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In this paper, we study the quenching behavior for a one-dimensional quasilinear parabolic 
equation with singular reaction term and singular boundary flux. Under certain conditions 
on the initial data, we show that quenching occurs only on the boundary in finite time. 
Moreover, we derive some lower and upper bounds of the quenching rate and get some 
estimates for the quenching time.
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r é s u m é

Nous étudions ici le comportement désactivant d’une équation parabolique quasi-linéaire 
avec un terme de réaction singulier et un flux au bord singulier. Sous certaines conditions 
sur les données initiales, nous montrons que la désactivation intervient seulement au bord 
en temps fini. De plus, nous obtenons des bornes inférieure et supérieure du taux de 
désactivation ainsi que des estimations du temps de désactivation.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we mainly study the following problem with double singular sources

⎧⎪⎪⎨
⎪⎪⎩

ut =
(
|ux|p−2ux

)
x
− u−r, 0 < x < 1, t > 0,

ux(0, t) = u−q(0, t), ux(1, t) = 0, t > 0,

u(x,0) = u0(x), 0 ≤ x ≤ 1,

(1.1)
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where p > 1, r, q > 0, and u0 satisfies the second-order compatibility conditions. Equation (1.1) models a generalized elec-
trostatic Micro-Electro-Mechanical-System (MEMS) device consisting of a thin dielectric elastic membrane. In this model 
where p = 2, the dynamic solution u characterizes the dynamic deflection of the elastic membrane; we refer the reader 
to [3,9] and the references therein. If quenching occurs in finite time, we denote by T the quenching time, or else T = ∞. 
Many authors have studied quenching problems with various nonlinear source terms and boundary conditions, we refer to 
[1,4–6,8,10–12,17] and references therein. Zhao [17] considered the problem⎧⎪⎪⎨

⎪⎪⎩
ut = �u + up, x ∈ �, t > 0,

∂u

∂ν
= −u−q, x ∈ ∂�, t > 0,

u(x,0) = u0(x), x ∈ �.

(1.2)

Under certain conditions on initial data, Zhao not only showed that quenching occurs only on the boundary, but also derived 
the quenching rate;

min
x∈∂�

u(x, t) ∼ (T − t)
1

2(q+1) , t → T −.

In [18,19], Zhi and Mu studied the following semilinear equation⎧⎪⎨
⎪⎩

ut = uxx + f (x)(1 − u)−p, 0 < x < 1, t > 0,

ux(0, t) = u−q(0, t), ux(1, t) = 0, t > 0,

u(x,0) = u0(x), 0 ≤ x ≤ 1.

(1.3)

They proved that quenching occurs only at x = 0, and that the quenching rate satisfies u(0, t) ∼ (T − t)1/[2(q+1)] , as t → T − . 
While f (x) ≡ 1 and the boundary flux becomes ux(1, t) = −u−q(1, t), Selcuk and Ozalp [11] showed that the lower bound 
of the quenching rate is u(0, t) ≥ 1 − C(T − t)1/(p+1) for t sufficiently close to T . Furthermore, Ozalp and Selcuk [8] studied 
the semilinear equation with singular reaction term and singular boundary flux⎧⎪⎨

⎪⎩
ut = uxx + (1 − u)−p, 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = (1 − u(1, t))−q, t > 0,

u(x,0) = u0(x), 0 ≤ x ≤ 1.

(1.4)

Under some assumptions on initial data, they proved that quenching occurs in finite time and x = 1 is the only quenching 
point. Moreover, the lower bound of the quenching rate was estimated, i.e. u(1, t) ≥ 1 − C(T − t)1/(p+1) if p > 2q + 1 and 
u(1, t) ≥ 1 − C(T − t)1/[2(q+1)] if q ≤ p ≤ 2q + 1, as t → T − . However, they did not show the upper bound of the quenching 
rate.

