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The multiplicatively advanced differential equations (MADEs) of form f (n)(t) = α f (βt) with 
α �= 0, β > 1 are studied along with a class of their solutions of type fμ,λ(t) defined 
on [0, ∞). For λ ∈ Q+, μ ∈ R, the solutions fμ,λ(t) are extended to (−∞, ∞) in a non-
unique manner to obtain Schwartz wavelet solutions Fμ,λ(t) of the original MADE, with 
all moments of Fμ,λ(t) vanishing. Examples are studied in detail. The Fourier transform 
of each Fμ,λ(t) is computed and, in a number of examples, is related to the Jacobi theta 
function. Additional conditions sufficient for the uniqueness of certain MADE initial value 
problems are given. Conditions for decay and non-decay at −∞ are obtained. Decay rates 
at ±∞ in terms of familiar functions are established.
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r é s u m é

Des équations différentielles multiplicativement avancées (MADE) de la forme f (n)(t) =
α f (βt) avec α �= 0, β > 1 sont étudiées dans le cadre des solutions de type fμ,λ(t)
définies sur [0, ∞). Pour λ ∈Q+, μ ∈R, les solutions fμ,λ(t) sont prolongées sur (−∞, ∞)

d’une manière non unique pour obtenir des solutions ondelettes dans l’espace de Schwartz 
Fμ,λ(t) de l’originale MADE, avec tous les moments de Fμ,λ(t) nuls. Des exemples sont 
étudiés en détail. La transformée de Fourier de chaque Fμ,λ(t) est calculée et, dans 
un certain nombre d’exemples, est liée à la fonction thêta de Jacobi. Des conditions 
supplémentaires suffisantes pour l’unicité de la solution de certaines MADE avec condition 
initiale sont données. Les conditions de décroissance et de non-décroissance à −∞ sont 
obtenues. Les taux de décroissance à ±∞ en termes de fonctions familières sont établis.
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1. Introduction: multiplicatively advanced differential equations (MADEs)

This article is a study of homogeneous multiplicatively advanced differential equations (MADEs) of the form

f (n)(t) = α f (βt) or equivalently f (n)(t) − α f (βt) = 0, (1)

where α �= 0 and β > 1. Note that the argument βt in the second term of (1) is multiplicatively advanced by the advancing 
parameter β > 1, making (1) a MADE. We shall approach this study through the examination of a new class of functions 
fμ,λ(t) given in the following definition.

Definition 1.1. Let q > 1, μ ∈R, and λ > 0. Then for t ≥ 0, the function fμ,λ(t) is given by

fμ,λ(t) ≡
∞∑

m=−∞
(−1)m e−qmt

qm(m−μ)/λ
. (2)

From (2), observe that | fμ,λ(t)| ≤ ∑∞
m=−∞ 1/qm(m−μ)/λ < ∞. So fμ,λ(t) is bounded and converging uniformly on t ∈

[0, ∞). For λ rational, the fμ,λ(t) satisfy the MADE (18) below, which by choice of parameters involved can be shown to be 
equivalent to (1). This equivalence is shown in the Remark 7 following Theorem 2.2 below. Note that if one complexifies the 
argument t to obtain the complex argument z in (2), then the above bound | fμ,λ(z)| ≤ ∑∞

m=−∞ 1/qm(m−μ)/λ < ∞ still holds 
for z in the right half-plane R(z) ≥ 0. As the uniform limit of the analytic functions given by the truncated summations (for 
m ranging from −N to N in (2) as N → ∞), fμ,λ(z) is analytic [28] on the open right half-plane R(z) > 0. Thus fμ,λ(t) is 
real analytic in t on (0, ∞) and it is C∞ in t on [0, ∞). For these values of t , it is also real analytic in the parameters μ
and λ, but only C∞ in the parameter q > 1.

After obtaining the properties of fμ,λ(t) on the positive half-line [0, ∞) including the MADE that each solves, the fμ,λ(t)
are extended to Fμ,λ(t) globally defined and C∞ on all of the real line. These Fμ,λ(t) also satisfy the original MADE satisfied 
by fμ,λ(t). The extensions Fμ,λ(t) are shown to be decaying rapidly at ±∞ and are in fact Schwartz wavelet functions 
on R. As decaying global functions, they are amenable to Fourier transform computations, which are obtained and seen to 
be related to the Jacobi theta function in a range of cases. Ultimately, this study expands the connection between global 
solutions of MADEs such as (1) with the harmonic analysis of Schwartz wavelets, which, in turn, can be connected with 
the special function theory of the Jacobi theta function. As a first such connection, we point out that the formal MacLaurin 
series for fμ,λ(t) is given by

∑
n≥0

f (n)
μ,λ(0)

n! zn =
∑
n≥0

(−1)nθ(q2/λ;−q(μ+nλ−1)/λ)

n! zn , (3)

where θ(q; u) is the Jacobi theta function given by (22) below, and where equality in (3) follows from (12) and (28). As will 
be seen in general in the proof of Proposition 2.3 below, the formal MacLaurin series given by (3) has radius of convergence 
0 when fμ,λ(t) is not flat at t = 0. Hence, fμ,λ(t) and its extension Fμ,λ(t) cannot be real analytic at t = 0. Thus, in this 
study we restrict Fμ,λ(t) to t on the real line in the C∞(R) case, as opposed to attempting to extend the fμ,λ(z) analytically 
beyond the imaginary axis in the complex plane, which in many cases is problematic via the Remark 4 at the end of this 
section. In special cases, methods of extending exponential series beyond a natural boundary, such as the imaginary axis 
encountered in (2), are well studied, see for instance [5]. Also, restriction of fμ,λ(z) to the imaginary axis z = it yields an 
almost periodic function of t , as per p. 289 of [1], see also [2], [3].

While the MADE (1) may at first appear counter-intuitive, its solutions for special values of μ and λ are generating a 
number of interesting applications. These special case applications include: modeling tsunami waves [25]; modeling rogue 
waves [25]; obtaining Schwartz functions qCos(t) and q Sin(t) which well-approximate cos(t) and sin(t), respectively, on 
compact sets as q → 1+ [24], as illustrated in Fig. 1; obtaining smooth Schwartz approximations of the Haar wavelet [27]; 
obtaining Schwartz approximations of truncated Legendre polynomials [26], [27]; and obtaining Schwartz approximations 
of spherical Bessel functions of the first kind [27]. The majority of these solutions also turn out to be Schwartz wavelets 
generating wavelet frames for L2(R), and in turn these solutions comprise a rich set within each Lp(R) space and have 
good decay and localization while satisfying perturbations of classic differential equations (see Remark 8 after Theorem 2.2). 
The solutions of (1) will also provide further interesting applications to physics. Each of the solutions described in the 
applications above relate to special function theory in the sense that all of them have Fourier transforms that can be 
expressed in terms of the Jacobi theta function (see (22) below). A pattern is emerging that clarifies the relation of solutions 
of MADEs such as (1) to: wavelets and wavelet frames, special function theory, approximation theory, self-similarity, and 
physical applications.

Thus the MADE (1) and the functions (2) deserve study in their own right. We note that Definition 1.1 is motivated by and 
generalizes: (i) the results in [22], where the mother wavelet K (t) = f−1,2(t) was shown to satisfy the MADE K ′(t) = K (qt)
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Fig. 1. Left: y = cos(x) (solid red) approached by y = q Cos(t) for: q = 1.5 (dotted blue), q = 1.2 (dashed green). Right: y = sin(x) (solid red) approached by 
y = q Sin(t) for: q = 1.5 (dotted blue), q = 1.2 (dashed green).

with K (t) related to the Jacobi theta function, and (ii) the results in [24], where the mother wavelets q Cos(t) (which is 
f0,1(t) normalized by the scale factor 1/ f0,1(0)) and q Sin(t) (which is f1,1(t) also scaled by 1/ f0,1(0)) were studied. In 
this second setting one has the MADEs qCos′′(t) = −q qCos(qt) and q Sin′′(t) = −q2

q Sin(qt), which are perturbations of the 
harmonic oscillator f ′′(t) = − f (t) parameterized by the perturbation/advancing parameter q > 1. As q approaches 1 from 
above, these second-order MADE perturbations approach the classical harmonic oscillator, and their L2 solutions qCos(t)
and q Sin(t) converge uniformly to cos(t) and sin(t) on compact sets of R, as shown in [24] and illustrated in Fig. 1. Thus, 
the current study of the fμ,λ(t) can be seen as a more comprehensive, but comparable, study of global solutions of more 
general MADEs which are perturbations of classical ODE’s. Furthermore, this study lays the ground work for understanding 
the convergence of these Schwartz MADE solutions to their classical analogues, generalizing the convergence seen in Fig. 1.

To place things in historical context, observe that the functions fμ,λ(t) given in (2) are Dirichlet-like series. Classical 
general Dirichlet series take the form 

∑∞
m=0 am exp(−λm t) where it is assumed that m ≥ 0 and the spectrum consisting of 

the λm is increasing and unbounded, see [9]. However, in equation (2) above, the m fall in Z giving a double-sidedness to 
the series (as m → −∞ or as m → ∞); also the spectrum λm = qm is geometric in nature, increasing in m, and becoming 
unbounded as m approaches ∞. In contrast to the case of classical Dirichlet series, the spectrum λm = qm accumulates to 0
as m approaches −∞.

The use of Dirichlet-like series has previously occurred in the study of other multiplicatively advanced/delayed func-
tional differential equations. For instance, in [30] Zhang shows that, for 0 < q < 1, a Dirichlet-like series of form F (μ; q, x) =
C(μ, q) 

∑
m≥0 A(μ, q, m)e−qmx given in (2.1) of [30] [with geometric decreasing spectrum λm = qm accumulating to 0] sat-

isfies the multiplicatively delayed functional differential pantograph equation (0.2) of [30], namely y′(x) = qμ y(qx) − y(x). 
Also, for 0 < q < 1, in Lemma 22 and 24 of [12], a family of multiplicatively delayed q-difference partial differential equa-
tions is studied with the aid of Dirichlet-like series. In their case, the spectrum λm = Dqdm is geometric, decreasing, and 
accumulating to 0. They also utilize a decay estimate at infinity similar in spirit to Proposition 8.1 below (which under 
reciprocation of the argument yields a flatness condition at 0). In Lemma 3 of [15] for q > 1 a related Dirichlet like series 
with decreasing geometric spectrum accumulating to 0 is used to obtain a decay estimate that is also similar to Proposi-
tion 8.1 below in the study of multiplicatively advanced partial differential equations. Decay rates similar to Proposition 8.1
were obtained in [20], and also appear in [23–26]. In equation (4) and Lemma 9 of [17] and in Lemma 30 of [13] other 
Dirichlet-like series with decreasing non-geometric spectra of form λm = 1/(m + 1)α accumulating to 0 occur, where they 
are used to obtain key estimates. Related and interesting references also include [16], [11], [14], [18].

In [7], conditions are given for unique solutions possessing exponential decay. However, though the MADE (1) in the 
case n = 1 relates to the advanced differential equation under study in Dung’s paper, [7], it does not meet a key assumption 
required in [7] to obtain uniqueness and exponential decay. This is discussed here in detail at the end of Section 8.1. 
Instead, and in contrast to [7], we obtain generic decay rates at ±∞ of type K1|t|−K2 ln |t|+K3 via Proposition 8.1 below, and 
we encounter non-uniqueness.

This study proceeds as follows. For λ ∈ Q+ and μ ∈ R, the multiplicatively advanced differential equations (MADEs) 
satisfied by the fμ,λ(t) are determined. A key extension problem is solved, namely, for λ ∈ Q+ extension of fμ,λ(t) to 
the whole real line is accomplished, obtaining decaying extensions Fμ,λ(t) and in special cases, non-decaying bounded 
solutions. The Fμ,λ(t) are shown to be Schwartz wavelets with all moments vanishing (see [4], [19] for related discussion). 
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Explicit examples are constructed, which illustrate our process and which show that the assumptions required to obtain 
extension of fμ,λ(t) to (−∞, 0] are generic in nature. Fourier transforms are computed and related to the Jacobi theta 
function. Non-uniqueness of such extensions as well as of solutions to initial value problems (IVPs) with initial values given 
at t = 0 is demonstrated. Additional conditions sufficient for uniqueness are obtained. Detailed proofs of decay rates at ±∞
and of relations to Jacobi theta functions are given.

Before proceeding further, we provide a few contextual remarks.

Remark 1. Note that a solution of (1) by f (t) will allow for a solution of the related MADE

g(n)(t) = αg(βt + δ) , (4)

by letting

g(t) = f

(
t + δ

β − 1

)
. (5)

To see this, first observe that

g

(
t − δ

β − 1

)
= f (t) , (6)

from which one has

g(n)(t) = f (n)

(
t + δ

β − 1

)
= α f

(
βt + β

δ

β − 1

)
= αg

(
βt + β

δ

β − 1
− δ

β − 1

)
= αg(βt + δ) .

Remark 2. We mention that an inhomogeneous version of the MADE in (1), of form f (n)(t) − α f (βt) = h(t) for a given 
h(t), can be solved with a higher order homogeneous MADE via annihilator techniques [8]. That is, if Ah denotes the 
annihilator of h(t), one sees that a solution of the inhomogeneous MADE falls among the solutions of the related higher-
order homogeneous MADE Ah[ f (n)(t) − α f (βt)] = Ah[h(t)] = 0. As a special example, if h(t) = f−1,2(t) (as in Example 1
in Section 5, or as in Section 7 equation (155) below), then for fixed q > 1, with α = −1/q, β = q in (1), one sees that 
Ah = Dt − Âq is the annihilator of h, where Dt denotes differentiation with respect to t and Âq denotes the advancing 
operator that multiplies the argument of a function by q, (see either: (13) with L = 1 = k and μ = −1, or (102) with 
μ = −1 and λ = 2 below). The inhomogeneous MADE f (1)(t) + (1/q) f (qt) = h(t) has solutions that fall among those of 
[Dt − Âq][Dt + (1/q) Âq] f (t) = [D2

t − (1/q) Âq2 ] f (t) = 0, which is of type (1).

Remark 3. Note that the substitution t = eu and the associated function G(u) = f (eu) converts the MADE (1) to an additively 
advanced differential equation on u ∈ (−∞, ∞) with a u-solution that is in general not a wavelet. However, the t = eu sub-
stitution, ignores the available extension of the solution of the original MADE (1) to t ∈ (−∞, 0], which yields global wavelet 
solutions of (1) on all of t ∈ (−∞, ∞) in the general setting. For instance, in the case that α = 1 and β = q > 1 in (1), one 
has f (1)(t) = f (qt). Letting t = eu and G(u) = f (eu), the resulting differential equation becomes G(1)(u) = eu G(u + ln(q))

for −∞ < u < ∞ (corresponding only to the case that t > 0 and yielding a differential equation with exponential coef-
ficients). The solution G(u) is not in general a wavelet (in the standard Lebesgue measure of R). However, the solutions 
to the original MADE f (1)(t) = f (qt) for t in all of R are seen to be wavelets in general, as seen in Section 4 below, and 
they have physical applications, see for instance [25]. This is strong supporting evidence that the original MADE version of 
the differential equation, namely (1), is the natural version to study. The study of such solutions of (1), along with their 
extensions to the negative real numbers, is a main focal point of this work.

Remark 4. If one replaces e−t by z in (2), sets q > 1 to be an integer, and restricts the index m to lie in N0, then the resulting 
series is 

∑∞
m=0(−1)mzqm

/qm(m−μ)/λ . This series in z has radius of convergence equal to 1. Furthermore, the spectral gaps 
are qm+1/qm = q > 1, and by the Ostrowski–Hadamard theorem (see [10]) the series cannot be analytically extended beyond 
the boundary, namely the unit circle. Thus this series in z is lacunary, and extension of the original complexified series (2)
beyond the imaginary axis is problematic.

Remark 5. We mention that one can also study multiplicatively advanced fractional differential equations. Let F [ f (t)](ω)

denote the Fourier transform of f (t). For ν > 0, take the ν-th fractional derivative of f (t) be

f (ν)(t) ≡ F−1[(iω)νF[ f (t)](ω)](t),
for appropriate branch of (iω)ν , as is done for instance in [29]. Then for q > 1 and for θ(q; u) the Jacobi theta function given 
in (22), let g(ω) ≡ [1/(ωθ(qν ; ων))] for ω > 0 and g(ω) ≡ 0 for ω ≤ 0. We show in Remark 9 in Section 2.1 that f (t) =
F−1[g(ω)](t) satisfies the multiplicatively advanced fractional differential equation f (ν)(t) = iν f (qt), analogous to (1).
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2. Solutions fμ,λ(t) of the MADE f (n)(t) = α f (βt) and their properties

The main goal of this section is to obtain the MADE satisfied by fμ,λ(t) for λ ∈Q+ , namely (18). This is accomplished in 
Theorem 2.2. The equivalence of the MADE (1) to the MADE (18) is established. In addition, related properties of the fμ,λ(t)
are discussed. We begin with two reduction formulas.

Proposition 2.1. Let q > 1, and λ ∈R+ . The following reduction formulas hold. For μ1, μ2 ∈ R with μ2 − μ1 = 2L ∈ 2Z

fμ2,λ(t) = (−1)LqL(L+μ1)/λ fμ1,λ(q
Lt) . (7)

For μ1, μ2 ∈ R with μ2 − μ1 = 2L + 1

fμ2,λ(t) = (−1)LqL(L+μ1+1)/λ fμ1+1,λ(q
Lt) . (8)

Proof. For μ1, μ2 ∈ R with μ2 − μ1 = 2L ∈ 2Z

fμ2,λ(t) =
∞∑

m=−∞
(−1)m e−qmt

qm(m−μ2)/λ
=

∞∑
m=−∞

(−1)m e−qmt

qm(m−2L−μ1)/λ

=
∞∑

M=−∞
(−1)M+L e−qM+Lt

q(M+L)(M−L−μ1)/λ
(9)

=
∞∑

M=−∞
(−1)M+L e−qM (qLt)

q(−L2−Lμ1)/λqM(M−μ1)/λ
, (10)

where the reindexing m = M + L occurs in (9), yielding (10) which is equivalent to (7). The odd case μ2 − μ1 = 2L + 1 in 
(8) follows immediately if one replaces μ1 by μ1 + 1 in (7). �

Setting μ2 = 2L and μ1 = 0 in (7), and μ2 = 2L + 1 and μ1 = 0 in (8), respectively, yields:

Corollary 2.1. Let q > 1, and λ ∈R+ . For any L ∈ Z,

f2L,λ(t) = (−1)LqL2/λ f0,λ(q
Lt) and f2L+1,λ(t) = (−1)LqL(L+1)/λ f1,λ(q

Lt) .

The derivative f ′
μ,λ(t) is computed from (2) as

f ′
μ,λ(t) = d fμ,λ(t)

dt
=

∞∑
m=−∞

(−1)m e−qmt(−qm)

qm(m−μ)/λ

= −
∞∑

m=−∞
(−1)m e−qmt

qm(m−μ−λ)/λ
= − fμ+λ,λ(t) , (11)

from which one concludes that, for n ≥ 0, the higher derivatives satisfy

f (n)
μ,λ(t) = (−1)n

∞∑
m=−∞

(−1)m e−qmt

qm(m−μ−nλ)/λ
= (−1)n fμ+nλ,λ(t) . (12)

Next, for t ≥ 0, we examine the behavior of fμ,λ(t) for rational values of λ.

Theorem 2.2. For λ = 2L/k with L, k ∈ Z+ one has

f (k)
μ,λ(t) = (−1)k+LqL(L+μ)/λ fμ,λ(q

Lt) . (13)

For λ = (2L + 1)/k with L ∈ Z+
0 , k ∈ Z+ one has

f (k)
μ,λ(t) = (−1)k+LqL(L+μ+1)/λ fμ+1,λ(q

Lt) , (14)

and furthermore, for λ = (2L + 1)/k, one has

f (2k)
(t) = −q(2L+1)(2L+1+μ)/λ fμ,λ(q

2L+1t) . (15)
μ,λ
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Define the advancing power A to be the power of q in the coefficient of t on the right hand side of each of (13) and (15) as follows

A ≡
{

L if λ = (2L)/k

2L + 1 if λ = (2L + 1)/k ,
(16)

and denote the order R of the MADE in (13) and (15) by

R ≡
{

k if λ = (2L)/k

2k if λ = (2L + 1)/k .
(17)

Then (13) and (15) can be unified as the following MADE

f (R)
μ,λ(t) = (−1)R+AqA(A+μ)/λ fμ,λ(q

At) , (18)

where A and R are as in (16) and (17), respectively, with λ = 2A/R.

