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We consider the family of non-local and non-convex functionals introduced by H. Brézis 
and H.-M. Nguyen in a recent paper. These functionals Gamma-converge to a multiple of 
the Sobolev norm or the total variation, depending on a summability exponent, but the 
exact values of the constants are unknown in many cases.
We describe a new approach to the Gamma-convergence result that leads in some special 
cases to the exact value of the constants, and to the existence of smooth recovery families.
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r é s u m é

Nous considérons la famille des fonctionnelles non locales et non convexes introduites par 
H. Brézis et H.-M. Nguyen dans un article récent. Ces fonctionelles Gamma-convergent vers 
un multiple de la norme de Sobolev ou de la variation totale, en fonction d’un exposant 
de sommabilité, mais les valeurs exactes des constantes sont inconnues dans de nombreux 
cas.
Nous décrivons une nouvelle approche pour le résultat de Gamma-convergence, qui 
conduit, dans certains cas particuliers, à la valeur exacte des constantes et à l’existence 
de familles optimales régulières.
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1. Introduction

In a recent paper [6], H. Brézis and H.-M. Nguyen introduced the family of non-local functionals

�δ,p(ϕ, u,�) :=
¨

�2

ϕ

( |u(y) − u(x)|
δ

)
δp

|y − x|d+p
dx dy, (1)

where d is a positive integer, � ⊆ R
d is an open set, δ > 0 is a real parameter, p ≥ 1 is a real number, u : � → R is 

a measurable function, and ϕ : [0, +∞) → [0, +∞) is a measurable function that describes the extent to which a pair 
(x, y) ∈ �2 contributes to the double integral (1). For this reason, in the sequel, we call ϕ the “interaction law”. A general 
enough class of admissible interaction laws is the set A of all functions ϕ : [0, +∞) → [0, +∞) that are not identically 
equal to zero and such that

– ϕ is nondecreasing and lower semicontinuous on [0, +∞), and actually continuous except at a finite number of points 
in (0, +∞),

– there exists a constant a such that ϕ(t) ≤ at2 for every t ∈ [0, 1],
– there exists a constant b such that ϕ(t) ≤ b for every t ≥ 0.

The basic example is when ϕ(x) coincides with

ϕk(x) :=
{

0 if x ∈ [0,k],
1 if x > k,

(2)

where k is a positive real number.
The asymptotic behavior of the family �δ,p , starting with the model case where ϕ = ϕ1, was investigated in a series of 

papers [3–6,8–11]. The general idea is that �δ,p(ϕ, u, �) is proportional, in the limit as δ → 0+ , to the functional

�0,p(u,�) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ˆ

�

|∇u(x)|p dx if p > 1 and u ∈ W 1,p(�),

total variation of u in � if p = 1 and u ∈ B V (�),

+∞ otherwise.

(3)

The first result in this direction concerns the pointwise limit, at least in the case of smooth functions with compact 
support. Indeed, for every admissible interaction law ϕ ∈A it turns out that

lim
δ→0+ �δ,p

(
ϕ, u,Rd

)
= Gd,p · N(ϕ) · �0,p

(
u,Rd

)
∀u ∈ C1

c (Rd), (4)

where Gd,p is a geometric constant, and N(ϕ) is a normalization constant, which we call the “scale factor” of the interaction 
law ϕ . These two constants are defined as (v is any element of the unit sphere Sd−1 in Rd)

Gd,p := 1

p

ˆ

Sd−1

|〈v,σ 〉|p dσ , N(ϕ) :=
+∞ˆ

0

ϕ(t)

t2
dt. (5)

The equality in (4) holds true also for every u ∈ W 1,p(Rd) if p > 1 (but not necessarily if p = 1).
The surprise comes with the Gamma-limit, which is expected to be of the form

�– lim
δ→0+ �δ,p

(
ϕ, u,Rd

)
= Gd,p · N(ϕ) · Kd,p(ϕ) · �0,p

(
u,Rd

)
∀u ∈ Lp(Rd), (6)

where Kd,p(ϕ) ∈ (0, 1] is a suitable constant, whose appearance was defined in [6] as “mysterious and somewhat counterin-
tuitive”. This result was proved in [11] in the special case ϕ = ϕ1 with general exponent p ≥ 1, and in [6] for general ϕ ∈A
but a special exponent p = 1. As far as we know, the case with general interaction law ϕ ∈ A and general exponent p ≥ 1
has never been written explicitly, even if a paper in this direction was announced in [6].

