher for useful discussions.

Source of funding

This work was supported by The Alan Turing Institute under the EPSRC grant EP/N510129/1.

References

- [1] D.P. Blecher, V.I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (2) (1991) 262-292.
- [2] B. Hambly, T. Lyons, Uniqueness for the signature of a path of bounded variation and the reduced path group, Ann. of Math. (2) 171 (1) (2010) 109–167.
- [3] T.J. Lyons, M. Caruana, T. Lévy, Differential Equations Driven by Rough Paths, Springer, 2007.
- [4] R.A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Science & Business Media, 2013.
- [5] J.M. Steele, Probability Theory and Combinatorial Optimization, vol. 69, Society for Industrial and Applied Mathematics (SIAM), 1997.