Proof. To prove (13), observe that kλ = k(2L/k) = 2L. Applying (12) by setting n = k yields

f (k)
μ,λ(t) = (−1)k fμ+kλ,λ(t) = (−1)k fμ+2L,λ(t) = (−1)k(−1)LqL(L+μ)/λ fμ,λ(q

Lt) , (19)

where the last equality in (19) follows from the reduction formula (7). To prove (14), observe that kλ = k([2L + 1]/k) =
2L + 1. Applying (12) by setting n = k yields

f (k)
μ,λ(t) = (−1)k fμ+kλ,λ(t) = (−1)k fμ+2L+1,λ(t) = (−1)k(−1)LqL(L+μ+1)/λ fμ+1,λ(q

Lt) , (20)

where the last equality in (20) follows from the reduction formula (8). To prove (15), observe that 2kλ = 2k([2L + 1]/k) =
2(2L + 1). Applying (12) by setting n = 2k yields

f (2k)
μ,λ (t) = (−1)2k fμ+2kλ,λ(t) = fμ+2(2L+1),λ(t) = (−1)2L+1q(2L+1)(2L+1+μ)/λ fμ,λ(q

2L+1t) , (21)

where the last equality in (21) follows from the reduction formula (7).
Now (18) follows immediately from (13) and (15) via (16) and (17). �

Remark 6. The significance of (13) and (15) is that the functions fμ,λ(t) all satisfy multiplicatively advanced differential 
equations (MADEs) in that the variable t in the argument of fμ,λ in the right hand side of (13), respectively (15), has 
been multiplicatively advanced by the scaling qL > 1, respectively q2L+1 > 1. And thus one arrives at the MADE (18), where 
the right hand side is multiplicatively advanced by qA > 1, with A = L or A = 2L + 1 respectively. Hence we have the 
terminology of A as the advancing power and R as the order of (18).

Remark 7. Observe that the MADE (18) is equivalent to the MADE (1) via the following process. First, choose R in (18) to 
be n in (1). Second, choose A in (18) so that the sign of (−1)R+A in (18) equals the sign of α in (1). Third choose q in (18)
so that qA in (18) equals β in (1), that is set q = β1/A . Fourth, set λ in (18) to be 2A/R . Finally, choose μ in (18) so that 
qA(A+μ)/λ in (18) equals |α| in (1), that is, take μ = −A + [2 ln(|α)|]/[R ln(q)]. Thus we have recovered the MADE (1) from 
the MADE (18).

Remark 8. As the parameter q → 1+ , the MADE (18) for fixed R and A can be interpreted as a perturbation of the standard 
differential equation f (R)(t) = (−1)R+A f (t), and the solutions of (18) can be interpreted as perturbations of the solutions 
of f (R)(t) = (−1)R+A f (t) in an appropriate neighborhood of t = 0.

2.1. The Jacobi theta function and its relation to fμ,λ(0)

Next, recall that for q > 1 the Jacobi theta function is given by

θ(q; u) =
∞∑

n=−∞

un

qn(n−1)/2
= μq

∞∏
n=0

(
1 + u

qn

)(
1 + 1

uqn+1

)
, (22)

where

μq =
∞∏(

1 − 1

qn+1

)
. (23)
n=0
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One property of the Jacobi theta function to be used later is that for all p ∈ Z

θ(q;qpu) = qp(p+1)/2upθ(q; u) . (24)

The Jacobi theta function plays a major role in this study, especially in expressing initial conditions, invertibility criteria, and 
residues in Fourier transform computations.

From the product formula in (22), one sees that

θ(q; u) = 0 ⇐⇒ u = −qp for some p ∈ Z . (25)

From the summation formula in (22) one also sees the following useful computational lemma.

Lemma 2.3. For each q > 1, λ > 0, μ ∈R, and a ∈R, one has

∞∑
n=−∞

an

qn(n−μ)/λ
= θ(q2/λ;aq(μ−1)/λ) . (26)

Proof. Consider

∞∑
n=−∞

an

qn(n−μ)/λ
=

∞∑
n=−∞

an(qμ/λ)n

qn(n−0)/λ

q−n/λ

q−n/λ
=

∞∑
n=−∞

(aq(μ−1)/λ)n

qn(n−1)/λ

=
∞∑

n=−∞

(aq(μ−1)/λ)n

(q2/λ)n(n−1)/2
= θ(q2/λ;aq(μ−1)/λ) , (27)

where the second equality in (27) follows from the summation formula in (22). �
From Lemma 2.3 one concludes the following.

Lemma 2.4. For each q > 1, λ > 0, μ ∈R one has

fμ,λ(0) = θ(q2/λ;−q(μ−1)/λ) . (28)

Proof. From (2) one sees that

fμ,λ(0) =
∞∑

n=−∞
(−1)n e−qn·0

qn(n−μ)/λ
=

∞∑
n=−∞

(−1)n

qn(n−μ)/λ
= θ(q2/λ; (−1)q(μ−1)/λ) ,

where the last equality holds from (26). This proves the Lemma. �
From Lemma 2.4 in conjunction with (25), one concludes that

fμ,λ(0) = 0

⇐⇒ θ(q2/λ;−q(μ−1)/λ) = 0

⇐⇒ ∃ p ∈ Z with − q(μ−1)/λ = −q2p/λ

⇐⇒ μ = 2p + 1 is an odd integer. (29)

From the vanishing criterion (29) one obtains the following flatness criterion.

Proposition 2.2. fμ,λ is flat at 0 provided any one of the following equivalent conditions holds:

fμ,λ is flat at 0

⇐⇒ ∀ k ∈ N0 one has f (k)
μ,λ(0) = (−1)k fμ+kλ,λ(0) = 0 (30)

⇐⇒ fμ,λ(0) = 0 and f ′
μ,λ(0) = 0 (31)

⇐⇒ ∃ n ∈N0 with f (n)
μ,λ(0) = 0 and f (n+1)

μ,λ (0) = 0 (32)

⇐⇒ μ is an odd integer and λ is an even integer . (33)
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Proof. The equivalence in (30) is by definition. The forward implications in (30) ⇒ (31) and (31) ⇒ (32) are automatic. 
To show that (32) ⇒ (33), assume f (n)

μ,λ(0) = (−1)n fμ+nλ,λ(0) = 0 and f (n+1)
μ,λ (0) = (−1)n+1 fμ+(n+1)λ,λ(0) = 0. From the 

vanishing criterion (29), we must have that both μ + nλ and μ + (n + 1)λ are odd integers. Thus, as the difference of two 
odd integers, one has (μ + (n + 1)λ) − (μ + nλ) = λ is an even integer. Thus, as the difference of an odd and even integer, 
one has (μ + nλ) − n(λ) = μ is an odd integer, giving the implication (32) ⇒ (33). Finally, assume μ is odd and λ is even. 
Then for all k ∈ N0, one has μ +kλ is odd. Again, by the vanishing criterion (29), one has f (k)

μ,λ(0) = (−1)k fμ+kλ,λ(0) = 0 for 
all k ∈ N0, and thus fμ,λ is flat at 0, and (33) ⇒ (30) is shown. �
Remark 9. We now show Remark 5 of Section 1 regarding multiplicatively advanced fractional differential equations. Let 
F [ f (t)](ω) denote the Fourier transform of f (t) given by (98). For ν > 0, take the ν-th fractional derivative of f (t) to 
be f (ν)(t) ≡ F−1[(iω)νF [ f (t)](ω)](t), for appropriate branch of (iω)ν . By direct computation, one sees in general that 
F [ f (qt)](ω) = (1/q)F [ f (t)](ω/q). Then for q > 1, let g(ω) ≡ [1/(ωθ(qν ; ων))] for ω > 0 and g(ω) ≡ 0 for ω ≤ 0. Then for 
ω > 0

(iω)ν g(ω) = (iω)ν [1/(ωθ(qν;ων))] = iν [1/(ωω−νθ(qν;ων))]
= iν [1/(ω(qν)(−1)(−1+1)/2ω−νθ(qν;ων))]
= iν [1/(ω(qν)(−1)(−1+1)/2(ων)−1θ(qν;ων))]
= iν [1/(ωθ(qν; (ω/q)ν))] = iν(1/q)[1/([ω/q]θ(qν; (ω/q)ν))] = iν(1/q)g(ω/q) , (34)

where (24) justifies the first equality in (34). When ω ≤ 0 one has (iω)ν g(ω) = iν(1/q)g(ω/q) trivially, by vanishing of g(ω)

in this setting. Thus for all ω ∈ R one has (iω)ν g(ω) = iν(1/q)g(ω/q). Taking inverse Fourier transforms of each side of this 
last equality, and setting f (t) =F−1[g(ω)](t), gives that f (ν)(t) = iν f (qt).

2.2. Non-analyticity of extensions of fμ,λ(t) at t = 0

Relying on Proposition 2.2 along with (7) and (12), one sees that neither fμ,λ(t) nor any of its extensions can be analytic 
at t = 0, as is seen in the next proposition.

Proposition 2.3. For λ ∈Q+ , the function fμ,λ(t) (and any extension of fμ,λ(t) to (−∞, 0) with matching derivatives) is not analytic 
at t = 0.

Proof. With A as in (16) and R as in (17), one has λ = 2A/R . For each M ∈N0 one has

f ( j+M R)
μ,λ (t) = (−1) j+M R fμ+[ j+M R]λ,λ(t) = (−1) j(−1)M R fμ+ jλ+M2A,λ(t) (35)

= (−1) j(−1)M R(−1)M AqM A(M A+μ+ jλ)/λ fμ+ jλ,λ(q
M At) , (36)

where the first equality in (35) follows from (12), and the second equality in (35) follows from the fact that Rλ = 2A. 
Equality in (36) follows from the reduction formula (7). Setting t = 0 above gives

f ( j+M R)
μ,λ (0) = (−1) j fμ+ jλ,λ(0)(−1)M R(−1)M AqM A(M A+μ+ jλ)/λ

= f ( j)
μ,λ(0)(−1)M(R+A)qM A(M A+μ+ jλ)/λ , (37)

where the equality in (37) follows from (12).
Now if fμ,λ(t) is flat at t = 0, then fμ,λ(t) cannot be analytic at 0 in that fμ,λ(t) would be the identically 0 function, 

as all of its derivatives are 0. However, such a flat fμ,λ(t) cannot be identically zero (as is shown Corollary 6.4 in Section 6
below). So we assume that fμ,λ(t) is not flat.

In the non-flat case, if fμ,λ(t) were to be analytic at t = 0, one would have that

fμ,λ(z) =
∑
n≥0

f (n)
μ,λ(0)

n! zn (38)

converges with radius of convergence R1 > 0. By Proposition 2.2, Equation (31), one has that f ( j)
μ,λ(0) �= 0 either for j = 0 or 

for j = 1. Fix one such j = 0 or j = 1 with f ( j)
μ,λ(0) �= 0, and note that from (38), one would obtain that

∑ f ( j+M R)
μ,λ (0)

( j + M R)! z j+M R (39)

M≥0
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converges, with radius of convergence R2 ≥ R1 > 0. Dividing by z j and setting u = zR gives that

∑
M≥0

aM uM with aM = f ( j+M R)
μ,λ (0)

( j + M R)! (40)

converges, with u radius of convergence Ru = R R
2 > 0. However, the ratio test gives

∣∣∣∣aM+1

aM

∣∣∣∣ =
∣∣∣∣∣∣

f ( j+[M+1]R)
μ,λ (0)

( j + [M + 1]R)!
/ f ( j+M R)

μ,λ (0)

( j + M R)!

∣∣∣∣∣∣
=

∣∣∣∣∣∣
f ( j)
μ,λ(0)(−1)[M+1][R+A]q[M+1]A([M+1]A+μ+ jλ)/λ

f ( j)
μ,λ(0)(−1)M[R+A]qM A(M A+μ+ jλ)/λ

∣∣∣∣∣∣ · ( j + M R)!
( j + [M + 1]R)! (41)

= q2M A2/λqA[μ+ jλ+A]/λ

( j + M R + 1)( j + M R + 2) . . . ( j + M R + R)
, (42)

where equality in (41) follows from (37). Now (42) implies that the ratio |aM+1/aM | approaches infinity as M → ∞, yielding 
a radius Ru = 0. This contradicts that Ru = R R

2 > 0 from above. Thus fμ,λ(t) cannot be analytic at 0. �
3. Extending fμ,λ(t) to t < 0 for rational λ > 0

In order to compute the Fourier transforms of fμ,λ(t), we will need to obtain an extension of fμ,λ(t) from [0, ∞) to the 
whole real line. Such an extension is the goal of this section, and is accomplished in Theorem 3.2.

We first look for a class of potential extension functions satisfying the same MADE (18) as does fμ,λ(t). Furthermore, 
the derivatives of the extension should match the derivatives of fμ,λ(t) at t = 0. The extensions will be constructed from 
the following class of functions h(c, t) as given immediately below.

Let q > 1 be fixed. For fixed μ ∈ R, c ∈ C∗ , and λ > 0, define the functions

h(c, t) ≡ hμ,λ(c, t) ≡
∞∑

n=−∞
an

e−qnct

qn(n−μ)/λ
, (43)

where, for now, the an ∈ C are arbitrary, with the two constraints that:

∞∑
n=−∞

|an|
qn(n−μ)/λ

converges, and (44)

R(−ct) ≤ 0 where R(z) denotes the real part of z . (45)

These two constraints give that h(c, t) is bounded and converges absolutely for t in the appropriate half-line: (−∞, 0] when 
R(c) ≤ 0; or [0, ∞) when R(c) ≥ 0. For now, the coefficients an are arbitrary with (44)–(45) holding; however, later, in 
order to have (43) satisfy the MADE (18), certain of the coefficients (namely a0, . . . , aA−1) will be freely chosen from R and 
the remaining coefficients an will depend on both the freely chosen coefficients a0, . . . , aA−1 and on the argument c, which 
is selected from the arguments of a class of scaled roots of unity, as determined in (48) through (55) below.

Note also that, for t in the appropriate interval of convergence (namely (−∞, 0] or [0, ∞)), one has

h(m)(c, t) ≡ dmh

dtm
(c, t) = (−c)m

∞∑
n=−∞

an
e−qnct(qn)m

qn(n−μ)/λ
= (−c)m

∞∑
n=−∞

an
e−qnct

qn(n−μ−mλ)/λ
, (46)

when m ≥ 0. When m < 0, we take the |m|-th anti-derivative of h(c, t) to be

h(m)(c, t) = (−c)m
∞∑

n=−∞
an

e−qnct(qn)m

qn(n−μ)/λ
= (−c)m

∞∑
n=−∞

an
e−qnct

qn(n−μ−mλ)/λ
, (47)

as in (85)–(87), where any polynomial term pm(t) of degree |m| − 1 due to integration is set equal to 0 in (47). One 
reason for this is that the anti-derivatives h(m)(c, t) approach 0 at ±∞ precisely when pm(t) ≡ 0, and when R(−ct) < 0 as 
discussed in Section 8.

Let q > 1, μ ∈ R, c ∈ C∗ , and k ∈ N be fixed. We now let λ > 0 be rational with either; i) λ = 2L/k with L ∈ N, or 
ii) λ = (2L + 1)/k with L ∈ N0. Recall from the definition (16) and (17) that: A = L and R = k in the even numerator 
case λ = 2L/k; and A = 2L + 1 and R = 2k in the odd numerator case λ = (2L + 1)/k. Then λ = 2A/R in both cases. Let 
h(c, t) = hμ,λ(c, t) be as in (43) above.
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In order for h(c, t) to satisfy the same MADE as fμ,λ(t), namely (18), one must have that

h(R)(c, t) = (−1)R+AqA(A+μ)/λh(c,qAt) = (−1)R+AqA(A+μ)/λ
∞∑

n=−∞
an

e−qnc(qAt)

qn(n−μ)/λ
, (48)

where the first equality in (48) follows from the hypothesis that (18) is satisfied, and the second equality in (48) follows 
from (43).

Observe that Rλ = 2A, (that is in the even numerator case Rλ = k(2L/k) = 2L = 2A, and in the odd numerator case 
Rλ = (2k)([2L + 1]/k) = 2[2L + 1] = 2A). Thus one has

h(R)(c, t) = (−c)R
∞∑

n=−∞
an

e−qnct

qn(n−μ−Rλ)/λ
= (−c)R

∞∑
n=−∞

an
e−qnct

qn(n−μ−2A)/λ
(49)

= (−1)R cR
∞∑

N=−∞
aN+A

e−qN+Act

q(N+A)(N−A−μ)/λ
(50)

= (−1)R cR
∞∑

N=−∞
aN+A

e−qN+Act

q−(A2+Aμ)/λqN(N−μ)/λ

= (−1)R+AqA(A+μ)/λ
∞∑

N=−∞
(−1)AcRaN+A

e−qN c(qAt)

qN(N−μ)/λ
, (51)

where the R-th derivative in (49) is obtained from (46), the substitution Rλ = 2A gives the second equality in (49), and 
the re-indexing n = N + A occurs in (50). One can indeed equate (51) with the right most expression in (48) if aN =
(−1)AcRaN+A , for all N ∈ Z. Thus we have that h(c, t) satisfies the same MADE (18) as fμ,λ(t) if

aN+A = (−1)A

cR
aN ∀ N ∈ Z , (52)

which is equivalent to

aN+M A =
[

(−1)A

cR

]M

aN ∀ N, M ∈ Z . (53)

We will work with real coefficients aN , which occurs precisely when cR and a0, . . . , aA−1 are real. Letting c = γ eiθ with 
γ > 0, one has that cR = γ R eiRθ is real, or, equivalently, eiRθ = ±1. Thus eiθ is an R-th root of ±1, and c = γωp with 
ω = e2πi/R , or c = γ eiπ/Rωp , for some p = 0, . . . , R − 1. In this setting of real coefficients, (53) becomes

aN+M A =
[

(−1)A

(−1)
γ R

]M

aN ∀ N ∈ Z when c = γ eiπ
/Rωp with 
 = 0,1. (54)

Thus, when (54) holds,

h(c, t) =
∞∑

n=−∞
an

e−qnct

qn(n−μ)/λ
=

A−1∑
j=0

∞∑
M=−∞

aM A+ j
e−qM A+ j ct

q(M A+ j)(M A+ j−μ)/λ

=
A−1∑
j=0

∞∑
M=−∞

[
(−1)A−


γ R

]M

a j
e−qM A+ jγ eiπ
/Rωpt

q(M A+ j)(M A+ j−μ)/λ
, (55)

which is parametrized by a j ∈ R for j = 0, . . . , A − 1, γ ∈R+ , 
 = 0, 1, and p = 0, . . . , R − 1, where the parameters 
 and p
are chosen for convergence on the appropriate interval (−∞, 0] or [0, ∞). Thus a parameter space for the h(c, t) as in (55)
with real coefficients satisfying the MADE (18) is RA ×R+ × Z2 × ZR . In (55), we have first that (45) holds by choice of 

and p. Secondly, (44) holds by bounding (55) as follows:

|h(c, t)| ≤
A−1∑
j=0

|a j|
∞∑

M=−∞

[
1

γ R

]M 1

q(M A+ j)(M A+ j−μ)/λ

≤
A−1∑

|a j|q(− j2+μ j)/λ
∞∑ 1

qM A(M A+2 j−μ+λ[R/A] logq γ )/λ
< ∞ . (56)
j=0 M=−∞
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Complexifying t to obtain z, the bound (56) also holds on the modulus of h(c, z) for the half-plane R(−cz) ≤ 0. As the 
uniform limit of the analytic functions given by the truncated sums, h(c, z) is analytic on the open half-plane R(−cz) < 0, 
as in [28]. Thus, for t = R(z), h(c, t) is real analytic in t on the appropriate ray, say (−∞, 0), contained in R(−cz) < 0 and 
C∞ in t on (−∞, 0]. For these values of t , it is also real analytic in the parameter μ ∈ (−∞, ∞), however it is only C∞ in 
the parameter q > 1.

Since the MADE in (18) is linear, we shall look for extensions h(t) of fμ,λ(t) of form

h(t) =
R−1∑
r=0

brh(cr, t) =
R−1∑
r=0

br

⎡
⎣A−1∑

j=0

∞∑
M=−∞

[
(−1)A−
r

γ R
r

]M

a j,r
e−qM A+ jγr eiπ
r/Rωpr t

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦ (57)

with each h(cr, t) defined on (−∞, 0]. From the discussion in the previous paragraph, h(z) will be analytic on the open 
wedge emanating from 0 given by the intersection of the half-planes R(−cr z) < 0 for r = 0, . . . , R − 1. Thus, for (−∞, 0)

contained in this wedge, h(t) is: real analytic in t on (−∞, 0), C∞ in t on (−∞, 0]; real analytic in the parameter μ ∈
(−∞, ∞); and C∞ in the parameter q > 1. If R(−crt) = 0 for even one r, then h(t) is only C∞ in t on (−∞, 0] but still 
real analytic in μ on (−∞, ∞). From (55)–(57) one observes that h(t) is bounded and converging uniformly on (−∞, 0]. 
Because the br values can be absorbed into the a j,r the parameter spaces of such h(t) consists of sheets of [RA × R+]R , 
depending on a choice of values in Z2 ×ZR that allows for extension.