The constant Kd,p(ϕ) is invariant by both horizontal and vertical rescaling; namely it does not change when we replace 
ϕ(t) with αϕ(βt) for some positive constants α and β . For this reason, we call it the “shape factor” of the interaction law ϕ .

Computing shape factors is a difficult task, even in dimension one (and actually we think that they never depend on d). 
In this note, we describe a new approach to the Gamma-convergence problem that was carried out in our recent papers 
[1,2], and allowed us to compute the shape factor of some special interaction laws. In the sequel
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– A0 denotes the set of all ϕ ∈A such that ϕ(t) = 0 for every t ∈ [0, 1],
– PCA denotes the set of interaction laws that can be written in the form

ϕ(t) =
m∑

k=1

λk ϕk(t) ∀t ≥ 0 (7)

for some positive integer m, and some nonnegative coefficients λ1, . . . , λm (not all equal to 0),
– PCA2 denotes the set of interaction laws of the form (7) with coefficients equal in packages of powers of two, namely 

λ2 = λ3, λ4 = . . . = λ7, λ8 = . . . = λ15, and so on.

Our first result (see Theorem 1.1 in [1]) is the computation of the shape factor of the interaction laws defined in (2). This 
settles a conjecture stated in [9,11].

Theorem 1. Let us consider the interaction laws ϕk(t) defined by (2), with k any positive real number.
Then the Gamma-convergence result (6) holds true with

Kd,p(ϕk) :=

⎧⎪⎨⎪⎩
1

p − 1

(
1 − 1

2p−1

)
if p > 1,

log 2 if p = 1.

(8)

Two open questions raised in [6] concerned the possibility that Kd,1(ϕ) < 1 for every ϕ ∈ A, and that Kd,1(ϕ) might 
depend only on the behavior of ϕ in a neighborhood of the origin. Our second result (see Theorem 1.3 and Theorem 1.4 
in [2]) provides a negative answer to both questions.

Theorem 2. Let us consider the Gamma-convergence result (6) in the case p = 1.
Then in any space dimension d it turns out that

sup{Kd,1(ϕ) : ϕ ∈ PCA2} = max{Kd,1(ϕ) : ϕ ∈ A0} = 1. (9)

In the following sections, we present the main steps of our strategy, without technicalities. A notion that plays a central 
role in the sequel is what we call vertical δ-segmentation. The vertical δ-segmentation of a real-valued function w(x) is the 
function Sδ w(x) := δ�δ−1 w(x) that takes its values in δZ, and is uniquely characterized by the fact that Sδ w(x) = kδ for 
some k ∈ Z if and only if kδ ≤ w(x) < (k + 1)δ.

2. Aggregation/segregation problems

Discrete setting Let us consider a positive integer n, a positive integer k, and a nonincreasing function h : {0, 1, . . . , n −
1} → R, called “hostility function”. A discrete arrangement is any function u : {1, . . . , n} → Z. For any such function, we 
define the total k-hostility as

Hk(u) :=
n∑

i=1

n∑
j=i

ϕk(|u( j) − u(i)|) · h(| j − i|), (10)

where ϕk is the interaction law defined by (2). Just to help intuition, we think of u as an arrangement of n dinosaurs 
placed in the points {1, . . . , n}. There are different species of dinosaurs, indexed by integer numbers, so that u(i) denotes 
the species of the dinosaur in position i. Two dinosaurs placed in the points i and j are hostile to each other if and only 
if the integers u(i) and u( j) representing their species differ by at least k + 1, and in this case the real number h(| j − i|)
measures the “hostility” between the two dinosaurs. As expected, the closer are the positions of the dinosaurs, the larger is 
their hostility.

The result is that the total k-hostility is minimized by monotone arrangements, namely those in which all dinosaurs 
of the same species are close to each other, and the groups corresponding to different species are sorted in ascending 
or descending order. More formally, for every discrete arrangement u, it turns out that Hk(u) ≥ Hk(Mu), where Mu is 
the nondecreasing rearrangement of u, defined as the unique nondecreasing arrangement whose level sets have the same 
number of elements as the level sets of u.