To the best of our knowledge, very few works are concerned with the quenching rate of the quasilinear equations of 
p-Laplacian type, except for [13]. More precise, based on the work [2], Yang, Yin and Jin studied the p-Laplacian problem⎧⎪⎪⎨

⎪⎪⎩
ut =

(
|ux|p−2ux

)
x
, 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = −g(u(1, t)), t > 0,

u(x,0) = u0(x), 0 ≤ x ≤ 1,

(1.5)

where lims→0+ g(s) = +∞ and g(s) > 0, g′(s) < 0 for s > 0. They showed that x = 1 is the unique quenching point, and 
gave the quenching rate

u(1,t)∫
0

ds

−g p−1(s)g′(s)
∼ C(T − t), t → T −.

Later, Yang, Yin and Jin [14] studied the positive radial solutions to (1.5) in higher dimensional space and got the similar 
results to [13]. Besides, there are also some other singular properties for nonlinear parabolic equations such as L∞ blowup 
and gradient blowup, see the latest papers [7,15,16,20,21] for examples and the references therein.

Motivated by the works [8,11,13,18], in this paper, we will study the quenching phenomenon of the more generalized 
equation (1.1). We prove that quenching occurs only at x = 0. Moreover, we give the bounds of the quenching rate and time. 
Our results are based on the ingenious construction of auxiliary functions. From our results, we know that the quenching 
rate of Problem (1.1) is really affected by both the reaction u−r and the boundary flux u−q .

Throughout this paper, we assume that the initial function u0 satisfies

(|(u0)x|p−2(u0)x)x − u−r
0 ≤ 0, but 	≡ 0, 0 ≤ x ≤ 1. (1.6)

u0 > 0, (u0)x ≥ 0 and (u0)xx ≤ 0, 0 ≤ x ≤ 1. (1.7)
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Here, we note that the assumptions (1.6)–(1.7) are proper, since we can easily find such u0 satisfying (1.6)–(1.7) and com-
patibility conditions. For example, u0(x) = A−1/q + Ax − A

2 x2 for A > 0 large enough.
In the following, we use C to denote various generic positive constants if there is no confusion.

2. Quenching on the boundary

In this section, we prove that the solution u to Problem (1.1) quenches in finite time. In general, for the degeneracy, u
may not be the classical solution and it is only the weak one. However, we here study smooth solutions for simplicity, since 
we may consider the corresponding equation to Problem (1.1) with the approximated initial boundary data. Especially, we 
can choose

ux(0, t) = u−q(0, t), ux(1, t) = ε, t > 0, ε > 0,

u(x,0) = u0(x) + ε

2
x2, 0 ≤ x ≤ 1.

Definition 2.1. The solution u(x, t) to Problem (1.1) quenches in the finite time T , if there exists 0 < T < ∞ such that

lim
t→T − min

0≤x≤1
u(x, t) = 0. (2.1)

Lemma 2.1. Let (1.6)–(1.7) be in force, and the solution u to Problem (1.1) exists in (0, T ) for some T > 0. Then ux(x, t) > 0 and 
ut(x, t) < 0 in [0, 1) × (0, T ).

Proof. First, we know that u(x, t) ≥ c > 0 in [0, 1] × [0, τ ] for any fixed τ ∈ (0, T ). Let v = ux . Then v satisfies⎧⎪⎪⎨
⎪⎪⎩

vt =
(
|v|p−2v

)
x
+ ru−r−1 v, 0 < x < 1, 0 < t < τ,

v(0, t) = u−q(0, t), v(1, t) = 0, 0 < t < τ,

v(x,0) = (u0)x, 0 ≤ x ≤ 1,

By the maximum principle, we know that v > 0, and thus ux(x, t) > 0 in [0, 1) × (0, τ ). Similarly, letting V = ut , we get⎧⎪⎪⎨
⎪⎪⎩

Vt = (p − 1)
(
|ux|p−2 V x

)
x
+ ru−r−1 V , 0 < x < 1, 0 < t < τ,

V x(0, t) = −qu−q−1(0, t)V , V x(1, t) = 0, 0 < t < τ,

V (x,0) = (|(u0)x|p−2(u0)x)x + u−r
0 , 0 ≤ x ≤ 1,

Using the maximum principle again, we obtain ut(x, t) < 0 in [0, 1) ×(0, τ ). Obviously, we see that the solution u to Problem 
(1.1) is in fact classical, i.e. u ∈ C2,1([0, 1) × (0, T )), and ux(x, t) > 0 and ut(x, t) < 0 in [0, 1) × (0, T ). �
Theorem 2.1. Let (1.6)–(1.7) be in force. Then every solution to Problem (1.1) quenches in finite time, and x = 0 is the only quenching 
point.