Next, we insure the first 0 through R − 1 derivatives of h(t) match those of fμ,λ(t) at 0. That is, for h(t) as in (57), we 
find values of br so that

f (m)
μ,λ(0) = h(m)(0) =

R−1∑
r=0

brh(m)(cr,0) , (58)

for m = 0, 1, . . . , R − 1. From the MADE (18), we shall see shortly that (58) is sufficient to guarantee that all derivatives and 
anti-derivatives of fμ,λ(t) and h(t) (in the sense of (85)–(87) below) will match at 0. In matrix form, (58) becomes⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fμ,λ(0)

f (1)
μ,λ(0)

...

f (m)
μ,λ(0)

...

f (R−1)
μ,λ (0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(c0,0) h(c1,0) · · · h(cr,0) · · · h(cR−1,0)

h(1)(c0,0) h(1)(c1,0) · · · h(1)(cr,0) · · · h(1)(cR−1,0)
...

...
...

...
...

...

h(m)(c0,0) h(m)(c1,0) · · · h(m)(cr,0) · · · h(m)(cR−1,0)
...

...
...

...
...

...

h(R−1)(c0,0) h(R−1)(c1,0) · · · h(R−1)(cr,0) · · · h(R−1)(cR−1,0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0

b1
...

br
...

bR−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(59)

which can be solved uniquely for the various bm when the square matrix in equation (59) has non-zero determinant. 
Observe that the R × R matrix in (59), which we denote by H , has (m, r) entry Hm,r = h(m)(cr, 0), and thus H is the 
Wronskian matrix of the functions h(c0, t), h(c1, t), . . . , h(cR−1, t) at t = 0. Letting F be the column matrix with m-th entry 
Fm = f (m)

μ,λ(0) and B be the column matrix with r-th entry Br = br , equation (59) is succinctly rewritten as

F = H · B . (60)

One can reduce the invertibility of H and subsequent solution for B to statements about theta functions, by relying on (12)
and (28), and by expressing the entries Hm,r of H in terms of theta function values. To effect this for the Hm,r , we begin by 
proving the next lemma which is a useful extension of (26).

Lemma 3.1. For q > 1, μ ∈R, λ ∈R+ , A ∈N, and j ∈ Z, one has that for all a ∈R:

∞∑
M=−∞

aM

q(M A+ j)(M A+ j−μ−mλ)/λ
= q− j( j−μ−mλ)/λθ(q2A2/λ;aqA[μ+mλ−2 j−A]/λ) . (61)

Proof. Set Q = qA2
, and observe

∞∑
M=−∞

aM

q(M A+ j)(M A+ j−μ−mλ)/λ
= q− j( j−μ−mλ)/λ

∞∑
M=−∞

aM

qA2 M[M+2 j/A−μ/A−mλ/A]/λ

= q− j( j−μ−mλ)/λ
∞∑

M=−∞

aM

Q M[M+2 j/A−μ/A−mλ/A]/λ (62)

= q− j( j−μ−mλ)/λθ(Q 2/λ;aQ [μ/A+mλ/A−2 j/A−1]/λ) (63)

= q− j( j−μ−mλ)/λθ(q2A2/λ;aqA[μ+mλ−2 j−A]/λ) , (64)
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where: qA2
was replaced by Q (62); Lemma 2.3 was used to move from (62) to (63); and Q was replaced by qA2

in (64). 
The lemma is now proven. �

Now, with h(cr, t) as in (55), one computes

h(m)(cr, t) ≡ dm

dtm

⎡
⎣A−1∑

j=0

∞∑
M=−∞

[
(−1)A−
r

γ R
r

]M

a j,r
e−qM A+ jγr eiπ
r/Rωpr t

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦

= (−γreiπ
r/Rωpr )m

⎡
⎣A−1∑

j=0

a j,r

∞∑
M=−∞

[
(−1)A−
r

γ R
r

]M
e−qM A+ jγr eiπ
r/Rωpr t

q(M A+ j)(M A+ j−μ−mλ)/λ

⎤
⎦ , (65)

which when evaluated at t = 0 gives

h(m)(cr,0) = (−γreiπ
r/Rωpr )m

⎡
⎣A−1∑

j=0

a j,r

∞∑
M=−∞

[
(−1)A−
r

γ R
r

]M
1

q(M A+ j)(M A+ j−μ−mλ)/λ

⎤
⎦

= (−γreiπ
r/Rωpr )m
A−1∑
j=0

a j,rq− j( j−μ−mλ)/λθ

(
q2A2/λ;

[
(−1)A−
r

γ R
r

]
qA[μ+mλ−2 j−A]/λ

)
, (66)

where equality in (66) follows from (61).
Relying on (12), (28), and (66), one sees that equation (59) (equivalently (60)) takes the form

F =

⎡
⎢⎢⎢⎣

...

f (m)
μ,λ(0)

...

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

...

(−1)m fμ+mλ,λ(0)
...

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

...

(−1)mθ(q2/λ;−q(μ+mλ−1)/λ)
...

⎤
⎥⎥⎦ (67)

=

⎡
⎢⎢⎣

...
...

...

· · · h(m)(cr,0) · · ·
...

...
...

⎤
⎥⎥⎦

⎡
⎢⎢⎣

...

br
...

⎤
⎥⎥⎦ (68)

=

⎡
⎢⎢⎢⎢⎢⎣

...
...

...

· · · (−γreiπ
r/Rωpr )m
A−1∑
j=0

a j,rq− j( j−μ−mλ)/λθ
(

q2A2/λ;
[

(−1)A−
r

γ R
r

]
qA[μ+mλ−2 j−A]/λ

)
· · ·

...
...

...

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

...

br
...

⎤
⎥⎥⎦

= H · B , (69)

where the (m, r) entry h(m)(cr, 0) in (68) is given by the theta values in (66). Thus (67)–(69) is in effect a statement about 
theta function values. Furthermore, the invertibility of H is expected generically via the rich choice of parameters γr, ωpr , 
r , 
and a j,r giving the entries h(m)(cr, 0) of H , as specified in (66).

In summary, we have reached the following theorem.

Theorem 3.2. For t ≥ 0, the functions

fμ,λ(t) =
∞∑

m=−∞
(−1)m e−qmt

qm(m−μ)/λ

with q > 1, μ ∈ R, and λ = 2L/k or λ = (2L + 1)/k with L, k ∈ N can be extended to all of R in the following manner. Let A = L if 
λ = 2L/k, and let A = 2L + 1 if λ = (2L + 1)/k. Also, let R = k if λ = 2L/k, and let R = 2k if λ = (2L + 1)/k. For r = 0, . . . , R − 1, 
choose (γr, 
r, pr) ∈R+ ×Z2 ×ZR , with cr ≡ γreiπ
r/Rωpr where ω = e2πi/R and real part R(eiπ
r/Rωpr ) ≤ 0. For j = 0, . . . , A − 1
choose any a j,r ∈ R with at least one a j,r �= 0, and set

h(cr, t) =
A−1∑ ∞∑ [

(−1)A−
r

γ R
r

]M

a j,r
exp[−qM A+ j · γr · eiπ
r/R · ωpr · t]

q(M A+ j)(M A+ j−μ)/λ
. (70)
j=0 M=−∞
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Let F be the R × 1 column vector with m-th entry Fm given by

Fm = (−1)mθ(q2/λ;−q(μ+mλ−1)/λ),

as in (67). And let H be the R × R matrix with (m, r) entry given by

Hm,r = (−γreiπ
r/Rωpr )m
A−1∑
j=0

a j,rq− j( j−μ−mλ)/λθ

(
q2A2/λ;

[
(−1)A−
r

γ R
r

]
qA[μ+mλ−2 j−A]/λ

)
, (71)

as in (66) and (68)–(69).
Then if det H �= 0, there exists an R × 1 column vector B = H−1 F , as in (69), with r-th entry br so that fμ,λ(t) can be extended to 

h(t) for t ≤ 0 where

h(t) =
R−1∑
r=0

brh(cr, t) =
R−1∑
r=0

br

⎡
⎣A−1∑

j=0

a j,r

∞∑
M=−∞

[
(−1)A−
r

γ R
r

]M
exp[−qM A+ j · γr · eiπ
r/R · ωpr · t]

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦ . (72)

Furthermore, the h(cr, t) on (−∞, 0], and h(t) satisfies the same MADE (18) as fμ,λ(t), namely

h(R)(t) = (−1)R+AqA(A+μ)/λh(qAt) . (73)

Moreover, at t = 0, the extension h(t) has the same derivatives (and anti-derivatives) of all orders as does fμ,λ(t). That is

f (m)
μ,λ(0) = h(m)(0) ∀ m ∈ Z , (74)

where for m < 0 the anti-derivatives f (m)
μ,λ(t) and h(m)(t) are given by (85)–(87) below. Since each entry f (m)

μ,λ(0) of F is real valued, 
and since the entries Hm,r of H may be complex valued, the coefficients br may be complex in general. However, the real part R(h(t))
of h(t) will be a real extension of fμ,λ(t) to t ≤ 0 satisfying (73) and (74). Thus fμ,λ(t) can be extended to a bounded real valued 
function on R satisfying the MADE (73) with initial conditions (74).

The parameter space Pμ,λ available for selection of the h(cr, t) for r = 0, . . . , R − 1 consists of a union of open subsets of the 
connected components of

[PA−1(R) ×R+ ×Z2 ×ZR ]R (75)

with real multiples of ar = (a0,r , a1,r , . . . , a(A−1),r) giving the parameter [ar] ∈ PA−1(R), and with cr = γreiπ
r/Rωpr giving the 
parameters γr ∈ R+ and (
r, pr) ∈ Z2 × ZR . These must satisfy that R(eiπ
r/Rωpr ) ≤ 0, which determines the connected compo-
nent. The open set condition comes from the condition that det H �= 0 for the associated matrix H whose entries Hm,r are given 
by (71). Thus Pμ,λ is an open manifold with each connected component having dimension R A, with Pμ,λ ⊂ [PA−1(R) ×R+ ×Z2 ×
ZR ]R .

Proof. From (48)–(54) one has that the MADE (73) holds on t ≤ 0 for each h(cr, t) for the choices a j,r, γr, 
r, pr . Thus 
(73) holds for any linear combination of the h(cr , t), including for h(t) as in (72) and for its real part R(h(t)). Note (73)
is the same MADE (18) holding for fμ,λ(t) on t ≥ 0. From (55)–(57) the function h(t) is bounded, and from the remarks 
following (2) the function fμ,λ(t) is bounded. We conclude the extension is bounded on R. From (12) and (28), one has 
that the initial condition is given by each of the column vectors in (67). From (66)–(69), one has that the matrix H as in 
(71) is the Wronskian matrix of the chosen h(c0, t), . . . , h(cR−1, t) at t = 0. Thus by hypothesis, det H �= 0 gives that H is 
invertible and that the h(c0, t), . . . , h(cR−1, t) are linearly independent on (−∞, 0]. For each fixed r, from the choices a j,r

with j = 0, . . . , A − 1, a scalar may be pulled and subsumed into the br , thus for each r the a j,r modulo a scalar is real 
projective space PA−1(R), with γr ∈ R+ and (
r, pr) ∈ Z2 × ZR satisfying R(eiπ
r/Rωpr ) ≤ 0 to give each h(cr, t) defined on 
(−∞, 0]. This gives the parameter space Pμ,λ in (75).

From (58)–(59), one has that (74) holds for m = 0, . . . , R − 1. It remains to show that (74) holds for m ≥ R (and later for 
m < 0). Recall Rλ = 2A. From (65), with m = s + nR and 0 ≤ s ≤ R − 1, one sees

h(s+nR)(cr, t) = (−γreiπ
r/Rωpr )s+nR

⎡
⎣A−1∑

j=0

a j,r

∞∑
M=−∞

[
(−1)A−
r

γ R
r

]M
e−qM A+ jγr eiπ
r/Rωpr t

q(M A+ j)(M A+ j−μ−E)/λ

⎤
⎦ (76)

where E = (s + nR)λ = sλ + n2A, by relying on the fact that Rλ = 2A. Using this latter expression for E , and re-indexing 
with M = N + n gives
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h(s+nR)(cr, t) = (−γreiπ
r/Rωpr )s(−γr)
nR(eiπ
r )n

·
⎡
⎣A−1∑

j=0

a j,r

∞∑
N=−∞

[
(−1)A−
r

γ R
r

]N+n
e−qN A+nA+ jγr eiπ
r/Rωpr t

q(N A+nA+ j)(N A−nA+ j−μ−sλ)/λ

⎤
⎦

= (−γreiπ
r/Rωpr )s(−γr)
nR [(−1)
r ]n

[
(−1)A−
r

γ R
r

]n

·
⎡
⎣A−1∑

j=0

a j,r

∞∑
N=−∞

[
(−1)A−
r

γ R
r

]N
e−qN A+nA+ jγr eiπ
r/Rωpr t

q−nA[nA+μ+sλ]/λq(N A+ j)(N A+ j−μ−sλ)/λ

⎤
⎦

= (−1)n[R+A]qnA[nA+μ+sλ]/λ(−γreiπ
r/Rωpr )s

·
⎡
⎣A−1∑

j=0

a j,r

∞∑
N=−∞

[
(−1)A−
r

γ R
r

]N
e−qN A+ jγr eiπ
r/Rωpr (qnAt)

q(N A+ j)(N A+ j−μ−sλ)/λ

⎤
⎦

= (−1)n[R+A]qnA[nA+μ+sλ]/λ h(s)(cr,qnAt) , (77)

where the last equality follows from (65).
This compares with the (s + nR)-th derivative of fμ,λ(t), with 0 ≤ s ≤ R − 1, as follows. From (12) along with the fact 

that Rλ = 2A, one has

f (s+nR)
μ,λ (t) = (−1)s+nR fμ+(s+nR)λ,λ(t) = (−1)s+nR fμ+sλ+n2A,λ(t)

= (−1)s+nR
∞∑

M=−∞
(−1)M e−qMt

qM(M−μ−sλ−2nA)/λ
.

Re-indexing with M = N + nA gives

f (s+nR)
μ,λ (t) = (−1)s+nR

∞∑
N=−∞

(−1)N+nA e−qN+nAt

q(N+nA)(N−nA−μ−sλ)/λ

= (−1)nR+nA(−1)s
∞∑

N=−∞
(−1)N e−qN (qnAt)

q−nA(nA+μ+sλ)/λqN(N−μ−sλ)/λ

= (−1)n[R+A]qnA(nA+μ+sλ)/λ(−1)s
∞∑

N=−∞
(−1)N e−qN (qnAt)

qN(N−μ−sλ)/λ

= (−1)n[R+A]qnA(nA+μ+sλ)/λ(−1)s fμ+sλ,λ(q
nAt) (78)

= (−1)n[R+A]qnA(nA+μ+sλ)/λ f (s)
μ,λ(q

nAt) , (79)

where equality in (78) follows from (2), and equality in (79) follows from (12).
Now with h(t) as in (72) and 0 ≤ s ≤ R − 1, one has

h(s+nR)(0) =
R−1∑
r=0

brh(s+nR)(cr,0) (80)

=
R−1∑
r=0

br(−1)n[R+A]qnA[nA+μ+sλ]/λh(s)(cr,0) (81)

= (−1)n[R+A]qnA[nA+μ+sλ]/λ
R−1∑
r=0

brh(s)(cr,0) (82)

= (−1)n[R+A]qnA[nA+μ+sλ]/λ f (s)
μ,λ(0) (83)

= f (s+nR)
μ,λ (0) , (84)

where equality in (81) follows from (77), the equality in (83) follows from (67)–(69), and the equality in (84) follows from 
(79). Thus the derivatives of h(t) of all positive and 0 orders match those of fμ,λ(t) at t = 0 as claimed.
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In the case of anti-derivatives (or derivatives of negative order), define for s < 0

h(s)(cr, t) ≡ (−cr)
s

⎡
⎣A−1∑

j=0

a j,r

∞∑
M=−∞

[
(−1)A−
r

|cr |R

]M
e−qM A+ j crt

q(M A+ j)(M A+ j−μ−sλ)/λ

⎤
⎦

≡ (−γreiπ
r/Rωpr )s

⎡
⎣A−1∑

j=0

a j,r

∞∑
M=−∞

[
(−1)A−
r

γ R
r

]M
e−qM A+ jγr eiπ
r/Rωpr t

q(M A+ j)(M A+ j−μ−sλ)/λ

⎤
⎦ , (85)

and

f (s)
μ,λ(t) ≡ (−1)s fμ+sλ,λ(t) = (−1)s

∞∑
M=−∞

(−1)M e−qMt

qM(M−μ−sλ)/λ
, (86)

and

h(s)(t) ≡
R−1∑
r=0

brh(s)(cr, t) , (87)

which by construction are the |s|-th anti-derivatives of h(cr, t), fμ,λ(t), and h(t), respectively, with ALL constants of in-
tegration set equal to 0. Now let n be the positive integer such that s + nR satisfies 0 ≤ s + nR ≤ R − 1, and repeat the 
computations (76) through (79) verbatim. By previous work, one has that h(s+nR)(0) = f (s+nR)

μ,λ (0) because 0 ≤ s +nR ≤ R −1. 
Thus, in the current s < 0 setting, equations (80)–(84) still hold. Dividing (82)–(83) by (−1)n[R+A]qnA[nA+μ+sλ]/λ , one con-
cludes that for s < 0

h(s)(0) =
R−1∑
r=0

brh(s)(cr,0) = f (s)
μ,λ(0) .

Thus all the anti-derivatives (or derivatives of negative order) of h(t) and of fμ,λ(t) match at 0 as well, and the theorem is 
proven. �
Remark 10. The assumption that each R(cr) =R(eiπ
r/Rωpr ) ≤ 0 in Theorem 3.2 is sufficient to gain extension while meet-
ing initial conditions and solving the relevant MADE. However, to also gain decay at −∞, it will be necessary to assume the 
strict inequality that R(cr) < 0, as seen in Propositions 8.1 and 8.2 below. Therefore, this strict inequality will be a blanket 
assumption throughout the remainder of the paper, unless otherwise explicitly indicated.

Remark 11. Theorem 3.2 starts with a function fμ,λ(t) defined on [0, ∞) and solving the MADE (18). This function extends 
non-uniquely to a family of C∞ solutions of (18) defined on all of R by assuming the extension parameters cr in the h(cr, t)
satisfy the requirement that R(−crt) ≤ 0 for t ≤ 0. By a parallel argument, it is of course possible to start with a function 
defined on (−∞, 0] satisfying the MADE (18) and extending non-uniquely to a family of C∞ solutions of (18) defined on 
all of R by assuming the extension parameters cr in h(cr, t) satisfy the requirement that R(−crt) ≤ 0 for t ≥ 0. We do not 
pursue the details here, but do illustrate a case of this forward non-uniqueness in Section 7. Note also that, by taking the 
difference of any two distinct extensions to R of the fμ,λ(t) defined on [0, ∞) that both solve the MADE (18), one has a 
solution to (18) that is flat at the origin, vanishing on [0, ∞), and non-identically 0 on (−∞, 0).

4. The extensions Fμ,λ(t) as Schwartz wavelets with vanishing moments

It is now convenient to make the following definition.

Definition 4.1. Let q > 1, and let μ ∈R, λ ∈Q+ , and s ∈ Z be fixed. Let Rh(t) be an extension of fμ,λ(t) to the negative real 
line, associated with the parameters [ar], γr, 
r, pr for 0 ≤ r ≤ R − 1 in P ⊂ [PA−1(R) ×R+ ×Z2 ×ZR ]R as in Theorem 3.2, 
with the further assumption that each R(cr) < 0 for cr = γreiπ
r/Rωpr . We denote such a global extension by

F (s)
μ,λ(t) ≡

{
f (s)
μ,λ(t) if t ≥ 0

(Rh)(s) (t) if t < 0
(88)

≡ F (s)
μ,λ([a0], γ0, 
0, p0; . . . ; [aR−1], γR−1, 
R−1, pR−1; t) . (89)

Here A and R are as in (16) and (17), respectively, with λ = 2A/R .
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Each F (s)
μ,λ(t) is real analytic in t on (−∞, 0) ∪ (0, ∞), but not at t = 0 as a consequence of Proposition 2.3. It is C∞

on R. Note that (89) explicitly indicates the dependence of (Rh)(s) (t) (and therefore of F (s)
μ,λ(t)) on all parameters, whereas 

(88) suppresses the expression of this dependence for the sake of conciseness. Also, by Proposition 8.1, the assumption that 
each cr has negative real part forces very rapid decay at ±∞ of Fμ,λ(t) and its derivatives of all orders.