The proof of this quite intuitive statement seems to be somewhat non-trivial (see [1, Section 2.3]).

Semi-discrete setting Let us consider now an interval (a, b) ⊆ R, a positive integer k, and a nonincreasing hostility function 
c : (0, b − a) → R. A semi-discrete arrangement is any measurable function u : (a, b) → Z with finite image. For any such 
function u, we define the total k-hostility as
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Fk(c, u) :=
¨

(a,b)2

ϕk(|u(y) − u(x)|) · c(|y − x|)dx dy. (11)

Again the result is that a nondecreasing rearrangement does not increase the total k-hostility. The proof follows from 
the discrete counterpart through an approximation argument (any semi-discrete arrangement can be approximated with 
one whose level sets are finite unions of intervals with the same length). We refer to [1, Section 2.4] for the details. These 
results could also be deduced from (and are actually equivalent to) some rearrangement inequalities proved independently 
in the 1970s (see [12,7]).

3. Estimating the Gamma-liminf from below

From dimension one to any space dimension Let us assume that there exists a constant �0 such that

�– lim inf
δ→0+ �δ,p

(
ϕ, u,Rd

)
≥ Gd,p · �0 · �0,p

(
u,Rd

)
∀u ∈ Lp(Rd) (12)

when d = 1. Then the same inequality holds true in any space dimension d.
The proof of this implication relies on an integral-geometric representation. The basic idea is that �0,p(u, Rd) is the 

average of the analogous functional computed over all one-dimensional sections of u, namely over all restrictions of u
to lines. A similar representation holds true for �δ,p(ϕ, u, Rd). Moreover, the convergence uδ → u in Lp(Rd) implies the 
convergence in Lp(R) of almost all one-dimensional sections. At this point, passing from dimension one to dimension d is 
just an application of Fatou’s Lemma.

We refer to [1, Section 4] for the details. This step requires no special assumption on ϕ .

Localization technique Let us assume that there exists a constant �0 such that, for every interval (a, b) ⊆R, and every family 
{uδ}δ>0 ⊆ Lp((a, b)), it happens that

lim inf
δ→0+ �δ,p(ϕ, uδ, (a,b)) ≥ G1,p · �0 · 1

(b − a)p−1 ·
(

lim inf
δ→0+ osc(uδ, (a,b))

)p

, (13)

where osc(uδ, (a, b)) denotes the essential oscillation of uδ in (a, b), namely the difference between the essential supremum 
and the essential infimum of uδ . Then (12) holds true with d = 1, and hence with any d.

The proof of this implication is quite classical. Given a family uδ → u in Lp(R), we approximate u with any piecewise 
affine function v whose graph is obtained by connecting points of the graph of u corresponding to Lebesgue points of u. 
From estimate (13) applied in each interval, we deduce that the liminf of �δ,p(ϕ, uδ, R) is greater than or equal to G1,p ·
�0 ·�0,p (v,R), and we conclude by observing that �0,p (u,R) is the supremum of �0,p (v,R) as v varies over all piecewise 
affine approximations of u.

We refer to [1, Section 3.2] for the details. Also this step requires no special assumption on ϕ .

Reduction to nondecreasing step functions Establishing (13) is the core of the proof of any estimate from below for the 
Gamma-liminf. It is also the point where assuming that ϕ ∈ PCA yields a great simplification, because in this case the 
functional �δ,p is nonincreasing by vertical δ-segmentation and monotone rearrangement. More precisely, let uδ : (a, b) →
R be any measurable function with bounded oscillation, let Sδuδ be its vertical δ-segmentation, and let M Sδuδ be the 
nondecreasing rearrangement of Sδuδ . Then it turns out that