Proof. Define

E(t) =
1∫

0

u(x, t)dx, δ = u−(p−1)q
0 (0) +

1∫
0

u−r
0 (x)dx.

We find that

E ′(t) =
1∫

0

ut(x, t)dx =
1∫

0

[(
|ux|p−2ux

)
x
− u−r

]
dx

= − u−(p−1)q(0, t) −
1∫

0

u−rdx

≤ − u−(p−1)q
0 (0) −

1∫
0

u−r
0 dx

= − δ,

(2.2)
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where we use the condition of ut < 0. Since

(|(u0)x|p−2(u0)x)x − u−r
0 ≤ 0, but not equal to 0 identically, (2.3)

then

1∫
0

[
(|(u0)x|p−2(u0)x)x − u−r

0

]
dx < 0. (2.4)

Thus

|(u0)x|p−2(u0)x
∣∣1
0 −

1∫
0

u−r
0 dx

= − u−(p−1)q
0 (0) −

1∫
0

u−r
0 dx

= − δ < 0.

(2.5)

We obtain

E(t) ≤ E(0) − δt,

which can not hold for all time, and ux > 0 for x ∈ [0, 1), so there exists a finite time T such that limt→T − u(0, t) = 0.
Next, we will prove x = 0 is the unique quenching point. Obviously, we only need to show that, for some η ∈ (0, T ), 

quenching can not occur in {(x, t)| x ∈ (0, 1/2), t ∈ (η, T )}. Without loss of generality, we assume minη≤t<T u(0, t) = m > 0. 
Define J (x, t) = (ux)

p−1 − ε (3/4 − x)m−(p−1)q . By a simple calculation, we obtain

Jt =(p − 1)(ux)
p−2uxt

=(p − 1)(ux)
p−2 [

((ux)
p−1)xx + ru−r−1ux

]
=(p − 1)(ux)

p−2 J xx + (p − 1)ru−r−1(ux)
p−1,

(2.6)

so Jt − (p − 1)(ux)
p−2 J xx ≥ 0 for (x, t) ∈ (0, 3/4) × (η, T ). On the parabolic boundary, J (3/4, t) = (ux(3/4, t))p−1 ≥ 0 and 

J (0, t) ≥ (1 − 3ε/4)m−(p−1)q ≥ 0, t ∈ [η, T ), if ε is small enough. Moreover, we have J (x, η) ≥ (ux(x, η))p−1 − 3εm−(p−1)q/

4 ≥ 0, x ∈ [0, 3/4], if ε is small enough, where we use the fact ux > 0.
Thus, we obtain by the maximum principle that J (x, t) ≥ 0 in (0, 3/4) × (η, T ), i.e.

ux ≥
[
ε

(
3

4
− x

)
m−(p−1)q

] 1
p−1

.

Integrating from 0 to x, so

u(x, t) ≥ u(0, t) +
x∫

0

[
ε

(
3

4
− x

)
m−(p−1)q

] 1
p−1

dx > 0,

which means that u(x, t) > 0, if x > 0. So we complete the proof of Theorem 2.1. �
Theorem 2.2. ut blows up at the quenching point x = 0.

Proof. Suppose that ut is bounded in [0, 1] × [0, T ). Since ut ≤ 0 by Lemma 2.1, there exists a constant M > 0 such that 
ut > −M . We have (|ux|p−2ux)x − u−r > −M , and thus (|ux|p−2ux)x > −M . Integrating it with respect to x first on [0, x], 
and then on [0, 1], we derive

u(1, t) − u(0, t) >

1∫
0

(−Mx + u−(p−1)q(0, t))
1

p−1 dx.