A series of results on the properties of the F (s)
μ,λ(t) now follows. First, note from Theorem 3.2 that the family

{
F (s)
μ,λ(t)|s ∈ Z

}
(90)

is a family of functions in C∞(R) with Dt F (s)
μ,λ(t) = F (s+1)

μ,λ (t) for each s ∈ Z. Furthermore, each F (s)
μ,λ(t) satisfies the MADE

dR

dt R

[
F (s)
μ,λ(t)

]
= (−1)R+AqA(A+μ+sλ)/λ F (s)

μ,λ(q
At) , (91)

as can be seen from (77) and (79). Here A and R are as in (16) and (17), respectively, with λ = 2A/R .
Next one sees that all moments of F (s)

μ,λ(t) vanish.

Proposition 4.1. For n ∈N0 , the n-th moment of F (s)
μ,λ(t) vanishes. That is,

Mn[F (s)
μ,λ(t)] ≡

∞∫
−∞

tn F (s)
μ,λ(t)dt = 0 (92)

for each non-negative integer n.

Proof. Observe that for an integer k ≥ 1 one has

∞∫
−∞

tk F (s)
μ,λ(t)dt = tk F (s−1)

μ,λ (t)
∣∣∣∞−∞ −

∞∫
−∞

(
tk
)′

F (s−1)
μ,λ (t)dt = −k

∞∫
−∞

tk−1 F (s−1)
μ,λ (t)dt , (93)

where the vanishing of tk F (s−1)
μ,λ (t)

∣∣∣∞−∞ follows from (179) in Corollary 8.1 below. Thus, by iterating (93) n times, we have

∞∫
−∞

tn F (s)
μ,λ(t)dt = (−1)nn!

∞∫
−∞

F (s−n)
μ,λ (t)dt = (−1)nn! F (s−n−1)

μ,λ (t)
∣∣∣∞−∞ = 0 , (94)

where the vanishing of F (s−n−1)
μ,λ (t) at ±∞ is also given by (179) in Corollary 8.1 below. �

Each of the F (s)
μ,λ(t) turns out to exhibit wavelet properties. Recall [6] that a function φ(t) is considered to be a 

wavelet if

φ ∈ L1(R) ∩L2(R) ∩L∞(R) , (95)
∞∫

−∞
φ(t)dt = 0 , (96)

∞∫
−∞

|F[φ(t)](ω)|2
|ω| dω < ∞ , (97)

where the Fourier transform is given by

F[φ(t)](ω) = 1√
2π

∞∫
−∞

e−iωtφ(t)dt . (98)

Proposition 4.2. Each F (s)
(t) in the family (90) is a Schwartz wavelet with Dt F (s)

(t) = F (s+1)
(t).
μ,λ μ,λ μ,λ
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Proof. From the fact that each F (s)
μ,λ(t) is C∞ and from (179) in Corollary 8.1, one has that for all p, n ∈ N0

lim
t→±∞

∣∣∣t p Dn
t F (s)

μ,λ(t)
∣∣∣ = 0 . (99)

Thus there exist constants B p,n,s with∣∣∣t p Dn
t F (s)

μ,λ(t)
∣∣∣ ≤ B p,n,s . (100)

We conclude that each F (s)
μ,λ(t) is Schwartz, and thus each F (s)

μ,λ(t) lies in each Lp(R). Hence wavelet condition (95) is 
met. From Proposition 4.1, all moments of F (s)

μ,λ(t) vanish, including the case M0[F (s)
μ,λ(t)] = 0, from which we observe that 

wavelet condition (96) is met. Finally, since F [t f (t)](ω) = iDωF [ f (t)](ω), one concludes that for each n ∈ N0

(iDω)nF[F (s)
μ,λ(t)](0) = F[tn F (s)

μ,λ(t)](0) = 1√
2π

∞∫
−∞

e−i·0·ttn F (s)
μ,λ(t)dt = 1√

2π
Mn[F (s)

μ,λ(t)] = 0 . (101)

Hence F [F (s)
μ,λ(t)](ω) vanishes to infinite order at ω = 0. This high order of vanishing at ω = 0 coupled with the fact that 

F (s)
μ,λ(t), and hence F [F (s)

μ,λ(t)](ω), is Schwartz gives that (97) holds. Thus each F (s)
μ,λ(t) is a Schwartz wavelet. �

5. Examples and genericity

The purpose of this section is two-fold. One goal is to observe via example that the hypothesis that det H �= 0 in Theo-
rem 3.2 is a generic condition in the choice of parameters given in Pμ,λ in Theorem 3.2. Another objective is to explicitly 
obtain extensions of certain fμ,λ(t) to (−∞, 0].

Example 1. In this example, we let λ = 2L/k = 2 with L = k = 1 = R = A. In this setting we have fμ,2(t) =∑∞
m=−∞(−1)me−qmt/qm(m−μ)/2, which from (13) or (18) satisfies the MADE

f ′
μ,2(t) = q(μ+1)/2 fμ,2(qt) . (102)

Here the 1 × 1 column matrix F , as obtained from (67), is given by

F = [
fμ,2(0)

] =
[
θ(q;−q(μ−1)/2)

]
. (103)

In the notation of Theorem 3.2 immediately preceding (70), observe that the k = 1 = R root of unity is ω = e2πi/R = 1, so 
we must choose 
0 = 1 resulting in R(eiπ
0ω) < 0 in order to have h(c0, t) defined on t ≤ 0. Thus, recalling A = 1 in this 
example, one has eiπ
0 = −1 and, from (70),

h(c0, t) = a0,0

∞∑
M=−∞

[
1

γ0

]M eqMγ0t

qM(M−μ)/2
, (104)

where γ0 > 0 and c0 = γ0eiπ · ω = −γ0. Note that the form of (104) gives that (102) holds for h(c0, t), by (48)–(54). Thus 
the MADE (102) also holds for the extension h(t) given below in (108), which follows from (73). From (71), the k ×k = 1 ×1
matrix H has sole entry of the form

H0,0 = a0,0h(c0,0) = a0,0

∞∑
M=−∞

[
1

γ0

]M 1

qM(M−μ)/2
= a0,0θ

(
q;

[
1

γ0

]
q(μ−1)/2

)
, (105)

where equality in (105) follows from (26). The 1 × 1 column B has entry b0 to be determined by F = H · B , from the 
required initial conditions F = H · B that the first k − 1 = 1 − 1 = 0 derivatives match at t = 0, as in (67)–(69). In the current 
case, from (103) and (105), F = H · B becomes

θ(q;−q(μ−1)/2) =
[

a0,0θ

(
q;

[
1

γ0

]
q(μ−1)/2

)]
b0 , (106)

and, by (25), one has θ
(

q;
[

1
γ0

]
q(μ−1)/2

)
�= 0. Thus, since a0,0 �= 0, one sees that the expression

det H = a0,0θ

(
q;

[
1

]
q(μ−1)/2

)

γ0
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never vanishes for any choice of the parameters a0,0 �= 0 and γ0 > 0. Thus we see that the assumption that det H �= 0 in 
Theorem 3.2 is generic here in Example 1. From (106), one then has that

θ(q;−q(μ−1)/2)

θ
(

q;
[

1
γ0

]
q(μ−1)/2

) = a0,0b0 . (107)

From (107) and from (72), the extension h(t) of fμ,2(t) to t ≤ 0 becomes the real-valued function

h(t) = b0a0,0h(c0, t) = b0a0,0

∞∑
M=−∞

[
1

γ0

]M eqMγ0t

qM(M−μ)/2

= θ(q;−q(μ−1)/2)

θ
(

q;
[

1
γ0

]
q(μ−1)/2

) ∞∑
M=−∞

[
1

γ0

]M eqMγ0t

qM(M−μ)/2
, (108)

which is real analytic for t < 0 and C∞ for t ≤ 0. Now μ = 2p + 1 is an odd integer if and only if the numerator 
θ(q; −q(μ−1)/2) vanishes, and in this case the only extension of the form h(t), as in (108), is the identically 0 extension 
obtained by taking b0 = 0, since a0,0 �= 0. Note, in this μ = 2p + 1 case, that, since λ = 2 is even with μ odd, one has fμ,2
is flat at 0 by (33). As a special example of this flat case, let μ = −1 along with λ = 2 to obtain f−1,2(t) = K (t), where K (t)
is studied extensively in [22] and where K (t) is applied in tsunami modeling in [25]. Thus Example 1 is presented here as 
a generalization of K (t).

On the other hand, if μ is not an odd integer then (108) gives a family of solutions parametrized by γ0 > 0. This family 
is q-periodic in γ0 in the sense that for each p ∈ Z and each γ0 ∈R+

θ(q;−q(μ−1)/2)

θ
(

q;
[

1
qpγ0

]
q(μ−1)/2

) ∞∑
M=−∞

[
1

qpγ0

]M eqM (qpγ0)t

qM(M−μ)/2

= θ(q;−q(μ−1)/2)

θ
(

q;
[

1
γ0

]
q(μ−1)/2

) ∞∑
M=−∞

[
1

γ0

]M eqMγ0t

qM(M−μ)/2
, (109)

but the family is not constant in γ0. For each γ0, as q → 1+ the extension h(t) as given by (108) behaves as h(t) ≈
θ(q; −q(μ−1)/2) · et and its normalization h(t)/θ(q; −q(μ−1)/2) approaches et uniformly on (−∞, 0]. So for small values of 
q > 1 it can be difficult to distinguish the graphs of h(t) for γ0 in the interval [1, q]. However, the family in (108) can 
be seen to be non-constant in γ0 for large values of q. In particular, for two values of γ0 generating different extension 
functions h(t) in (108), these functions must be linearly independent, as follows. If one were a constant multiple (by C ) of 
the other, by agreement of the two functions at t = 0 one has C = 1. However, this is a contradiction as the two functions 
were different. Note that this implies that the fundamental set, as in [8], has dimension greater than or equal to 2, which 
is greater than the order 1 of the MADE (102). Fig. 2 Left exhibits different such extensions (108) to the negative real line 
of fμ,2(t) with μ not an odd integer for varying γ0. In particular, we have explicit non-uniqueness of the extension h(t). 
Finally, by Proposition 4.2, any extension Fμ,2(t) agreeing with fμ,2(t) on [0, ∞) and with h(t) as in (108) on (−∞, 0] is a 
Schwartz wavelet.

Example 2. In this example, we let λ = 2L/k = 1 with L = 1 = A, k = 2 = R . In this setting we have fμ,1(t) =∑∞
m=−∞(−1)me−qmt/qm(m−μ)/1, which, from (13) or (18), satisfies the MADE

f (2)
μ,1(t) = −qμ+1 fμ,1(qt) . (110)

Here the 2 × 1 column matrix F , as obtained from (67), is given by

F =
[

fμ,1(0)

− fμ+1,1(0)

]
=

[
θ(q2;−qμ−1)

−θ(q2;−qμ)

]
. (111)

In the notation of Theorem 3.2 immediately preceding (70), observe that the k = 2 = R roots of unity are e2πi/R = ω = −1, 
ω0 = ω2 = 1. From (70), with cr = γreiπ
r/Rωpr for r = 0, 1, one has

h(c0, t) = a0,0

∞∑
M=−∞

[
(−1)1−
0

γ 2
0

]M
e−qMγ0eiπ
0/2ωp0 t

qM(M−μ)
(112)

and
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Fig. 2. Left: In Example 1 with λ = 2, fμ,2(t) can be extended non-uniquely to the negative real axis solving the relevant MADE (102), as is illustrated here 
when μ = 0, q = 20, with one extension (solid) having set γ0 = 0.2 in equation (108) and with a second extension (dotted) having set γ0 = 0.5 in equation 
(108). Right: In Example 2 Case A with λ = 1 (decaying in both terms), fμ,1(t) is extended (non-uniquely) to the negative real axis solving the relevant 
MADE (110), as is illustrated here when μ = 0.3, q = 3, with the values γ0 = 0.2 and γ1 = 1.1 in (124), where 
0 = 0 = 
1 and p0 = 1 = p1. Compare with 
the extensions in Fig. 3, Cases B and C, below, where f0.3,1(t) with q = 3 is also extended to (−∞, 0] in different manners.

h(c1, t) = a0,1

∞∑
M=−∞

[
(−1)1−
1

γ 2
1

]M
e−qMγ1eiπ
1/2ωp1 t

qM(M−μ)
, (113)

where γ0, γ1 > 0 and where, for r = 0, 1, the 
r, pr are chosen to satisfy R(eiπ
r/2ωpr ) ≤ 0 in order to satisfy that h(cr, t)
be defined on t ≤ 0. Thus one has either that (i) 
r = 0 and pr = 1 (the real and decaying case, as per Proposition 8.1 in 
Section 8.1), or (ii) 
r = 1 and pr = 0, 1 (the complex case and NON-decaying case). We remark that in case (ii) one has 
that R(cr) = 0 and thus there need not be decay at −∞, as per Remark 16 following Corollary 8.1 in Section 8.1 along with 
Proposition 8.2 in Section 8.2. We will include an analysis of case (ii) here for completeness. But to be guaranteed to work 
with decaying Schwartz functions one should confine oneself to case (i).

From (71), let H be the 2 × 2 matrix with (m, r) entry, for 0 ≤ m, r ≤ 1, given by

Hm,r = (−γreiπ
r/2ωpr )ma0,rθ

(
q2;

[
(−1)1−
r

γ 2
r

]
qμ+m−1

)
. (114)

That is, H is given by⎡
⎢⎢⎣

a0,0θ

(
q2;

[
(−1)1−
0

γ 2
0

]
qμ−1

)
a0,1θ

(
q2;

[
(−1)1−
1

γ 2
1

]
qμ−1

)

(−γ0eiπ
0/2ωp0)a0,0θ

(
q2;

[
(−1)1−
0

γ 2
0

]
qμ

)
(−γ1eiπ
1/2ωp1)a0,1θ

(
q2;

[
(−1)1−
1

γ 2
1

]
qμ

)
⎤
⎥⎥⎦ . (115)

We then define the related matrix H̃ as given by⎡
⎢⎢⎣

θ

(
q2;

[
(−1)1−
0

γ 2
0

]
qμ−1

)
θ

(
q2;

[
(−1)1−
1

γ 2
1

]
qμ−1

)

(−γ0eiπ
0/2ωp0)θ

(
q2;

[
(−1)1−
0

γ 2
0

]
qμ

)
(−γ1eiπ
1/2ωp1)θ

(
q2;

[
(−1)1−
1

γ 2
1

]
qμ

)
⎤
⎥⎥⎦ . (116)

Now from (111) and (114), as well as from (67)–(69), F = H · B becomes[
θ(q2;−qμ−1)

−θ(q2;−qμ)

]
= H

[
b0
b1

]
= H̃

[
a0,0b0
a0,1b1

]
, (117)

where H is the 2 × 2 matrix in (115) and H̃ is the 2 × 2 matrix in (116). To check invertibility of H̃ , one computes
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det H̃ = (−γ1eiπ
1/2ωp1)θ

(
q2;

[
(−1)1−
1

γ 2
1

]
qμ

)
θ

(
q2;

[
(−1)1−
0

γ 2
0

]
qμ−1

)

−(−γ0eiπ
0/2ωp0)θ

(
q2;

[
(−1)1−
0

γ 2
0

]
qμ

)
θ

(
q2;

[
(−1)1−
1

γ 2
1

]
qμ−1

)
. (118)

We now have three cases, namely: Cases A, B, and C below.
Case A. (The decaying Schwartz case). If 
0 = 0 with p0 = 1 in (112) as well as (114)–(118), and if 
1 = 0 with p1 = 1 in 

(113) as well as (114)–(118), then from (118) det H̃ = 0 holds if and only if

γ1θ

(
q2;

[
−1

γ 2
1

]
qμ

)
θ

(
q2;

[
−1

γ 2
0

]
qμ−1

)
− γ0θ

(
q2;

[
−1

γ 2
0

]
qμ

)
θ

(
q2;

[
−1

γ 2
1

]
qμ−1

)
= 0 (119)

if and only if

γ1θ

(
q2;

[
−1
γ 2

1

]
qμ

)

θ

(
q2;

[
−1
γ 2

1

]
qμ−1

) =
γ0θ

(
q2;

[
−1
γ 2

0

]
qμ

)

θ

(
q2;

[
−1
γ 2

0

]
qμ−1

) . (120)

Thus we examine

G(γ ) ≡
γ θ

(
q2;

[−1
γ 2

]
qμ

)
θ
(

q2;
[−1

γ 2

]
qμ−1

) (121)

for γ > 0. Note that for each p ∈ Z one has that G(qp+μ/2) = 0, that G(qp+μ/2−1/2) is unbounded, and that G(γ ) �= 0 for 
other values of γ > 0, all by (25). Hence G is not constant. Furthermore setting z = qμ/γ 2, equivalently γ = qμ/2/

√
z, one 

re-expresses (121) as

G(qμ/2/
√

z) = qμ/2

√
z

θ
(
q2;−z

)
θ
(
q2;−z/q

) ≡ G̃(z) , (122)

which can be extended to be analytic in z in the set U consisting of the right complex half-plane away from the poles at 
z = q2p+1. Since G is non-constant, one has that G̃ is not constant. Thus, by the identity theorem, G̃(z) can only equal a 
given constant at a discrete set of points without cluster point in U . As a consequence, for fixed γ0, (120) holds only for a 
discrete set of γ1 without cluster point in R+ ∩ U . Thus, det H̃ �= 0 for generic choice of γ0, γ1 > 0 and μ ∈R in Case A. For 
such choices of parameters, from (117), we have

[
a0,0b0
a0,1b1

]
=

⎡
⎢⎢⎣

θ

(
q2;

[
−1
γ 2

0

]
qμ−1

)
θ

(
q2;

[
−1
γ 2

1

]
qμ−1

)

γ0θ

(
q2;

[
−1
γ 2

0

]
qμ

)
γ1θ

(
q2;

[
−1
γ 2

1

]
qμ

)
⎤
⎥⎥⎦

−1 [
θ(q2;−qμ−1)

−θ(q2;−qμ)

]
= H̃−1 · F . (123)

From (112), (113), and with a0,0b0 , a0,1b1 as in (123), one has that a desired extension h(t) of fμ,1(t) is given by

h(t) = a0,0b0

∞∑
M=−∞

[
−1

γ 2
0

]M
eqMγ0t

qM(M−μ)
+ a0,1b1

∞∑
M=−∞

[
−1

γ 2
1

]M
eqMγ1t

qM(M−μ)
, (124)

which is real analytic for t < 0 and C∞ for t ≤ 0. By Proposition 4.2, the extension Fμ,1(t) agreeing with fμ,1(t) on [0, ∞)

and with h(t) as in (124) on (−∞, 0] is a Schwartz wavelet. See Fig. 2 (right) where an example of Case A is graphed with 
μ = .3, q = 3, γ0 = .2 and γ1 = 1.1.

Case B. (Non-decaying in one term). Let 
0 = 0 and p0 = 1 in (112) as well as (114)–(118), and let 
1 = 1 and p1 = 0, 1
in (113) as well as (114)–(118). Then from (118) det H̃ = 0 holds if and only if

±iγ1θ

(
q2;

[
1

γ 2
1

]
qμ

)
θ

(
q2;

[
−1

γ 2
0

]
qμ−1

)
− γ0θ

(
q2;

[
−1

γ 2
0

]
qμ

)
θ

(
q2;

[
1

γ 2
1

]
qμ−1

)
= 0 . (125)

By examining real and imaginary parts in (125), and recognizing that (by (25)) neither θ(q2; qμ/γ 2
1 ) nor θ(q2; qμ−1/γ 2

1 )

vanish, one sees that (125) holds if and only if
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θ

(
q2;

[
−1

γ 2
0

]
qμ−1

)
= 0 = θ

(
q2;

[
−1

γ 2
0

]
qμ

)
. (126)

From (25), the vanishing in (126) occurs when there are p, p̂ ∈ Z with q2p = qμ−1/γ 2
0 and q2p̂ = qμ/γ 2

0 . However, dividing 
the second equation by the first, one would have q2[p̂−p] = q1. That is p̂ − p = 1/2, a contradiction. Thus det H̃ �= 0 for all 
choices of γ0, γ1 > 0 and μ ∈ R in Case B.