�δ,p(ϕ, uδ, (a,b)) ≥ �δ,p(ϕ, M Sδuδ, (a,b)), (14)

while the oscillation of uδ is more or less the same as the oscillation of M Sδuδ (their difference is less than δ). In proving 
(14) for ϕ ∈ PCA, due to the linearity of �δ,p with respect to ϕ , we can limit ourselves to the special case where ϕ = ϕk , 
in which case the functional �δ,p is equivalent to the semi-discrete total hostility Fk defined in (11) with hostility function 
c(σ ) := δpσ−1−p , and hence the result follows from the corresponding estimate for the semi-discrete aggregation problem. 
We also show that

lim inf
δ→0+ �δ,p(ϕ, uδ, (a,b)) = lim inf

δ→0+ �̂δ,p(ϕ, uδ, (a,b)), (15)

where �̂δ,p(ϕ, u, (a, b)) is defined as �δ,p(ϕ, u, (a, b)), just with the double integration over (a, b) × R instead of (a, b) ×
(a, b), which leads to integrals that are simpler to compute explicitly. We refer to [1, Section 3.1] and [2, Lemma 4.1 and 
Lemma 4.2] for the details.
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Reduction to the asymptotic study of multi-variable minimum problems In the previous paragraphs, we have reduced ourselves 
to showing (13) for families of nondecreasing step functions uδ : (a, b) →R with finite image contained in δZ. Up to vertical 
translations, any such function depends only on the lengths �1, . . . , �n of the steps, where n ∼ δ−1 · osc(uδ, (a, b)) denotes 
the number of the steps. With a homothety, we can also rescale (a, b) to an interval of unit length, and, by homogeneity, 
we obtain that (up to small error terms)

�̂δ,p(ϕ, uδ, (a,b)) = δp

(b − a)p−1 Pn,ϕ,p(�1, . . . , �n), (16)

for a suitable multi-variable function Pn,ϕ,p defined as follows. We consider the representation of ϕ in the form (7), and 
then we set

Pn,ϕ,p :=
m∑

k=1

λk

n−k∑
i=1

⎛⎜⎝ Si,k+1ˆ

Si,k

1

σ p
dσ +

Si,k+1ˆ

Si+1,k

1

σ p
dσ

⎞⎟⎠ , (17)

where Si,h := �i + . . . + �i+h−1. Setting

In,p(ϕ) := inf
{

Pn,ϕ,p(�1, . . . , �n) : (�1, . . . , �n) ∈ (0,+∞)n, �1 + . . . + �n = 1
}
, (18)

we can prove that

lim inf
δ→0+ �̂δ,p(ϕ, uδ, (a,b)) ≥ 1

(b − a)p−1 · lim inf
δ→0+ (δn)p · lim inf

n→+∞
In,p(ϕ)

np
. (19)

Recalling that δn ∼ osc(uδ, (a, b)), the proof of an estimate of the form (13) has been reduced to the asymptotic study of 
a family of multi-variable minimum problems.

Special piecewise constant interaction laws The minimum problems (18) can be very complicated, but in some special cases, 
they are quite simple. For example, when ϕ = ϕ1 and p = 1, it turns out that

Pn,ϕ1,1(�1, . . . , �n) = log
(�1 + �2)

2

�1�2
+ log

(�2 + �3)
2

�2�3
+ . . . + log

(�n−1 + �n)
2

�n−1�n
. (20)

All the fractions are greater than or equal to 4, and hence In,1(ϕ1) = (n − 1) log 4, with the minimum realized when 
all the variables are equal. Since G1,1 = 2, we obtain that (13) holds true with �0 = log 2, and this leads to the proof of 
Theorem 1 in the case p = 1. An analogous inequality settles also the case p > 1 (see [1, Proposition 3.2]).

More generally, we can handle interaction laws ϕ ∈ PCA2. Indeed, in this case a telescopic effect (see [2, Section 3]) 
simplifies the computation of Pn,ϕ,1, and we obtain that In,1(ϕ) ∼ n · 2 log 2 · (λ1 + λ2 + λ4 + . . . + λ2m−1 ).

In the case where all coefficients are equal, letting m → +∞ we find a sequence of piecewise constant interaction laws 
whose shape factors tend to 1, which proves that the supremum of Kd,1(ϕ) in PCA2 is one, namely the first conclusion 
of Theorem 2. Then we consider the interaction law θ(t) := min{1, max{t − 1, 0}}, and we approximate it from below by a 
sequence of rescalings of interaction laws in PCA2 with shape factors that tend to one. This proves the second conclusion 
of Theorem 2. We refer to [2, Section 5] for the details.