As t → T − , the left is bounded, while the right tends to infinity. This contradiction implies that ut will blow up at x = 0. �
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3. Lower and upper bounds of the quenching rate

In the following, we shall derive the estimates of the lower and upper bounds of the quenching rate. In this section, we 
assume that u0 satisfies

(u0)x ≥ (1 − x)
1

p−1 u−q
0 , 0 < x < 1, (3.1)

and u satisfies, for x = 0,

ut(0, t) = (|ux|p−2ux)x(0, t) − u−r(0, t), 0 < t < T . (3.2)

Theorem 3.1. Let (1.6)–(1.7), (3.1), and (3.2) be in force. Then there exist positive constants C1 and C2 such that⎧⎨
⎩

u(0, t) ≤ C1(T − t)
1

r+1 , if r > pq + 1,

u(0, t) ≤ C2(T − t)
1

pq+2 , if q ≤ r ≤ pq + 1,

(3.3)

as t → T − .

Proof. Let G(x, t) = up−1
x − (1 − x)u−(p−1)q in (0, 1) × (0, T ). By a simple calculation, we know that G(x, t) satisfies

Gt − (p − 1)up−2
x Gxx − (p − 1)ru−r−1G

= (p − 1)(r − q)(1 − x)u−(p−1)q−r−1

+2(p − 1)2qu−(p−1)q−1up−1
x

+(p − 1)2q[(p − 1)q + 1](1 − x)u−(p−1)q−2up
x .

Due to r ≥ q and ux > 0, we know from the maximum principle that G(x, t) ≥ 0 in (0, 1) × (0, T ). Also, G(x, 0) ≥ 0 by (3.1)
and G(0, t) = G(1, t) = 0 for 0 < t < T . Therefore, we get

Gx(0, t) = lim
s→0+

G(s, t) − G(0, t)

s
= lim

s→0+
G(s, t)

s
≥ 0.

From (3.2), we get

Gx(0, t) =
[
(|ux|p−2ux)x + (p − 1)q(1 − x)u−(p−1)q−1ux + u−(p−1)q

]∣∣∣
x=0

= ut(0, t) + u−r(0, t) + u−(p−1)q(0, t) + (p − 1)qu−pq−1(0, t).

Hence, we have{
ut(0, t) ≥ −[(p − 1)q + 2]u−r(0, t), if r > pq + 1,

ut(0, t) ≥ −[(p − 1)q + 2]u−pq−1(0, t), if q ≤ r ≤ pq + 1,

Integrating with respect to t on (t, T ), we derive⎧⎨
⎩ u(0, t) ≤ C1(T − t)

1
r+1 , if r > pq + 1,

u(0, t) ≤ C2(T − t)
1

pq+2 , if q ≤ r ≤ pq + 1,

(3.4)

where C1 = {(r + 1)[(p − 1)q + 2]}1/(r+1) and C2 = {(pq + 2)[(p − 1)q + 2]}1/(pq+2) . �
Remark 3.1. From Theorem 3.1, we can get the lower bounds of the quenching time, which are as follows{

T ≥ ur+1
0 (0)/{(r + 1)[(p − 1)q + 2]}, if r > pq + 1,

T ≥ upq+2
0 (0)/{(pq + 2)[(p − 1)q + 2]}, if q ≤ r ≤ pq + 1.

Motivated by [2,13], we will prove the lower bound of the quenching rate.
Let d(u) = −qu−(p−1)(σ−1)q−q−1, and it is easy to check that there exists a value of σ satisfying

−∞ < σ < 1 − q + 1

(p − 1)q
, (3.5)

such that (p − 1)(σ − 1)q + q + 1 < 0.
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Theorem 3.2. Let the hypotheses of Theorem 3.1 be in force, and (3.5) holds. Then, there exist constants C3, C4 > 0, such that the 
following inequalities hold⎧⎨

⎩
u(0, t) ≥ C3(T − t)

1
r+1 , if r > pq + 1,

u(0, t) ≥ C4(T − t)
1

pq+2 , if q ≤ r ≤ pq + 1,

(3.6)

as t → T − .