From (117), for all choices of parameters γ0, γ1, μ in Case B we have

[
a0,0b0
a0,1b1

]
=

⎡
⎢⎢⎣

θ

(
q2;

[
−1
γ 2

0

]
qμ−1

)
θ

(
q2;

[
1
γ 2

1

]
qμ−1

)

γ0θ

(
q2;

[
−1
γ 2

0

]
qμ

)
±iγ1θ

(
q2;

[
1
γ 2

1

]
qμ

)
⎤
⎥⎥⎦

−1 [
θ(q2;−qμ−1)

−θ(q2;−qμ)

]
= H̃−1 · F . (127)

From (112), (113), and with a0,0b0 , a0,1b1 as in (127), one has that the desired extension h(t) of fμ,1(t) is given by

h(t) = a0,0b0

∞∑
M=−∞

[
−1

γ 2
0

]M
eqMγ0t

qM(M−μ)
+ a0,1b1

∞∑
M=−∞

[
1

γ 2
1

]M
e±iqMγ1t

qM(M−μ)
, (128)

where the sign of the ± in (128) matches the sign of the ± in both of the equations (127) and (125). The extension h(t)
in (128) is not real analytic in t , but it is C∞ in t on (−∞, 0]. Observe that by Proposition 8.1 below, the first summation 
in (128) decays as t approaches −∞, as does its real part. By Proposition 8.2, along with Remark 17 immediately following 
the proof of Proposition 8.2, one sees that the real part of the second summation in (128) does not decay for fixed real 
μ and rational q > 1, and for all γ1 > 0 and generic choice of γ0 > 0. That is, in this setting, one only need to check the 
non-vanishing of (184) to establish non-decay of the second summation. From (128), this amounts to checking

0 �= R

⎛
⎝a0,1b1

∞∑
M=−∞

[
1

γ 2
1

]M
1

qM(M−μ)

⎞
⎠ = R

(
a0,1b1θ

(
q2; 1

γ 2
1

qμ−1

))
= [

R
(
a0,1b1

)]
θ

(
q2; 1

γ 2
1

qμ−1

)
,

and since θ
(
q2;qμ−1/γ 2

1

)
> 0 this is equivalent to checking that

0 �= R
(
a0,1b1

)
. (129)

From equation (127), the real part of a0,1b1 is computed to be

R(a0,1b1) =
θ

(
q2;

[
1
γ 2

1

]
qμ−1

)
· γ0

[
θ

(
q2;

[
−1
γ 2

0

]
qμ

)]

θ

(
q2;

[
−1
γ 2

0

]
qμ−1

)2

γ 2
1 θ

(
q2;

[
1
γ 2

1

]
qμ

)2

+ θ

(
q2;

[
1
γ 2

1

]
qμ−1

)2

γ 2
0 θ

(
q2;

[
−1
γ 2

0

]
qμ

)2

·
{
γ0θ

(
q2;

[
−1

γ 2
0

]
qμ

)
θ(q2;−qμ−1) + θ

(
q2;

[
−1

γ 2
0

]
qμ−1

)
θ(q2;−qμ)

}
(130)

which is seen to vanish precisely when either the factor in square brackets vanishes, that is, when

θ

(
q2;

[
−1

γ 2
0

]
qμ

)
= 0 , (131)

or when the factor in braces in (130) vanishes, that is, when

− θ(q2;−qμ)

θ(q2;−qμ−1)
=

γ0θ

(
q2;

[
−1
γ 2

0

]
qμ

)

θ

(
q2;

[
−1
γ 2

0

]
qμ−1

) = G(γ0) , (132)

where G(γ ) is given by (121) and has been seen to be non-constant in γ in Case A. This implies that, for fixed q and μ, 
condition (132) holds only for a discrete set of γ0 without limit point in R+ . Thus, for fixed q and μ, the vanishing of 
the factor in braces in (130) holds only for a discrete set of γ0 without limit point in R+ , a non-generic condition in γ0. 
From (25), the vanishing of (131) occurs only when −qμ−1/γ 2

0 = q2p for some integer p, which, for fixed q and μ, is a 
non-generic condition in γ0. The above statements hold for all choices of γ1 as the factor θ

(
q2;qμ−1/γ 2

1

)
in equation (130)

never vanishes, again by (25). Thus for rational q > 1 and arbitrary μ both fixed, and for all choices of γ1 > 0 and generic 
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Fig. 3. Left: In Example 2 Case B with λ = 1 (decaying in one term and non-decaying in the second), fμ,1(t) is extended (non-uniquely) to the negative 
real axis solving the relevant MADE (110), as is illustrated here when μ = 0.3, q = 3, with the values γ0 = 0.2 and γ1 = 1.1 in (128), where 
0 = 0, p0 = 1, 

1 = 1, p1 = 0. Compare with Case A in Fig. 2 Right and Case C on the right, where f0.3,1(t) with q = 3 is also extended to (−∞, 0] in different manners.
Right: In Example 2 Case C (i) with λ = 1 (non-decaying in both terms), fμ,1(t) is extended (non-uniquely) to the negative real axis solving the relevant 
MADE (110), as is illustrated here when μ = 0.3, q = 3, with the values γ0 = 0.2 and γ1 = 1.1, in (136), where 
0 = 1, p0 = 0, 
1 = 1, p1 = 1. Compare 
with Case A in Fig. 2 Right and Case B on the left, where f0.3,1(t) with q = 3 is also extended to (−∞, 0] in different manners.

choice of γ0 > 0, the non-decay of the real part of the second summation in (128) is established. In this setting, taking the 
real part of h(t) in (128) gives a real extension of fμ,1(t) to t < 0, yielding an extension to R that is not among the Fμ,λ(t)
of Definition 4.1 and that is non-decaying at −∞. See Fig. 3 Left, where, for μ = .3, q = 3, γ0 = .2, and γ1 = 1.1, we obtain 
R(a0,1b1) ≈ .1359902757 �= 0, providing an example that is non-decaying in one term.

Case C. (Non-decaying in both terms). Let 
0 = 1 and p0 = 0, 1 in (112) as well as in (114)–(118), and let 
1 = 1 and 
p1 = 0, 1 in (113) as well as in (114)–(118). Then we have two subcases: (i) p0 �= p1 where w.l.o.g. we assume p0 = 0 and 
p1 = 1, and (ii) p0 = p1 where both are 0 or both are 1.

In Case C (i), from (118) det H̃ = 0 holds if and only if

iγ1θ

(
q2;

[
1

γ 2
1

]
qμ

)
θ

(
q2;

[
1

γ 2
0

]
qμ−1

)
+ iγ0θ

(
q2;

[
1

γ 2
0

]
qμ

)
θ

(
q2;

[
1

γ 2
1

]
qμ−1

)
= 0 (133)

if and only if

γ1θ

(
q2;

[
1
γ 2

1

]
qμ

)

θ

(
q2;

[
1
γ 2

1

]
qμ−1

) = −
γ0θ

(
q2;

[
1
γ 2

0

]
qμ

)

θ

(
q2;

[
1
γ 2

0

]
qμ−1

) . (134)

From (22), one sees that θ(Q ; ω) > 0 for ω ∈ R+ , and since γ0, γ1 > 0, one sees that if (134) were to hold then a positive 
number would equal a negative number. Thus (134) cannot hold, with the consequence that det H̃ �= 0 for all choices of 
parameters γ0, γ1, μ in Case C (i), and in this case one has from (117) that for all choices of parameters γ0, γ1, μ we have

[
a0,0b0
a0,1b1

]
=

⎡
⎢⎢⎣

θ

(
q2;

[
1
γ 2

0

]
qμ−1

)
θ

(
q2;

[
1
γ 2

1

]
qμ−1

)

−iγ0θ

(
q2;

[
1
γ 2

0

]
qμ

)
iγ1θ

(
q2;

[
1
γ 2

1

]
qμ

)
⎤
⎥⎥⎦

−1 [
θ(q2;−qμ−1)

−θ(q2;−qμ)

]
= H̃−1 · F . (135)

From (112), (113), and with a0,0b0 , a0,1b1 as in (135), one has that the desired extension h(t) of fμ,1(t) is given by

h(t) = a0,0b0

∞∑ [
1

γ 2
0

]M
e−iqMγ0t

qM(M−μ)
+ a0,1b1

∞∑ [
1

γ 2
1

]M
eiqMγ1t

qM(M−μ)
. (136)
M=−∞ M=−∞
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The extension h(t) in (136) is not real analytic in t , but it is C∞ in t on (−∞, 0]. By Proposition 8.2, for μ not an 
odd integer, one observes non-decay of the real part of h(t) in (136) for rational choice of q, γ0, γ1. That is, to check the 
non-vanishing of (184) in Proposition 8.2 one only need check in our setting that R(h(0)) �= 0. From (136) and (135), one 
observes R(h(0)) = θ(q2; −qμ−1) and sees that for all choices of γ0, γ1 > 0 it never vanishes when μ is not an odd integer. 
Hence, by Proposition 8.2, with fixed μ not an odd integer, R(h(t)) does not decay for fixed rational q > 1, for all rational 
choices of γ0, γ1 > 0. Taking the real part of such an h(t) in (136) gives a real extension of fμ,1(t) to t < 0, and yields an 
extension to all of R that does not fall among the Fμ,λ(t) of Definition 4.1. Furthermore, this extension does not decay at 
−∞. See Fig. 3 Right for an illustration of such a non-decaying extension where μ = .3 is not an odd integer, with q = 3, 
γ0 = .2 and γ1 = 1.1.

In Case C (ii), from (118) det H̃ = 0 holds if and only if

0 = (−1)p0+1

[
iγ1θ

(
q2;

[
1

γ 2
1

]
qμ

)
θ

(
q2;

[
1

γ 2
0

]
qμ−1

)
− iγ0θ

(
q2;

[
1

γ 2
0

]
qμ

)
θ

(
q2;

[
1

γ 2
1

]
qμ−1

)]
(137)

if and only if

γ1θ

(
q2;

[
1
γ 2

1

]
qμ

)

θ

(
q2;

[
1
γ 2

1

]
qμ−1

) =
γ0θ

(
q2;

[
1
γ 2

0

]
qμ

)

θ

(
q2;

[
1
γ 2

0

]
qμ−1

) . (138)

Observe that

zθ
(

q2;
[

1
z2

]
qμ

)
θ
(

q2;
[

1
z2

]
qμ−1

) (139)

is defined and analytic on the connected open region C∗\D , where D = {±iqμ/2−p−1/2 | p ∈ Z
}

is the set of poles of order 
1 of (139). For z = iγ , the expression in (139) becomes iG(γ ), where G is given by (121). From the remarks following (121), 
G(γ ) is not constant in γ . Thus (139) cannot be constant in iγ , nor on any set in C∗\D having a limit point, including 
any such subset of R+ . Thus fixing γ0 in (138) there is only a discrete set of γ1 without limit point with equality in (138)
holding. Thus for fixed γ0 one has det H̃ �= 0 for a generic choice of γ1 in Case C (ii), and in this case one has from (117)
that for such a generic choice of parameters γ0, γ1, μ[

a0,0b0
a0,1b1

]
= H̃−1 · F (140)

=

⎡
⎢⎢⎣

θ

(
q2;

[
1
γ 2

0

]
qμ−1

)
θ

(
q2;

[
1
γ 2

1

]
qμ−1

)

−iγ0(−1)pθ

(
q2;

[
1
γ 2

0

]
qμ

)
−iγ1(−1)pθ

(
q2;

[
1
γ 2

1

]
qμ

)
⎤
⎥⎥⎦

−1 [
θ(q2;−qμ−1)

−θ(q2;−qμ)

]
,

where p is the common value of p0 = p1. From (112), (113), and with a0,0b0 , a0,1b1 as in (140), one has that the desired 
extension h(t) of fμ,1(t) is given by

h(t) = a0,0b0

∞∑
M=−∞

[
1

γ 2
0

]M
e−iqMγ0(−1)pt

qM(M−μ)
+ a0,1b1

∞∑
M=−∞

[
1

γ 2
1

]M
e−iqMγ1(−1)pt

qM(M−μ)
, (141)

where p is the common value of p0 = p1. The extension h(t) in (141) is not real analytic in t , but it is C∞ in t on (−∞, 0]. 
By Proposition 8.2, for fixed μ not an odd integer, one observes non-decay of the real part of h(t) in (141) for fixed rational 
q > 1, for each γ0 > 0 and for each γ1 lying in an open dense set of (0, ∞) by observing that R(h(0)) = θ(q2; −qμ−1) �= 0
in these cases. Taking the real part of such an h(t) in (141), with γ0, γ1 as above and rational, gives a real extension of 
fμ,1(t) to t < 0, and yields an extension to all of R that does not fall among the Fμ,λ(t) of Definition 4.1. Furthermore, this 
extension need not decay at −∞.

Remark 12. In all of the cases A through C in Example 2, one has that det H̃ �= 0 generically. Thus in Theorem 3.2 one 
has that the assumption that det H �= 0 holds generically in that det H = a0,0a0,1 det H̃ . Again, the hypothesis that det H �= 0
holds is a non-restrictive one, and we have a rich set of parameters for extension.

Remark 13. The multitude of answers produced in Example 2 (with the λ = 2L/k = 1 and L = 1 = A, k = 2 = R) shows 
again that one does not have uniqueness of solutions to initial value problems for MADEs at t = 0. For instance, examine 
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the graphs in Fig. 2 Right and Fig. 3 Left and Right showing three different types of extensions of fμ,1(t) to R for μ = 0.3
and q = 3. We do note that the initial value problem for MADEs, coupled with the stronger additional requirement that 
solutions must agree on an open interval containing t = 0, will indeed have uniqueness of its solution, as indicated in 
Corollary 7.2.

Remark 14. In Case A of Example 2, if one sets μ = 0 with λ = 1 and γ0 = 1, and chooses γ1 �= 1 to be generic, then one 
obtains that a0,0b0 = 1 and a0,1b1 = 0 in (123) and (124). The resulting extension F0,1(t) of f0,1(t) is an even function, 
which when normalized by dividing by F0,1(0) gives the qCos(t) introduced in [24]. Furthermore, in Case A, if one sets 
μ = 1 with λ = 1 and γ0 = 1 and chooses γ1 �= 1 to be generic, then one obtains that a0,0b0 = 0 and a0,1b1 = 1 in (123)
and (124). The resulting extension F1,1(t) of f1,1(t) is an odd function, which, when normalized by dividing by F0,1(0) as 
well, gives the q Sin(t) also introduced in [24]. From this perspective, we see both Example 2 and Example 1 as significant 
generalizations of functions previously studied in [22], [23], [24].

Example 3. In this short example, we illustrate a case where λ = (2L + 1)/k has an odd numerator. Namely, we set L = 0
and k = 1, to obtain λ = (2 · 0 + 1)/1 = 1. In this setting, we have A = 2L + 1 = 2 · 0 + 1 = 1 and R = 2k = 2, with (18)
becoming

f (2)
μ,1(t) = (−1)2+1q1(1+μ)/1 fμ,1(q

1t) = −q1+μ fμ,1(qt) . (142)

Thus, (142) becomes (110), and we proceed verbatim as in Example 2.

6. Fourier transforms and Jacobi theta functions

In this section let Fμ,λ(t), as in Definition 4.1, be any extension of fμ,λ(t) to R matching derivatives of all orders at t = 0
and satisfying the MADE (18). Such an Fμ,λ(t) is Schwartz, as was shown in Proposition 4.2.

6.1. The general case: computation of the Fourier transform of Fμ,λ(t)

The computation of the Fourier transform of Fμ,λ(t) is divided into two calculations, as follows:

F[Fμ,λ(t)](x) = 1√
2π

∞∫
−∞

e−ixt Fμ,λ(t)dt

= 1√
2π

∞∫
0

e−ixt fμ,λ(t)dt + 1√
2π

0∫
−∞

e−ixtR(h(t))dt .

The integral over [0, ∞) and the integral over (−∞, 0] are computed in the following pair of propositions.

Proposition 6.1. For μ ∈R, λ ∈R+ , and q > 1, one has

∞∫
0

e−ixt fμ,λ(t)dt =
∞∑

k=−∞

[
(−1)k

qk(k−μ)/λ

1

(i x + qk)

]
. (143)

Proof. The computation proceeds directly. Note that

∞∫
0

e−ixt fμ,λ(t)dt =
∞∫

0

e−ixt
∞∑

k=−∞
(−1)k e−qkt

qk(k−μ)/λ
dt

=
∞∑

k=−∞

(−1)k

qk(k−μ)/λ

∞∫
0

e

(
−ix−qk

)
t

dt =
∞∑

k=−∞

(−1)k

qk(k−μ)/λ

[
0 − 1

(−i x − qk)

]
,

giving (143). Here moving the integral past the summation is justified by absolute summability of fμ,λ(t). �
Proposition 6.2. For μ ∈ R, λ ∈ Q+ , and q > 1, let h(t) as in (72) be an extension of fμ,λ(t) as in Theorem 3.2, where the 
r, br, γr, 
r, j, and pr are as in Theorem 3.2, and λ = 2A/R with A given by (16) and R given by (17). One has
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0∫
−∞

e−ixtR(h(t))dt

= 1

2

R−1∑
r=0

br

⎡
⎣A−1∑

j=0

a j,r

∞∑
M=−∞

{[
(−1)A−
r

γ R
r

]M
1

q(M A+ j)(M A+ j−μ)/λ

(−1)

[i x + qM A+ jγreiπ
r/Rωpr ]

}⎤
⎦ (144)

+ 1

2

R−1∑
r=0

br

⎡
⎣A−1∑

j=0

a j,r

∞∑
M=−∞

{[
(−1)A−
r

γ R
r

]M
1

q(M A+ j)(M A+ j−μ)/λ

(−1)

[i x + qM A+ jγre−iπ
r/RωR−pr ]

}⎤
⎦ .

Proof. Given an extension h(t) as in (72) of Theorem 3.2, one has R(h(t)) = [h(t) + h(t)]/2. Thus

R(h(t)) = 1

2

[
R−1∑
r=0

brh(cr, t) +
R−1∑
r=0

brh(cr, t)

]

= 1

2

R−1∑
r=0

br

⎡
⎣A−1∑

j=0

a j,r

∞∑
M=−∞

[
(−1)A−
r

γ R
r

]M
e−qM A+ jγr eiπ
r/Rωpr t

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦

+ 1

2

R−1∑
r=0

br

⎡
⎣A−1∑

j=0

a j,r

∞∑
M=−∞

[
(−1)A−
r

γ R
r

]M
e−qM A+ jγr e−iπ
r/RωR−pr t

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦ ,

from which one has

0∫
−∞

e−ixtR(h(t))dt

= 1

2

R−1∑
r=0

br

⎡
⎣A−1∑

j=0

a j,r

∞∑
M=−∞

⎧⎨
⎩
[

(−1)A−
r

γ R
r

]M
1

q(M A+ j)(M A+ j−μ)/λ

0∫
−∞

e[−i x−qM A+ jγr eiπ
r/Rωpr ]tdt

⎫⎬
⎭
⎤
⎦

+ 1

2

R−1∑
r=0

br

⎡
⎣A−1∑

j=0

a j,r

∞∑
M=−∞

⎧⎨
⎩
[

(−1)A−
r

γ R
r

]M
1

q(M A+ j)(M A+ j−μ)/λ

0∫
−∞

e[−i x−qM A+ jγr e−iπ
r/RωR−pr ]tdt

⎫⎬
⎭
⎤
⎦

giving (144) after evaluating the integrals. �
The previous propositions immediately give the following result on Fourier transforms.

Theorem 6.1. For μ ∈ R, λ ∈ Q+ , and q > 1, let fμ,λ(t) be given by (2). Let Fμ,λ(t), as in Definition 4.1, be any extension of fμ,λ(t)
to R matching derivatives of all orders at t = 0 and satisfying the MADE (18). Then the Fourier transform F [Fμ,λ(t)](x) is given by

F[Fμ,λ(t)](x) (145)

= 1√
2π

∞∑
k=−∞

[
(−1)k

qk(k−μ)/λ

1

(i x + qk)

]
(146)

+ 1

2
√

2π

R−1∑
r=0

br

⎡
⎣A−1∑

j=0

a j,r

∞∑
M=−∞

{[
(−1)A−
r

γ R
r

]M
1

q(M A+ j)(M A+ j−μ)/λ

(−1)

[i x + qM A+ jγreiπ
r/Rωpr ]

}⎤
⎦

+ 1

2
√

2π

R−1∑
r=0

br

⎡
⎣A−1∑

j=0

a j,r

∞∑
M=−∞

{[
(−1)A−
r

γ R
r

]M
1

q(M A+ j)(M A+ j−μ)/λ

(−1)

[i x + qM A+ jγre−iπ
r/RωR−pr ]

}⎤
⎦

where the r, br, γr, 
r, j, a j,r and pr are as in Theorem 3.2, and A and R are given by (16) respectively (17) with λ = 2A/R. Finally, 
F [Fμ,λ(t)](x) vanishes to infinite order at x = 0.
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Proof. Equality in (146) follows directly from the remarks beginning this section along with Propositions 6.1 and 6.2. The 
vanishing to infinite order of F [Fμ,λ(t)](x) at x = 0 follows from the vanishing of all moments of Fμ,λ(t) as shown in 
Proposition 4.1. We remark that the third summation grouping in (146) is not the conjugation of the second summation 
grouping in (146) when x �= 0. �
6.2. Special cases: relating the Fourier transform of Fμ,λ(t) to the Jacobi theta function

We next demonstrate a relation of the above Fourier transforms to the Jacobi theta function in two cases: the first case 
contains those fμ,λ(t) that are flat at t = 0 and are extended to be identically 0 on the negative reals; the second case 
contains those fμ,1(t) that can be extended to the negative reals to give either even or odd functions. Similar relations 
should hold in the other remaining cases, in that we expect the expression for the Fourier transform in Theorem 6.1 to 
be expressible in terms of Jacobi theta functions. The general case involves a delicate contour integration over regions in 
corresponding Riemann surfaces. To avoid such issues, and for conciseness, we restrict ourselves here to the two simpler 
cases mentioned above. In these two cases, the full proofs are given in Section 9.