4. Estimating the Gamma-limsup from above

Reduction to subsets that are dense in energy It is well-known that it is enough to show the existence of recovery families 
for every u belonging to a subset that is dense in energy with respect to the limit functional. Good classes in this case are 
smooth or piecewise affine functions with compact support.

Vertical δ-segmentation provides a recovery family in dimension one Let us consider the special case ϕ = ϕ1. Then for every 
piecewise C1 function u with compact support, the family {Sδu} of its vertical δ-segmentations is a recovery family for u. 
This is proved in [1, Section 3.3], and the argument (based on the dominated convergence theorem for integrals) is similar 
to the proof of the pointwise convergence result (4). In [2] it is explained how the result can be extended to larger classes 
of interaction laws.

Analogous arguments should lead to a proof that {Sδu} is a recovery family for any piecewise smooth function u when-
ever the interaction law ϕ is in PCA and the infimum in (18) is realized (at least asymptotically) when �1 = . . . = �n .
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Smooth recovery families in dimension one Let us assume that, for some ϕ ∈A, the vertical δ-segmentation provides a recov-
ery family for all piecewise affine functions with compact support in dimension one. Then for every u ∈ L p(R) there exists 
a recovery family in C∞

c (R).
It is enough to prove this result when u is piecewise affine with compact support. In this case, we already know that 

{Sδu} is a recovery family for u. For every fixed δ > 0, the function Sδu has a very simple structure, namely it is a step 
function with a finite number of steps, and level sets are a finite number of intervals. For any such function, there exists a 
family {uε,δ}ε>0 of functions in C∞

c (R) such that

lim
ε→0+ uε,δ = Sδu in Lp(R) and lim

ε→0+ �δ,p(ϕ, uε,δ,R) = �δ,p(ϕ, Sδu,R). (21)

To this end, it is enough to round the corners off by defining uε,δ as the convolution of Sδu with a rescaled smooth 
kernel with compact support. We refer to [1, Section 3.4] for the details.

From dimension one to any dimension Let us assume that, for some ϕ ∈ A, the vertical δ-segmentation provides a recovery 
family in dimension one. Then the same is true in any space dimension.

Indeed, the key observation is that the vertical δ-segmentation commutes with taking one-dimensional sections. At this 
point, the conclusion follows from Fatou’s Lemma and from the integral-geometric representation described at the beginning 
of Section 3. We refer to [1, Section 4] for the details.

Smooth recovery families in any dimension Under the same assumptions of the previous step, smooth recovery families do 
exist in any space dimension. The basic idea is analogous to the one-dimensional case. If u is piecewise affine with compact 
support in Rd , then {Sδu} is a recovery family. For every fixed δ > 0, the function Sδu is a step function whose level sets 
are the union of a finite number of polytopes. These functions can be approximated in energy by smooth functions (through 
convolution).

5. Open problems

Semi-discrete aggregation problem in any space dimension Even if not related directly to the theory of the functionals con-
sidered in this paper, it could be interesting to state the semi-discrete aggregation problem for arrangements u : � → Z, 
where � is a bounded open set in Rd . Finding the minimizers of the total hostility in this context seems to be a challeng-
ing problem in geometric measure theory, since it is not clear what plays the role of monotone arrangements in higher 
dimension.

Gamma-limit for piecewise constant interaction laws We suspect that the second lim inf in the right-hand side of (19) is 
actually a limit. We also suspect that, for every ϕ ∈ PCA, the right-hand side of (19) is actually the Gamma-limit of 
�δ,p(ϕ, u, (a, b)), and not just an estimate from below for the Gamma-liminf.

This would reduce the computation of shape factors of interaction laws in PCA to the computation of the asymptotic 
behavior of the minimum problems (18).

From piecewise constant to general interaction laws We suspect that the Gamma-limit of �δ,p(ϕ, u, Rd) is the supremum of 
the Gamma-limits of �δ,p(ψ, u, Rd), where ψ ≤ ϕ varies in the set of all piecewise constant interaction laws with steps 
of equal horizontal length. Any such ψ is the rescaling of an element of PCA, and rescaling preserves the shape factor. 
A confirmation of this conjecture would open the way for answering several questions raised in [6]: a simplified proof of 
the Gamma-convergence result in full generality, a less implicit formula for shape factors, and existence of smooth recovery 
families.
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