Proof. Choose τ ∈ (0, T ) such that T − τ > 0 and κ > 0 are small, and define F (x, t) = ut − d(u)(ε1uα
x + ε2uβ

x + ε3uγ
x ) in 

{(x, t)| x ∈ (0, κ), t ∈ (τ , T )}, with the constants ε1, ε2, ε3 > 0 and α = (p − 1)(2 − σ), β = −[(p − 1)(σ − 1)q + 1]/q, γ =
−[(p − 1)(σ − 1)q + q + 1 − r]/q. By a careful and lengthy computation, we get

Ft − (p − 1)up−2
x Fxx − (p − 1)(p − 2)up−3

x uxx Fx

= ru−r−1(ut − u−r) + c(x, t),
(3.7)

where

c(x, t) =[(p − 1)d′′(u)up
x − d′(u)ut](ε1uα

x + ε2uβ
x + ε3uγ

x )

− ru−r−1d(u)(ε1αuα
x + ε2βuβ

x + ε3γ uγ
x )

+ (p − 1)d(u)[ε1α(α − 1)uα−2
x + ε2β(β − 1)uβ−2

x + ε3γ (γ − 1)uγ −2
x ]up−2

x u2
xx

+ (p − 1)d′(u)[ε1(2α + p − 1)uα
x + ε2(2β + p − 1)uβ

x + ε3(2γ + p − 1)uγ
x ]

· up−2
x uxx.

Since ut < 0, we know that ru−r−1(ut − u−r) + c(x, t) < 0 if ε1, ε2 and ε3 are small enough. Thus we have

Ft − (p − 1)up−2
x Fxx − (p − 1)(p − 2)up−3

x uxx Fx < 0, (3.8)

(x, t) ∈ (0, κ) × (τ , T ). Also, since x = 0 is the unique quenching point, then F (κ, t) and F (x, τ ) are non-positive for ε1, ε2, ε3

sufficiently small. At x = 0, by (3.5) and ut < 0, we obtain

Fx(0, t) = − q [(p − 1)(σ − 1)q + q + 1] u−q−1(0, t)F (0, t)

+ [(p − 1)(σ − 1)q + 1] u−q−1(0, t)ut(0, t)

− d(u)(ε1αuα−1
x + ε2βuβ−1

x + ε3γ uγ −1
x )uxx

≥ − q [(p − 1)(σ − 1)q + q + 1] u−q−1(0, t)F (0, t),

for ε1, ε2, ε3 sufficiently small. Using the maximum principle, we have F (x, t) ≤ 0 in {(x, t)| x ∈ [0, κ], t ∈ [τ , T )}. More 
precisely, F (0, t) ≤ 0, which implies that

ut(0, t) ≤ d(u(0, t))(ε1uα
x + ε2uβ

x + ε3uγ
x )(0, t)

= −qε1u−pq−1(0, t) − qε2u−q(0, t) − qε3u−r(0, t).

Therefore, we have{
ut(0, t) ≤ −q(ε1 + ε2 + ε3)u−r(0, t), if r > pq + 1,

ut(0, t) ≤ −q(ε1 + ε2 + ε3)u−pq−1(0, t), if q ≤ r ≤ pq + 1,

Integrating with respect to t on (t, T ), we derive⎧⎨
⎩ u(0, t) ≥ C3(T − t)

1
r+1 , if r > pq + 1,

u(0, t) ≥ C4(T − t)
1

pq+2 , if q ≤ r ≤ pq + 1,

where C3 = {q(r + 1)(ε1 + ε2 + ε3)}1/(r+1) and C4 = {q(pq + 2)(ε1 + ε2 + ε3)}1/(pq+2) . So the proof of Theorem 3.2 is 
completed. �
Remark 3.2. From Theorem 3.2, we can get the upper bounds of the quenching time, which are as follows{

T ≤ ur+1
0 (0)/{q(r + 1)(ε1 + ε2 + ε3)}, if r > pq + 1,

T ≤ upq+2
0 (0)/{q(pq + 2)(ε1 + ε2 + ε3)}, if q ≤ r ≤ pq + 1.
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