We proceed to the flat case. Recall by equation (33) of Proposition 2.2 that fμ,λ(t) is flat if and only if μ = 2N + 1 is 
an odd integer and λ = 2n is an even integer. In this flat setting the derivatives of all orders vanish at t = 0, and by (59)
(equivalently (60)) one obtains the column matrix F = 0 in (60), and thus the column matrix B = 0 in (60) yielding that 
each entry in B , namely br , vanishes. Thus, in the flat case, the methods of Theorem 3.2 only give the identically zero 
extension on (−∞, 0]. In this flat setting extended to be 0 on the negative reals, we refer to the extension as F2N+1,2n(t)
and immediately obtain the following corollary to Theorem 6.1.

Corollary 6.2. For f2N+1,2n(t) flat at t = 0, extend f2N+1,2n(t) to be identically 0 on R− to obtain F2N+1,2n(t). The Fourier transform 
of the extension F2N+1,2n(t) is expressible as:

F[F2N+1,2n(t)](x) = 1√
2π

∞∑
k=−∞

[
(−1)k

qk(k−[2N+1])/(2n)

1

(i x + qk)

]
. (147)

Proof. Set μ = 2N + 1, λ = 2n, and br = 0 for 0 ≤ r ≤ R − 1 in the Fourier transform expression (146) of Theorem 6.1. �
Relying on Corollary 6.2, one can relate the Fourier transform in the flat setting to an expression involving the Jacobi 

theta function as given by (22). Thus we arrive at a main result of this work: relating the Fourier transforms in (147) to 
special function theory while generalizing the work in [22].

Theorem 6.3. For f2N+1,2n(t) flat at t = 0, extend f2N+1,2n(t) to be identically 0 on R− to obtain F2N+1,2n(t). The Fourier transform 
of the extension F2N+1,2n(t) is expressible in terms of the Jacobi theta function θ via the following finite sum

F[F2N+1,2n(t)](x) = (−1)N

√
2π

μ3
q1/n qN(N+1)/(2n) 1

i x

⎡
⎣1

n

n−1∑
j=0

1

θ(q1/n; z j(x)/q(N+1)/n)

⎤
⎦ (148)

where for 0 ≤ j ≤ n − 1

z j(x) = −|x|1/ne3πi/[2n]ei[arg(x)]/nei2π j/n = −|x|1/ne3πi/[2n]ei[arg(x)]/nω j (149)

where ω = ei2π/n. Equivalently, the z j(x) ≡ z j are the n distinct solutions of (−z j)
n = −i x.

The proof of Theorem 6.3 is given as a series of propositions in Section 9 below.
We now are in a position to obtain the following corollary, which is useful in substantiating the claim in the proof of 

Proposition 2.3 that fμ,λ(t) cannot be identically 0. First, if fμ,λ(t) is not flat at t = 0 then it cannot be the identically 
zero function. However, if fμ,λ(t) is flat at t = 0, then by (33) one has μ = 2N + 1 is an odd integer, and λ = 2n is an 
even positive integer. In this flat case, the extension F2N+1,2n(t) of f2N+1,2n(t) is defined to be zero for negative t . Now 
F2N+1,2n(t) cannot identically vanish, because its Fourier transform cannot vanish, as is seen in the next corollary.

Corollary 6.4. F [F2N+1,2n(t)](x) is not identically 0 in x. Hence F2N+1,2n(t) is not identically 0 in t.

Proof. By (148) and (149) and the identity theorem, in order to see that F [F2N+1,2n(t)](x) is not identically 0 in x it is 
sufficient to show that the function
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n−1∑
j=0

1

θ(Q ; zω j)
=

n−1∑
j=0

⎛
⎝ n−1∏

0≤k �= j

θ(Q ; zωk)

⎞
⎠

n−1∏
j=0

θ(Q ; zω j)

(150)

is not identically 0 in z, where Q = q1/n and ω = e2πi/n . This in turn is equivalent to the numerator

n−1∑
j=0

⎛
⎝ n−1∏

0≤k �= j

θ(Q ; zωk)

⎞
⎠ = θ(Q ; zω)θ(Q ; zω2) · · · θ(Q ; zωn−1) + θ(Q ; z)

n−1∑
j=1

⎛
⎝ n−1∏

1≤k �= j

θ(Q ; zω j)

⎞
⎠ (151)

not being identically 0 in z. Setting z = −Q in (151) gives that θ(Q ; −Q ) = 0 and

n−1∑
j=0

n−1∏
0≤k �= j

θ(Q ;−Q ωk) = θ(Q ;−Q ω)θ(Q ;−Q ω2) · · · θ(Q ;−Q ωn−1) �= 0 (152)

where the non-vanishing is obtained from (25) along with the fact that −Q ω j does not lie on the negative real axis for 
j = 1, . . . , n − 1. By the identity theorem, (151) does not vanish on any subset of C\{0} having a limit point. One concludes 
that F [F2N+1,2n(t)](x) is not identically 0 in x. It follows that F2N+1,2n(t) is not identically 0 in t as F is injective. Hence, 
f2N+1,2n(t) cannot be identically 0 in t either. �

We proceed next to the second case: studying those fμ,1(t) with even/odd extensions, and computing their Fourier 
transforms. Again, this result illustrates a major point of this work – demonstrating the connection with special function 
theory and Jacobi theta functions, and recovering the Fourier transform results of [24] via an alternate method of contour 
integration.

Theorem 6.5. The function fμ,1(t) extends to be an even function precisely when μ = 2n is an even integer. Denote this extension 
F2n,1(t). On the other hand, fμ,1(t) extends to be an odd function precisely when μ = 2n + 1 is an odd integer. Denote this extension 
F2n+1,1(t). Let N be any integer (either 2n or 2n + 1, respectively, above). The Fourier transform of F N,1(t) is given in terms of the 
Jacobi theta function θ as follows:

F[F N,1(t)](x) =
2μ3

q2√
2π

(−i x)N

θ(q2; x2)
. (153)

The proof of Theorem 6.5 is given in Section 9 below.

7. Non-uniqueness of solutions of MADE IVPs at 0, and conditions sufficient for uniqueness

In this section, we will first demonstrate non-uniqueness of solutions to the MADEs under consideration, by examining 
the case fμ,λ(t) with μ ∈ R and λ = 2 = 2L/k with L = 1 = k = R = A as in (16) and (17), with q > 1 and fμ,2(t) satisfying 
the MADE (18) of explicit form

f ′
μ,2(t) = q(1+μ)/2 fμ,2(qt) , (154)

which is given also as (102) in Example 1.
As a first example, let μ = −1, that is μ = 2N + 1 with N = −1 and λ = 2n with n = 1. One has that f−1,2(t) is flat at 0, 

extends to be identically 0 on the negative reals to give F−1,2(t), which satisfies the MADE

f ′(t) = f (qt) (155)

with f (0) = 0, as was seen in Example 1. Note that for any C ∈ R, the scaled function C F−1,2(t) also satisfies (155) with 
vanishing initial condition C F−1,2(0) = 0. And thus, due to linearity of (155), we have a 1-parameter family, parameterized 
by C , of solutions to the initial value problem (155) with f (0) = 0 that agree (and vanish) on (−∞, 0]. This exhibits 
non-uniqueness of solutions to IVP MADEs in general.

As a second example, we let μ, C ∈ R be our parameters and rely on fμ,2(t), which satisfies (154) above, to construct 
the function

Gμ,2,C (t) ≡ C fμ,2(t/q(1+μ)/2) (156)

for t ≥ 0. Observe that
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G ′
μ,2,C (t) = C f ′

μ,2(t/q(1+μ)/2) · (1/q(1+μ)/2) = Cq(1+μ)/2 fμ,2(qt/q(1+μ)/2) · (1/q(1+μ)/2) (157)

= C fμ,2(qt/q(1+μ)/2) = Gμ,2,C (qt) ,

where the rightmost equation in (157) follows from (154). In this setting, if μ = 2N + 1 with N = −1 we recover the first 
example of this section. If μ = 2N + 1 is an odd integer, one also obtains flat solutions to (155) which also vanish at 0. If 
μ �= 2N + 1 is not an odd-integer, then Gμ,2,C (0) = C fμ,2(0) �= 0, by (29). If one sets C = ( fμ,2(0))−1 for instance, then for 
each μ not an odd integer one has Gμ,2,[1/ fμ,2(0)](t) satisfies the MADE IVP (155) on [0, ∞) with f (0) = 1.

As a third example, fix μ �= 2N + 1, and examine Gμ,2,C1 (t) as in (156), where C1 = [1/ fμ,2(0)]. Extend fμ,2(t) to 
Fμ,2(t) via Theorem 3.2, and thus extend Gμ,2,C1 (t) to C1 Fμ,2(t/q(1+μ)/2) for t < 0. With this extended Gμ,2,C1 (t), define 
fC2 (t) = Gμ,2,C1 (t) + C2 F−1,2(t) which satisfies (155) with fC2 (0) = 1 for all C2 ∈ R, and with each function fC2 (t) in the 
family given by C2 agreeing on (−∞, 0] but differing on (0, ∞).

As illustrated in the above examples, one sees that in general it will not be enough to match derivatives at t = 0 to 
obtain uniqueness of solutions to initial value problems involving the MADEs under consideration in this study. Instead, 
one will also need to assume agreement of the solutions along an interval. In particular, if two solutions of a MADE agree 
in an open neighborhood of t = 0 then they agree on R. As a canonical example, we examine uniqueness for the MADE 
f ′(t) = f (qt).

Proposition 7.1. For q > 1, assume that

f ′(t) = f (qt) (158)

and that there exists a ̂t > 0 with

f (t) = 0 for all t ∈ [t̂,qt̂] (159)

Then f (t) ≡ 0 on the half line [0, ∞).
Similarly, if f (t) satisfies (158) and there exists a ̂t < 0 with f (t) = 0 for all ̂t in the interval [qt̂, ̂t], then f (t) ≡ 0 on the half line 

(−∞, 0].

Proof. We prove the proposition in the case that t̂ > 0 and note that the proof of the case t̂ < 0 is similar. The vanishing of 
f (t) on [t̂, qt̂] holds by the hypothesis (159). For t ∈ [t̂/q, ̂t], one observes that qt ∈ [t̂, qt̂] from which one has that

f (t) − f (t̂/q) =
t∫

t̂/q

f ′(u)du =
t∫

t̂/q

f (qu)du =
qt∫

t̂

f (v)dv/q = 0 , (160)

where the substitution v = qu was made in the next to last equality, and where the last equality was obtained from the 
hypothesis (159) on [t̂, qt̂]. Setting t = t̂ in (160) gives that 0 = f (t̂) − f (t̂/q) = 0 − f (t̂/q), from which one sees 0 =
f (t̂/q). Thus for all t ∈ [t̂/q, ̂t] equation (160) gives f (t) = 0. Repeating this argument successively, one has f (t) = 0 ∀ t ∈
[t̂/qn, ̂t/qn−1] for all n ∈ N. It follows that f (0) = 0 by continuity.

From (158), one sees that∫
f (u)du = qf (u/q) + C , so we let F (u) = qf (u/q) . (161)

For t ∈ [qt̂, q2t̂], one has t/q ∈ [t̂, qt̂], and thus

t∫
qt̂

f (u)du = F (t) − F (qt̂) = qf (t/q) − qf (t̂) = 0 − 0 , (162)

where the last equality follows from the hypothesis (159). From this, one has that for each sufficiently small ε > 0

t+ε∫
t

f (u)du = 0 ∀ t ∈ [qt̂,q2t̂) , (163)

which implies that f (t) ≡ 0 on [qt̂, q2t̂), and therefore on [qt̂, q2t̂] by continuity. Repeating the above argument successively 
implies that f (t) = 0 on [qnt̂, qn+1t̂] for all n ∈ N, and, together with the earlier computation, one sees that f (t) ≡ 0 on 
[0, ∞), proving the proposition. �

From the preceding proposition, one obtains the following corollary.
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Corollary 7.1. For q > 1, assume that two functions f1(t) and f2(t) satisfy

f ′
i (t) = f i(qt) for i = 1,2 , (164)

and that there exists a ̂t > 0 with

f1(t) = f2(t) (165)

on the interval [t̂, qt̂]. Then f1(t) ≡ f2(t) on the half line [0, ∞).
Similarly, if f1(t), f2(t) satisfy (158) and there exists a t̂ < 0 with (165) holding on the interval [qt̂, ̂t], then f1(t) ≡ f2(t) on the 

half line (−∞, 0].

Proof. Let f (t) = f1(t) − f2(t) and apply Proposition 7.1. �
In a similar vein, one has the following uniqueness criterion.

Corollary 7.2. For q > 1, assume that there is an interval (−ε, ε) about t = 0 such that two functions f1(t) and f2(t) satisfy

f ′
i (t) = f i(qt) for i = 1,2 (166)

and agree

f1(t) = f2(t) on (−ε, ε) . (167)

Then

f1(t) = f2(t) on (−∞,∞) . (168)

Proof. Pick any t̂ > 0 such that qt̂ < ε . Then both [t̂, qt̂] and [q(−t̂), −t̂] fall in the interval (−ε, ε) of agreement. Applying 
Corollary 7.1 gives the result. �

Note that Proposition 7.1 through Corollary 7.2 hold for f , f1 and f2 in the C∞ category (in which any solution of 
f ′(t) = f (qt) falls). We next examine solutions of (18) that fall in C∞(R) and are real analytic on R\{0}, comparing them 
with the solution Fμ,λ(t) given by Definition 4.1.

Proposition 7.2. For λ ∈ Q+ with λ = 2A/R and for μ ∈ R, let Fμ,λ(t) as given in Definition 4.1 be a solution of the MADE (18), 
where A, R are as in (16)–(17), respectively. Let f be any other solution of the given MADE (18) that is C∞ on R and real analytic on 
(−∞, 0) ∪ (0, ∞). Then if there is a subinterval (a, b) of (0, ∞), respectively (−∞, 0), with Fμ,λ(t) = f (t) on (a, b), then Fμ,λ(t) =
f (t) on [0, ∞), respectively (−∞, 0]. Furthermore, if there is an ε > 0 with Fμ,λ(t) = f (t) on (−ε, ε), then Fμ,λ(t) = f (t) on 
(−∞, ∞).

Proof. From Definition 4.1, one has Fμ,λ(t) = fμ,λ(t) for t ≥ 0, with fμ,λ(t) given by (2). Complexifying (2), one has

fμ,λ(z) ≡
∞∑

m=−∞
(−1)m e−qm z

qm(m−μ)/λ
(169)

for R(z) ≥ 0. On the open right half-plane R(z) > 0, fμ,λ(z) is the uniform limit of the (analytic) truncated sums (from 
−N to N) in (169) as N → ∞. As such, fμ,λ(z) is analytic on R(z) > 0 (and continuous on R(z) ≥ 0). From analyticity on 
R(z) > 0, one concludes that fμ,λ(z) restricts to the real analytic function fμ,λ(t) on t > 0.

Again from Definition 4.1, one has Fμ,λ(t) =R(h(t)) for t < 0, with h(t) = ∑R−1
r=0 brh(cr, t) given by (72) with each h(cr, t)

given by (70) where R(cr) < 0. Complexifying t one has each h(cr, z) is analytic on the open half-plane R(−cr z) < 0 (which 
contains the negative real axis by the requirement that R(cr) < 0). Thus h(z) = ∑R−1

r=0 brh(cr z) is analytic on the open wedge 
given by the intersection of the half-planes R(−cr z) < 0 for r = 0, . . . , R − 1. One concludes that R(h(t)), as the real part 
of h(z) restricted to the negative real axis, is real analytic on (−∞, 0).

By Theorem 3.2, Fμ,λ(t) is C∞ on R and satisfies the MADE (18). By Proposition 2.3, Fμ,λ(t) is not analytic at t = 0. 
By the above remarks Fμ,λ(t) is real analytic on (−∞, 0) ∪ (0, ∞). If f (t) in C∞(R) is real analytic on (−∞, 0) ∪ (0, ∞)

and agrees with Fμ,λ(t) on an open interval (a, b) of (0, ∞), respectively (−∞, 0), then by the identity theorem for real 
analytic functions one has agreement on all of (0, ∞), respectively (−∞, 0), and by continuity on all of [0, ∞), respectively 
(−∞, 0]. If one has agreement on an open interval (−ε, ε), then: one has agreement on (0, ε) thus on [0, ∞); and similarly 
there is agreement on (−ε, 0) thus on (−∞, 0]. The result now follows, in particular for f any solution of the MADE (18)
falling in the category C∞(R) and real analytic on (−∞, 0) ∪ (0, ∞). �
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Remark 15. We point out that criterion for uniqueness of a solution of a distinct but analogous class of certain multiplica-
tively advanced/delayed differential equations has been given in the main theorem of [21]. This illustrates that an additional 
asymptotic condition at the origin implies uniqueness.

8. Proof of the decay rates at ±∞

This section will be divided into two subsections. The first will handle the decay rate of decaying solutions to the MADEs 
under study. These decaying solutions are the Schwartz wavelets discussed in Section 4, and they form the majority of the 
solutions, in general. The second subsection will be devoted to the minority of cases, those solutions of the MADEs under 
study that do not decay. Though these solutions do not decay, they do remain bounded.

8.1. Decaying solutions

The goal of this section is to obtain sharp estimates – in terms of more familiar functions – for the decay rates at +∞
of the new functions fμ,λ(t), along with the decay rates of their extensions h(t) and Fμ,λ(t) at −∞.

Proposition 8.1. Let q > 1, and A, a > 0 and B, b, c ∈ R all be fixed parameters for the function of u ≥ 0 given by the summation 
in (170). Then for any fixed α > 0 (as in (172), (174), and (175) below), there are constants K j with j = 1, 2, 3 depending on the 
parameters q, a, b, c, A, B, and α such that for u satisfying (172) one has a bound of form

0 <

∞∑
k=−∞

e−uqAk+B

qak2+bk+c
≤ K1u−K2 ln(u)+K3 . (170)

Consequently, for each of the functions f1(t) ≡ t p Dn
t

(
f (s)
μ,λ(t)

)
, f2(t) ≡ t p Dn

t

(
h(s)(cr, t)

)
and f3(t) ≡ t p Dn

t

(
h(s)(t)

)
and f4(t) ≡

t p Dn
t

(
(Rh)(s)(t)

)
satisfying that all R(cr) < 0, and f5(t) ≡ t p Dn

t

(
F (s)
μ,λ(t)

)
, there are constants K̂ j with j = 1, 2, 3 depending on 

the parameters q, a, b, c, A, B, α, p, n, μ, λ, s, and i along with the allowable parameters in (75) for i ≥ 2 so that

| f i(t)| ≤ K̂1|t|−K̂2 ln(|t|)+K̂3 (171)

for |t| sufficiently large.

Proof. For fixed q > 1, fixed A, a > 0 and fixed B, b, c ∈ R, along with fixed α > 0 as in (172), (174), and (175) below, from 
Propositions 7, 8, and 9 of [24] we immediately have that for

u > max

{
1

A
qA(b+1)/(2a)−B , αA−1q−Be−1−b/α

}
> 0 , (172)

one has

0 <

∞∑
k=−∞

e−uqAk+B

qak2+bk+c
≤ eb/A

qc
· e−a[L1(u)]2 ln(q)+[b ln(q)−2a/A][L2(u)]

{
1 +

√
π

a ln(q)

}
, (173)

where

L1(u) ≡ ln(u) − ln(α) + 1 + ln(A) + B ln(q) + b/α

2a/α +A ln(q)
(174)

and

L2(u) ≡

⎧⎪⎪⎨
⎪⎪⎩

ln(u) + ln(A) + B ln(q)

A ln(q)
if [b ln(q) − 2a/A] ≥ 0

ln(u) − ln(α) + 1 + ln(A) + B ln(q) + b/α

2a/α +A ln(q)
if [b ln(q) − 2a/A] < 0 .

(175)

By collecting powers of ln(u) in (173), each such set of parameters q, a, b, c, A, B, α give positive constants K1, K2 and 
K3 ∈R yielding a bound of form (170).

Each of the functions f1(t) ≡ t p Dn
t

(
f (s)
μ,λ(t)

)
, f2(t) ≡ t p Dn

t

(
h(s)(cr, t)

)
, f3(t) ≡ t p Dn

t

(
h(s)(t)

)
, f4(t) ≡ t p Dn

t

(
(Rh)(s)(t)

)
, 

and f5(t) ≡ t p Dn
t

(
F (s)
μ,λ(t)

)
is bounded by finite linear combinations of infinite sums of form (170) with

u = R(ĉ)t > 0 (176)
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sufficiently large, where: ĉ = 1 for f1; ĉ = cr for f2 with cr satisfying R(cr) < 0 as in Definition 4.1; ĉ = cr for 0 ≤ r ≤ R − 1
for f3 and f4 with cr satisfying R(cr) < 0 as in Definition 4.1. Such bounds hold on f5 by cases f1 and f4.

By relying on the triangle inequality, maximizing over the K1 and K3 in (170), minimizing over the K2 in (170), and 
then collecting powers of ln(|t|), one obtains that for each f i(t) with i = 1, . . . , 5 there are constants K̂ j with j = 1, 2, 3
depending on the parameters q, a, b, c, A, B, α, p, n, μ, λ, s and i with bounds of form (171) holding for |t| sufficiently 
large. �

As a consequence of Proposition 8.1, one obtains the following corollary.

Corollary 8.1. For all p, n ∈N0 , one has

lim
t→∞

∣∣∣t p Dn
t

(
f (s)
μ,λ(t)

)∣∣∣ = 0, lim
t→−∞

∣∣∣t p Dn
t

(
h(s)(cr, t)

)∣∣∣ = 0, (177)

lim
t→−∞

∣∣∣t p Dn
t

(
h(s)(t)

)∣∣∣ = 0, lim
t→−∞

∣∣∣t p Dn
t

(
(Rh)(s)(t)

)∣∣∣ = 0, (178)

and lim
t→±∞

∣∣∣t p Dn
t

(
F (s)
μ,λ(t)

)∣∣∣ = 0 , (179)

where each R(cr) < 0.

Proof. The vanishing limits are an immediate consequence of (171). �
Remark 16. To obtain decay in Proposition 8.1 one must have R(ĉ) �= 0 in (176). In the setting that R(ĉ) = 0, one need not 
have decay. In the next subsection we give a criterion that guarantees non-decay when R(ĉ) = 0.

Finally, in [7], N.T. Dung studies functions of the form

f ′(t) + a(t) f (t + h(t)) + b(t) f (t + r(t)) = 0 , (180)

which, under further key assumptions (in particular (2.4) in [7], given in the sentence containing (182) below), are seen to 
decay exponentially and have unique solutions. If one sets n = 1 in (1) the following MADE is obtained:

f ′(t) = α f (βt) , (181)

where α �= 0 and β > 1. If one sets a(t) = −α, h(t) = (β − 1)t , and b(t) = 0 = r(t) in (180) one recovers (181). In order to 
obtain uniqueness of the solution to (180) along with exponential decay, the following key assumption is made (assumption 
(2.4) in [7]), among other assumptions. Namely, that the supremum of the expression

E(t) ≡
t∫

t0

e− ∫ t
s D(u) du

⎛
⎜⎝|a(s)|

s+h(s)∫
s

C(u)du + |b(s)|
s+r(s)∫

s

C(u)du

⎞
⎟⎠ds (182)

on the interval [t0, ∞) is less than 1, where C(t) = |a(t)| + |b(t)| and D(t) = a(t) + b(t). However, if one substitutes a(t) =
−α, h(t) = (β − 1)t , and b(t) = 0 = r(t) in (182), one obtains

E(t) =
t∫

t0

e− ∫ t
s (−α) du

⎛
⎜⎝| − α|

s+(β−1)s∫
s

(| − α| + |0|)du

⎞
⎟⎠ds

= −α(β − 1)t − (β − 1) + α(β − 1)t0eα(t−t0) + (β − 1)eα(t−t0) , (183)

which approaches ∞ as t → ∞ independently of choice of α or β . Thus E(t) does not have a supremum less than 1, and 
one cannot assume either uniqueness or exponential decay of the solution to (181).

8.2. Non-decaying bounded solutions

While Proposition 8.1 gives decay of R(h(t)) as t approaches −∞ when all R(cr) < 0, there is no need for decay of 
R(h(t)) as t approaches −∞ if even one of the R(cr) = 0. The purpose of the following proposition is to prove non-decay 
in this setting, under mild assumptions on the parameters.
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Proposition 8.2. Let q = a/b > 1 be rational with a, b ∈ N. Let h(t) = ∑R−1
r=0 brh(cr, t) be an extension of fμ,λ(t) to (−∞, 0] as in 

Theorem 3.2 with cr = ±iγr satisfying R(cr) = 0 for 0 ≤ r ≤ r̂ and R(cr) < 0 for r̂ + 1 ≤ r ≤ R − 1, and with λ = 2A/R ∈ Q+ . 
Furthermore, assume γr = αr/βr is rational with αr, βr ∈N for 0 ≤ r ≤ r̂ . Then, under the assumption that

R

⎛
⎝ r̂∑

r=0

brh(cr,0)

⎞
⎠ = R

⎛
⎝ r̂∑

r=0

br

A−1∑
j=0

a j,rq− j( j−μ)/λθ

(
q2A2/λ;

[
(−1)A−
r

γ R
r

]
qA[μ−2 j−A]/λ

)⎞
⎠ �= 0 , (184)

given any ε > 0, there exists a sequence tk → −∞ such that

|R (h(tk))| >
∣∣∣∣∣∣R

⎛
⎝ r̂∑

r=0

brh(cr,0)

⎞
⎠
∣∣∣∣∣∣ − ε . (185)

Hence R(h(t)) does not decay as t → −∞.

Proof. Let ε > 0 be given. Observe, by definition of r̂, that h(t) splits into a non-decaying part and a decaying part as 
follows:

h(t) =
r̂∑

r=0

brh(cr, t) +
R−1∑

r=r̂+1

brh(cr, t) , (186)

where the second sum in (186) is decaying. That is, by Proposition 8.1 combined with the fact that R(cr) < 0 for r̂ + 1 ≤
r ≤ R − 1, there exists a T ∈ −N such that∣∣∣∣∣∣

R−1∑
r=r̂+1

brh(cr, t)

∣∣∣∣∣∣ < ε/3 (187)

for t ≤ T . We proceed to show that the first sum in (186) does not decay (and therefore h(t) does not decay). From (72), 
observe that this first term is of form

r̂∑
r=0

brh(cr, t) =
r̂∑

r=0

br

⎡
⎣A−1∑

j=0

a j,r

∞∑
M=−∞

[
(−1)A−
r

γ R
r

]M
e−qM A+ j(±iγr)t

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦ . (188)

Evaluating (188) at zero gives

r̂∑
r=0

brh(cr,0) =
r̂∑

r=0

br

⎡
⎣A−1∑

j=0

a j,r

∞∑
M=−∞

[
(−1)A−
r

γ R
r

]M
1

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦ (189)

=
r̂∑

r=0

br

A−1∑
j=0

a j,rq− j( j−μ)/λθ

(
q2A2/λ;

[
(−1)A−
r

γ R
r

]
qA[μ−2 j−A]/λ

)
(190)

where equality in (190) follows from (61). From (189)–(190), one sees that the non-vanishing of the real part of (190) in 
the hypothesis (184) has the equivalent form

R

⎛
⎝ r̂∑

r=0

brh(cr,0)

⎞
⎠ �= 0 . (191)

Next, examine the related sum

r̂∑
r=0

|br |
⎡
⎣A−1∑

j=0

|a j,r |
∞∑

M=−∞

[
1

γ R
r

]M 1

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦ (192)

=
r̂∑

r=0

|br |
A−1∑
j=0

|a j,r |q− j( j−μ)/λθ

(
q2A2/λ;

[
1

γ R
r

]
qA[μ−2 j−A]/λ

)
, (193)

where (193) again follows from (61). Thus there is an N > 0, dependent on ε , such that the sum (of the tails in (192)) is 
bounded by
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r̂∑
r=0

|br |
⎡
⎣A−1∑

j=0

|a j,r |
∑

|M|>N

[
1

γ R
r

]M 1

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦ < ε/3 . (194)

Next, for each k ∈N, define

tk ≡ (−k) · 2π · aAN · bAN+A−1 ·
⎡
⎣ r̂∏

r=0

βr

⎤
⎦ · |T | < T , (195)

where N is as in (194), q = a/b, γr = αr/βr , and T is as in (187). Observe that for each M in the range −N ≤ M ≤ N , and 
for each 0 ≤ j ≤ A − 1 where 0 ≤ r ≤ r̂, one has

−AN ≤ M A + j ≤ AN + A − 1 . (196)

One then has that for −N ≤ M ≤ N the expression

−qM A+ j(±iγr)tk = −(a/b)M A+ j(±iαr/βr)

⎛
⎝(−k) · 2π · aAN · bAN+A−1 ·

⎡
⎣ r̂∏

r=0

βr

⎤
⎦ · |T |

⎞
⎠

= ±k(2πi)aAN+M A+ jbAN+A−1−M A− jαr

⎡
⎣ r̂∏

m=0,m �=r

βr

⎤
⎦ · |T | (197)

is an integral multiple of 2πi, which follows from (196) as the exponents of a and b in (197) are non-negative integers. It 
follows that for M in the range −N ≤ M ≤ N one has

e−qM A+ j(±iγr)tk = 1 . (198)

Thus for each k ∈ N

h(tk) =
r̂∑

r=0

brh(cr, tk) +
R−1∑

r=r̂+1

brh(cr, tk) (199)

=
r̂∑

r=0

br

⎡
⎣A−1∑

j=0

a j,r

N∑
M=−N

[
(−1)A−
r

γ R
r

]M
e−qM A+ j(±iγr)tk

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦ (200)

+
r̂∑

r=0

br

⎡
⎣A−1∑

j=0

a j,r

∑
|M|>N

[
(−1)A−
r

γ R
r

]M
e−qM A+ j(±iγr)tk

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦ (201)

+
R−1∑

r=r̂+1

brh(cr, tk) ,

where (199) follows from (186); and (200)–(201) follow from (188). Thus

h(tk) =
r̂∑

r=0

br

⎡
⎣A−1∑

j=0

a j,r

N∑
M=−N

[
(−1)A−
r

γ R
r

]M
1

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦ (202)

+
r̂∑

r=0

br

⎡
⎣A−1∑

j=0

a j,r

∑
|M|>N

[
(−1)A−
r

γ R
r

]M
1

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦ (203)

−
r̂∑

r=0

br

⎡
⎣A−1∑

j=0

a j,r

∑
|M|>N

[
(−1)A−
r

γ R
r

]M
1

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦ (204)

+
r̂∑

r=0

br

⎡
⎣A−1∑

j=0

a j,r

∑
|M|>N

[
(−1)A−
r

γ R
r

]M
e−qM A+ j(±iγr)tk

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦

+
R−1∑

brh(cr, tk) ,
r=r̂+1
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where: (202) follows from an application of (198) to (200); and (203) combined with (204) is an addition of 0. From (189), 
combining (202) with (203) yields 

∑r̂
r=0 brh(cr, 0), and the above becomes

h(tk) =
r̂∑

r=0

brh(cr,0)

−
r̂∑

r=0

br

⎡
⎣A−1∑

j=0

a j,r

∑
|M|>N

[
(−1)A−
r

γ R
r

]M
1

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦ (205)

+
r̂∑

r=0

br

⎡
⎣A−1∑

j=0

a j,r

∑
|M|>N

[
(−1)A−
r

γ R
r

]M
e−qM A+ j(±iγr)tk

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦ (206)

+
R−1∑

r=r̂+1

brh(cr, tk), (207)

where, first by an application of (194) to each of the sums in (205)–(206), and second by an application of (187) to the 
sum in (207), each of the sums in (205)–(207) is bounded in absolute value by ε/3. For instance, from (194), one has the 
following bound on absolute value of the subtracted sum in (205):∣∣∣∣∣∣

r̂∑
r=0

br

⎡
⎣A−1∑

j=0

a j,r

∑
|M|>N

[
(−1)A−
r

γ R
r

]M
1

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦
∣∣∣∣∣∣

≤
r̂∑

r=0

|br |
⎡
⎣A−1∑

j=0

|a j,r |
∑

|M|>N

[
1

γ R
r

]M 1

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦ < ε/3 .

Taking real parts of each term in the equation containing (205)–(207), taking absolute values, and applying the triangle 
inequality gives that

|R(h(tk))| ≥
∣∣∣∣∣∣R

⎛
⎝ r̂∑

r=0

brh(cr,0)

⎞
⎠
∣∣∣∣∣∣

−
∣∣∣∣∣∣R

⎛
⎝ r̂∑

r=0

br

⎡
⎣A−1∑

j=0

a j,r

∑
|M|>N

[
(−1)A−
r

γ R
r

]M
1

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦
⎞
⎠
∣∣∣∣∣∣ (208)

−
∣∣∣∣∣∣R

⎛
⎝ r̂∑

r=0

br

⎡
⎣A−1∑

j=0

a j,r

∑
|M|>N

[
(−1)A−
r

γ R
r

]M
e−qM A+ j(±iγr)tk

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦
⎞
⎠
∣∣∣∣∣∣ (209)

−
∣∣∣∣∣∣R

⎛
⎝ R−1∑

r=r̂+1

brh(cr, tk)

⎞
⎠
∣∣∣∣∣∣ . (210)

Applying the fact that |R(z)| ≤ |z| to (208)–(210) gives

|R(h(tk))| ≥
∣∣∣∣∣∣R

⎛
⎝ r̂∑

r=0

brh(cr,0)

⎞
⎠
∣∣∣∣∣∣

−
∣∣∣∣∣∣

r̂∑
r=0

br

⎡
⎣A−1∑

j=0

a j,r

∑
|M|>N

[
(−1)A−
r

γ R
r

]M
1

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦
∣∣∣∣∣∣

−
∣∣∣∣∣∣

r̂∑
r=0

br

⎡
⎣A−1∑

j=0

a j,r

∑
|M|>N

[
(−1)A−
r

γ R
r

]M
e−qM A+ j(±iγr)tk

q(M A+ j)(M A+ j−μ)/λ

⎤
⎦
∣∣∣∣∣∣

−
∣∣∣∣∣∣

R−1∑
brh(cr, tk)

∣∣∣∣∣∣
r=r̂+1
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≥
∣∣∣∣∣∣R

⎛
⎝ r̂∑

r=0

brh(cr,0)

⎞
⎠
∣∣∣∣∣∣ − ε/3 − ε/3 − ε/3 (211)

=
∣∣∣∣∣∣R

⎛
⎝ r̂∑

r=0

brh(cr,0)

⎞
⎠
∣∣∣∣∣∣ − ε ,

where the ε/3 bounds in (211) follow from (194) and (187), respectively. Thus, from (191), if one chooses ε to be less than ∣∣∣R(∑r̂
r=0 brh(cr,0)

)∣∣∣ > 0 the expressions |R(h(tk))| are bounded away from 0 for all k ∈ N. Thus R(h(t)) does not decay 
as t → −∞, and the proposition is proven. �
Remark 17. If r̂ = 0 in Proposition 8.2, (that is if c0 = ±iγ0 is the only term with R(c0) = 0), then one can drop the 
assumption in Proposition 8.2 that γ0 be rational. In this setting one defines tk for k ∈N by

tk ≡ (−k) · 2π · aAN · bAN+A−1 · [|T |/γ0] · (�γ0� + 1) ,

where �x� denotes the greatest integer function. Then tk < T and

−qM A+ j0(±iγ0)tk = −(a/b)M A+ j0(±iγ0)
[
(−k) · 2π · aAN · bAN+A−1 · |T |/γ0

]
· (�γ0� + 1)

= ±k(2πi)aAN+M A+ j0bAN+A−1−M A− j0 · |T | · (�γ0� + 1)

is an integral multiple of 2πi and the proof proceeds as above.

Remark 18. Though R(h(t)) need not decay if any R(cr) = 0, it does remain bounded, via (55)–(57).

9. Proof of the relation of Fourier transforms to Jacobi theta functions

This section is devoted to proving Theorems 6.3 and 6.5. We first present the proof of Theorem 6.3 relating 
F [F2N+1,2n(t)](x) to the Jacobi theta function via a series of lemmas. For μ, λ ∈ R with λ > 0, and x ∈ R, Proposition 6.1
gives

∞∫
0

e−ixt fμ,λ(t)dt =
∞∑

k=−∞

[
(−1)k

qk(k−μ)/λ

1

(i x + qk)

]
=

∞∑
k=−∞

[
(−1)k

qk(k+1)/λ

qk(μ+1)/λ

(i x + qk)

]

=
∞∑

k=−∞

[
(−1)k(

q2/λ
)k(k+1)/2

(
q2/λ

)k(μ+1)/2

(i x + (
q2/λ

)kλ/2
)

]

=
∞∑

k=−∞

[
(−1)k

Q k(k+1)/2

Q k(μ+1)/2

(i x + Q kλ/2)

]
, (212)

where Q ≡ q2/λ . Letting μ = 2N + 1 and λ = 2n in (212) and multiplying by 1/
√

2π yields

1√
2π

∞∫
0

e−ixt f2N+1,2n(t)dt = 1√
2π

∞∑
k=−∞

⎡
⎣ (−1)k

Q k(k+1)/2

[
Q k

](N+1)(
i x + [

Q k
]n

)
⎤
⎦ , (213)

where Q = q1/n . We shall see shortly that the “alternating Q -combinatoric” (−1)k/Q k(k+1)/2 in (213) will be given by 
the residue of 1/[uθ(Q ; u)] at u = −Q k , and that the term 

[
Q k

](N+1)
/
(

i x + [
Q k

]n
)

in (213) will then be obtained from 

[−u](N+1)/
(
i x + [−u]n) by evaluation at u = −Q k . Therefore, we will be interested in integrating the expression

1

uθ(Q ; u)

[−u]N+1

(z + [−u]n)
(214)

around an appropriate contour in C, where we set z = i x later.
In anticipation of the residue computation of the expression (214), we begin by examining θ(Q ; u) and removing one 

appropriate factor from the product. That is, note that from (22), one has that for k ≥ 0
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θ(Q ; u) = μQ

∞∏
n=0

(
1 + u

Q n

)(
1 + 1

u Q n+1

)

=
(

1 + u

Q k

)⎡
⎣μQ

∞∏
n=0,n �=k

(
1 + u

Q n

) ∞∏
n=0

(
1 + 1

u Q n+1

)⎤
⎦ (215)

≡
(

1 + u

Q k

)
θ(k | Q ; u) =

(
Q k + u

Q k

)
θ(k | Q ; u) , (216)

where for k ≥ 0, the expression θ(k | Q ; u) in (216) is defined to be the expression in square brackets in (215). Similarly, for 
k < 0 one has that

θ(Q ; u) = μQ

∞∏
n=0

(
1 + u

Q n

)(
1 + 1

u Q n+1

)

=
(

1 + 1

u Q |k|

)⎡
⎣μQ

∞∏
n=0

(
1 + u

Q n

) ∞∏
n=0,n �=|k|−1

(
1 + 1

u Q n+1

)⎤
⎦ (217)

≡
(

1 + 1

u Q |k|

)
θ(k | Q ; u) =

(
u + Q k

u

)
θ(k | Q ; u) , (218)

where for k < 0, the expression θ(k | Q ; u) in (218) is defined to be the expression in square brackets in (217). Thus, via 
(216) and (218), θ(k | Q ; u) is defined for each k ∈ Z.

From (216), one sees that for k ≥ 0 the residue at −Q k of 1/[uθ(Q ; u)] is Q k/[−Q kθ(k | Q ; −Q k)]. Also, from (218), for 
k < 0 the residue at −Q k of 1/[uθ(Q ; u)] is −Q k/[−Q kθ(k | Q ; −Q k)]. The next lemma will re-express θ(k | Q ; −Q k), and 
thus these residues, in terms of an expression that we call an alternating Q -combinatoric.

Lemma 9.1. For k ≥ 0 and θ(k | Q ; u) as in (216), one has

θ(k | Q ;−Q k) =
⎡
⎣μQ

∞∏
n=0,n �=k

(
1 − Q k

Q n

) ∞∏
n=0

(
1 − 1

Q k+n+1

)⎤
⎦ = (−1)kμ3

Q Q k(k+1)/2 . (219)

And for k < 0 and θ(k | Q ; u) as in (218), one has

θ(k | Q ;−Q k) =
⎡
⎣μQ

∞∏
n=0

(
1 − Q k

Q n

) ∞∏
n=0,n �=|k|−1

(
1 − 1

Q k+n+1

)⎤
⎦ = −(−1)kμ3

Q Q k(k+1)/2 . (220)

Proof. Let k ≥ 0. The first equality in (219) follows from (215)–(216). By re-indexing the product formula in (219), we obtain

θ(k | Q ;−Q k) = μQ

k∏
j=1

(1 − Q j)

∞∏
m=1

(1 − 1/Q m)

∞∏
p=k+1

(1 − 1/Q p)

∏k
p=1(1 − 1/Q p)∏k
p=1(1 − 1/Q p)

= μQ

∏k
j=1(1 − Q j)∏k

p=1(1 − 1/Q p)

∞∏
m=1

(1 − 1/Q m)

∞∏
p=1

(1 − 1/Q p)

= μQ

∏k
j=1(1 − Q j)∏k

p=1(Q p − 1)

k∏
p=1

(Q p)

∞∏
m=1

(1 − 1/Q m)

∞∏
p=1

(1 − 1/Q p) (221)

= μQ

⎛
⎝ k∏

j=1

(−1)

⎞
⎠

⎛
⎝ k∏

p=1

Q p

⎞
⎠μ2

Q = (−1)kμ3
Q Q k(k+1)/2 (222)

which is the last expression in (219). Recall from (23) that one has μQ = ∏∞
p=1(1 − 1/Q p), which justifies moving from 

(221) to (222).
Let k < 0. The first equality in (220) follows from (217)–(218). From the product formula in (220), we obtain (223), and 

then re-index to obtain (224) below. Thus
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θ(k | Q ;−Q k) = μQ

∞∏
n=0

(
1 − 1

Q n+|k|

) ∞∏
n=0,n �=|k|−1

(
1 − 1

Q −|k|+n+1

)
(223)

= μQ

∞∏
j=|k|

(1 − 1/Q j)

|k|−1∏
m=1

(1 − Q m)

∞∏
p=1

(1 − 1/Q p)

∏|k|−1
j=1 (1 − 1/Q j)∏|k|−1
j=1 (1 − 1/Q j)

(224)

= μQ

∞∏
j=1

(1 − 1/Q j)

∏|k|−1
m=1 (1 − Q m)∏|k|−1

m=1 (1 − 1/Q m)

∞∏
p=1

(1 − 1/Q p)

= μQ

∞∏
j=1

(1 − 1/Q j)

∏|k|−1
m=1 (1 − Q m)∏|k|−1
m=1 (Q m − 1)

|k|−1∏
m=1

Q m
∞∏

p=1

(1 − 1/Q p)

= μQ μQ

⎛
⎝|k|−1∏

m=1

(−1)

⎞
⎠ Q (|k|−1)|k|/2μQ = (−1)−k−1μ3

Q Q k(k+1)/2 ,

which is the last expression in (220). The lemma is proven. �
From the preceding lemma, one deduces the following corollary to evaluate relevant residues.

Corollary 9.2. For k ∈ Z and G(u) analytic in a neighborhood of −Q k the residue of

1

uθ(Q ; u)
G(u) (225)

at u = −Q k is given by

Res(−Q k) =
[

(−1)

μ3
Q

(−1)k

Q k(k+1)/2

]
G(−Q k) . (226)

In particular, for k ∈ Z the residue of (214), namely of

1

uθ(Q ; u)

[−u]N+1

(z + [−u]n)
,

at u = −Q k is given by

Res(−Q k) =
[

(−1)

μ3
Q

(−1)k

Q k(k+1)/2

] [
Q k

]N+1(
z + [

Q k
]n

) . (227)

Proof. From the remarks immediately preceding Lemma 9.1, for k ≥ 0 one has

Res(−Q k) = Q k

−Q kθ(k | Q ;−Q k)
G(−Q k) (228)

= Q k

−Q k(−1)kμ3
Q Q k(k+1)/2

G(−Q k) =
[

(−1)

μ3
Q

(−1)k

Q k(k+1)/2

]
G(−Q k) , (229)

where the k ≥ 0 case (219) of Lemma 9.1 has been used to move from (228) to (229).
From the remarks immediately preceding Lemma 9.1, for k < 0 one has

Res(−Q k) = −Q k

−Q kθ(k | Q ;−Q k)
G(−Q k) (230)

= −Q k

−Q k(−1)(−1)kμ3
Q Q k(k+1)/2

G(−Q k) =
[

(−1)

μ3
Q

(−1)k

Q k(k+1)/2

]
G(−Q k) , (231)

where the k < 0 case (220) of Lemma 9.1 has been used to move from (230) to (231). Thus (226) is shown for all k ∈ Z. 
Setting G(u) = [−u]N+1

/
(z + [−u]n) in (225) then gives (227) via (226). The corollary is now proven. �
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Note that the expression in (227) matches the summand in (213) up to the scaling −1/μ3
Q when z = i x, via choice 

of expression (214). Expression (214) will have further zeros (other than u = −Q k) in the denominator when the factor (
z + [−u]n

)
vanishes, that is when u = −(−z)1/n . Let z j for 0 ≤ j ≤ n − 1 denote the n values of −(−z)1/n , and note then 

that

(−z j)
n = −z . (232)

Relying on (232), one has

z + [−u]n = [−u]n + z = [−u]n − (−z j)
n = ([−u] − [−z j]

)⎡⎣n−1∑
j=0

[−u]n−1− j[−z j] j

⎤
⎦

= (−1)
(
u − z j

)⎡⎣n−1∑
j=0

[−u]n−1− j[−z j] j

⎤
⎦ . (233)

From (233), the residue of 1/ 
(
z + [−u]n

)
at z j for 0 ≤ j ≤ n − 1 is given by

(−1)

⎡
⎣n−1∑

j=0

[−z j]n−1− j[−z j] j

⎤
⎦

−1

= (−1)

⎡
⎣n−1∑

j=0

[−z j]n−1

⎤
⎦

−1

= (−1)[−z j]
⎡
⎣n−1∑

j=0

[−z j]n

⎤
⎦

−1

= (−1)[−z j]
[
n[−z j]n]−1 = z j [n[−z]]−1 =

[−z j

nz

]
, (234)

where (232) was used to obtain the second equality in (234). This fact is applied in the following lemma.

Lemma 9.3. Given z �= 0, let z j for 0 ≤ j ≤ n − 1 denote the n values of −(−z)1/n, where (232) holds for z j . Then the residue of (214), 
namely of

1

uθ(Q ; u)

[−u]N+1

(z + [−u]n)
,

at u = z j , is given by

Res(z j) = −[−z j]N+1

nzθ(Q ; z j)
= (−1)N Q (N+1)(N)/2

nzθ(Q ; z j/Q N+1)
. (235)

Proof. From (234), one has

Res(z j) = 1

z jθ(Q ; z j)
[−z j]N+1

[−z j

nz

]
= −[−z j]N+1

nzθ(Q ; z j)
, (236)

giving the first equality in (235). One next obtains

−[−z j]N+1

nzθ(Q ; z j)
= (−1)N

nz[z j]−(N+1)θ(Q ; z j)
= (−1)N Q (−N−1)(−N)/2

nzQ (−N−1)(−N)/2[z j]−(N+1)θ(Q ; z j)
(237)

= (−1)N Q (N+1)(N)/2

nzθ(Q ; Q −N−1z j)
, (238)

where (24) is used to move from (237) to (238). This gives the second equality in (235). �
Lemma 9.4. Let M = CM − cM be the oriented boundary of the annular region AM in C enclosed by the circular paths CM =
Q M+1 + Q M

2 eiα and cM = Q −M−1 + Q −M

2 eiα where α increases from 0 to 2π. Given z ∈ C\{0}, let z j for 0 ≤ j ≤ n − 1 denote the n
values of −(−z)1/n. Choose M sufficiently large so that z j ∈ AM for 0 ≤ j ≤ n − 1. Then one has∫

M

1

uθ(Q ; u)

[−u]N+1

(z + [−u]n)
du

= −2πi

μ3
Q

M∑
k=−M

⎡
⎣ (−1)k

Q k(k+1)/2

[
Q k

](N+1)(
z + [

Q k
]n

)
⎤
⎦ + (−1)N Q (N+1)(N)/2 2πi

nz

n−1∑
j=0

1

θ(Q ; z j/Q N+1)
. (239)
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Proof. The integral over M yields 2πi times the enclosed residues, which occur at u = z j for 0 ≤ j ≤ n − 1 and at the 
zeroes of θ(Q ; u) in AM , which by construction of M are u = −Q k for k ∈ {−M, −M + 1, . . . , M − 1, M}. So the residue 
theorem gives

∫
M

1

uθ(Q ; u)

[−u]N+1

(z + [−u]n)
du = 2πi

M∑
k=−M

Res(−Q k) + 2πi
n−1∑
j=0

Res(z j)

= 2πi
M∑

k=−M

⎡
⎣ (−1)

μ3
Q

(−1)k

Q k(k+1)/2

[
Q k

](N+1)(
z + [

Q k
]n

)
⎤
⎦ + 2πi

n−1∑
j=0

(−1)N Q (N+1)(N)/2

nzθ(Q ; z j/Q N+1)
, (240)

where Res(−Q k) has been replaced by (227) to obtain the first summation in (240), and where Res(z j) has been re-
placed by (235) to obtain the second summation (240). These expressions combine and simplify to (239). The lemma is 
proven. �
Lemma 9.5. Let M = CM − cM be the oriented boundary of the annular region AM in C enclosed by the circular paths CM =
Q M+1 + Q M

2 eiα and cM = Q −M−1 + Q −M

2 eiα where α increases from 0 to 2π. Then,

lim
M→∞

∫
M

1

uθ(Q ; u)

[−u]N+1

(z + [−u]n)
du = 0 .

Proof. The result follows by showing:

lim
M→∞

∫
CM

1

uθ(Q ; u)

[−u]N+1

(z + [−u]n)
du = 0 = lim

M→∞

∫
cM

1

uθ(Q ; u)

[−u]N+1

(z + [−u]n)
du ,

which holds if θ(Q ; u) grows sufficiently rapidly as M approaches infinity for u ∈ CM or u ∈ cM . This growth follows directly 
from the identity (24). Let C = {v | v = (Q +1)

2 eiα, α ∈ [0, 2π]} be a reference circle of radius ρ := (Q + 1)/2 > 1 which by 
construction contains no zeros of θ(Q ; u). Observe that ρ/Q = (1 + Q −1)/2 < 1. By continuity of θ(Q ; v), ∃ b, B such that 
for v ∈ C

0 < b ≤ |θ(Q ; v)| ≤ B < ∞ .

Note that u ∈ CM implies ∃ v ∈ C with u = Q M v , and by (24) one has θ(Q ; u) = θ(Q ; Q M v) = Q M(M+1)/2 v Mθ(Q ; v)

with |θ(Q ; u)| = Q M(M+1)/2ρM |θ(Q ; v)|. Then one has∣∣∣∣∣∣∣
∫

CM

1

uθ(Q ; u)

[−u]N+1

(z + [−u]n)
du

∣∣∣∣∣∣∣ ≤
∫

CM

1

|θ(Q ; u)|
[|u|]N+1

|z + [−u]n|
|du|
|u|

≤ 1

(Q (M)(M+1)/2ρMb)

[Q Mρ]N+1

([Q Mρ]n − |z|) 2π

= 1

(Q (M)(M−2N−1)/2ρMb)

2πρN+1

([Q Mρ]n − |z|)
which approaches 0 as M approaches infinity. Similarly, u ∈ cM implies ∃ v ∈ C with u = Q −M−1 v , and by (24) one has

θ(Q ; u) = θ(Q ; Q −M−1 v) = Q (−M−1)(−M)/2v−M−1θ(Q ; v)

with

|θ(Q ; u)| = Q (−M−1)(−M)/2ρ−M−1|θ(Q ; v)| .

Thus ∣∣∣∣∣∣
∫

cM

1

uθ(Q ; u)

[−u]N+1

(z + [−u]n)
du

∣∣∣∣∣∣ ≤
∫

cM

1

|θ(Q ; u)|
[|u|]N+1

|z + [−u]n|
|du|
|u|

≤ 1
(−M−1)(−M)/2 −M−1

[Q −M−1ρ]N+1

−M−1 n
2π
(Q ρ b) (|z| − [Q ρ] )
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= 1

(Q (M+1)(M+2N)/2b)

(ρ/Q )M+1ρN+1

(|z| − [ρ/Q M+1]n)
2π

which also vanishes as M approaches infinity. The lemma is shown. �
Proof of Theorem 6.3. By Lemma 9.4 with z j being the solutions of (−z j)

n = −z for 0 ≤ j ≤ n − 1, we have∫
M

1

uθ(Q ; u)

[−u]N+1

(z + [−u]n)
du

= −2πi

μ3
Q

M∑
k=−M

⎡
⎣ (−1)k

Q k(k+1)/2

[
Q k

](N+1)(
z + [

Q k
]n

)
⎤
⎦ + (−1)N Q (N+1)(N)/2 2πi

nz

n−1∑
j=0

1

θ(Q ; z j/Q N+1)
.

Taking the limit as M approaches infinity, and applying Lemma 9.5, we obtain

0 = −2πi

μ3
Q

∞∑
k=−∞

⎡
⎣ (−1)k

Q k(k+1)/2

[
Q k

](N+1)(
z + [

Q k
]n

)
⎤
⎦ + (−1)N Q (N+1)(N)/2 2πi

nz

n−1∑
j=0

1

θ(Q ; z j/Q N+1)
.

Multiplying through by μ3
q/[2πi

√
2π] yields the identity

1√
2π

∞∑
k=−∞

⎡
⎣ (−1)k

Q k(k+1)/2

[
Q k

](N+1)(
z + [

Q k
]n

)
⎤
⎦ = (−1)N Q (N+1)(N)/2

μ3
Q√

2πnz

n−1∑
j=0

1

θ(Q ; z j/Q N+1)
, (241)

which reduces the infinite sum on the left in (241) to the finite sum on the right. From (213), and from (241) with z set 
equal to i x, one has that

F[F2N+1,2n(t)](x) = 1√
2π

∞∫
−∞

e−ixt F2N+1,2n(t)dt = 1√
2π

∞∫
0

e−ixt f2N+1,2n(t)dt

= 1√
2π

∞∑
k=−∞

⎡
⎣ (−1)k

Q k(k+1)/2

[
Q k

](N+1)(
i x + [

Q k
]n

)
⎤
⎦ = (−1)N Q (N+1)(N)/2

μ3
Q√

2πn(i x)

n−1∑
j=0

1

θ(Q ; z j/Q N+1)
,

where the z j for 0 ≤ j ≤ n − 1 are the n distinct solutions of [−z j]n = −i x. Substituting Q = q1/n , as per (213), and 
expressing dependence of the roots z j on x as z j = z j(x) gives (148), which finishes the proof of Theorem 6.3. �

We remark on Theorem 6.3 above, that, in the special case N = −1 and n = 1 one recovers Theorem 2 of [22].
We finish the paper with proof that the Fourier transform of the even/odd extension of fμ,1(t) can be expressed in 

terms of theta functions.

Proof of Theorem 6.5. We proceed first with the proof of the even case. If fμ,1(t) is to be extended to be an even differen-

tiable function, then, at t = 0 its odd order derivatives f (2
+1)
μ,1 (0) = (−1)2
+1 fμ+2
+1,1(0) must vanish. From (29), this only 

occurs when μ + 2
 + 1 = 2k + 1 is an odd integer. Thus μ = 2(k − 
) = 2n is an even integer. The extension methods of 
Theorem 3.2, as deployed in Example 2 Case A, now produce an even extension F2n,1(t) of f2n,1(t) to the negative reals by 
taking 
0 = 0 = 
1 and p0 = 1 = p1 with γ0 = 1 and generic choice of γ1 �= 1. Thus we have the even extensions

F2n,1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
k=−∞

(−1)k e−qkt

qk(k−2n)
if t ≥ 0

∞∑
k=−∞

(−1)k eqkt

qk(k−2n)
=

∞∑
k=−∞

(−1)k e−qk|t|

qk(k−2n)
if t ≤ 0 .

(242)

Relying on (242), the Fourier transform is computed as

F[F2n,1(t)](x)

= 1√
2π

0∫
e−ixt

∞∑
k=−∞

(−1)k eqkt

qk(k−2n)
dt + 1√

2π

∞∫
e−ixt

∞∑
k=−∞

(−1)k e−qkt

qk(k−2n)
dt
−∞ 0
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= 1√
2π

∞∑
k=−∞

(−1)k

qk(k−2n)

1

(−i x + qk)
+ 1√

2π

∞∑
k=−∞

(−1)k

qk(k−2n)

−1

(−i x − qk)

= 1√
2π

∞∑
k=−∞

(−1)k

qk(k−2n)

2qk

x2 + q2k
= 1√

2π

∞∑
k=−∞

(−1)k

qk(k−2n)

2qk

x2 + q2k

[
qk(2n+1)

qk(2n+1)

]

= 1√
2π

∞∑
k=−∞

(−1)k

(q2)k(k+1)/2

2q2k(n+1)

x2 + q2k
= 1√

2π

∞∑
k=−∞

(−1)k

Q k(k+1)/2

2Q k(n+1)

x2 + Q k
, (243)

where Q = q2. From (243) and Corollary 9.2, one sees that an expression of the form

1

uθ(Q ; u)

2[−u]n+1

(x2 − u)
(244)

should be deployed in a contour integral. Let M be the oriented boundary of the annulus given in Lemma 9.5 with 
M sufficiently large that x2 is contained in the interior of the annulus. One has via (225)–(226) of Corollary 9.2, with 
G(u) = 2[−u]n+1

/
(x2 − u), that

∫
M

1

uθ(Q ; u)

2[−u]n+1

(x2 − u)
du = 2πi

M∑
k=−M

Res(−Q k) + 2πiRes(x2)

= −2πi

μ3
Q

M∑
k=−M

[
(−1)k

Q k(k+1)/2

2[Q k]n+1(
x2 + Q k

)
]

+ 2πi
(−2)[−x2]n+1

x2θ(Q ; x2)
. (245)

By an argument parallel to that in Lemma 9.5, one has that

lim
M→∞

∫
M

1

uθ(Q ; u)

2[−u]n+1

(x2 − u)
du = 0 ,

due to the rapid growth of θ(Q ; u) for u ∈ M as M → ∞. Taking the limit of (245) as M approaches infinity, and dividing 
by 2πi yields

0 = −1

μ3
Q

∞∑
k=−∞

[
(−1)k

Q k(k+1)/2

2[Q k]n+1(
x2 + Q k

)
]

+ 2[−x2]n

θ(Q ; x2)
. (246)

Isolating the expression containing θ(Q ; x2), multiplying by μ3
Q

/√
2π, and writing −x2 = (−i x)2 yields

1√
2π

∞∑
k=−∞

[
(−1)k

Q k(k+1)/2

2[Q k]n+1(
x2 + Q k

)
]

= μ3
Q√
2π

2[(−i x)2]n

θ(Q ; x2)
. (247)

Substituting Q = q2 in (247) and comparing with (243) yields

F[F2n,1(t)](x) = 1√
2π

∞∑
k=−∞

[
(−1)k

qk(k+1)

2[q2k]n+1(
x2 + q2k

)
]

=
2μ3

q2√
2π

(−i x)2n

θ(q2; x2)
, (248)

giving the theorem in the N = 2n case.
On the other hand, if fμ,1(t) is to be extended to be an odd function, then at t = 0 its even order derivatives f (2
)

μ,1 (0) =
(−1)2
 fμ+2
,1(0) must vanish. From (29), this only occurs when μ + 2
 = 2k + 1 is an odd integer. Thus μ = 2(k − 
) + 1 =
2n + 1 is an odd integer. The extension methods of Theorem 3.2, as deployed in Example 2 Case A, now produce an odd 
extension F2n+1,1(t) of f2n+1,1(t) to the negative reals by taking 
0 = 0 = 
1 and p0 = 1 = p1 with γ0 = 1 and generic 
choice of γ1 �= 1. Thus we have the odd extensions

F2n+1,1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
k=−∞

(−1)k e−qkt

qk(k−2n−1)
if t ≥ 0

−
∞∑

(−1)k eqkt

qk(k−2n−1)
= −

∞∑
(−1)k e−qk|t|

qk(k−2n−1)
if t ≤ 0 .

(249)
k=−∞ k=−∞
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From (242) and (249), observe that F ′
2n,1(t) = −F2n+1,1(t). Thus

F[F2n+1,1(t)](x) = F[−F ′
2n,1(t)](x) = −(i x)F[F2n,1(t)](x) =

2μ3
q2√

2π
(−i x)2n+1

θ(q2; x2)
, (250)

where the last equality in (250) follows from (248). This gives the theorem in the N = 2n + 1 case.
Alternatively, one could integrate an expression of the form

1

uθ(Q ; u)

(−2 i x)[−u]n+1

(x2 − u)
(251)

over the contour M , mirroring the approach of the even case, to also obtain (250). �
Remark 19. In [24], the F N,1(t) were denoted by f N(t), and the computation of the Fourier transforms F [F N,1(t)](x) in 
Theorem 6.5 here recovers the computation of the F [ f N(t)](x) (in Theorem 8 of [24]) via an entirely different and more 
general method of contour integration.
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