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r é s u m é

On présente une construction simple et explicite d’une fonction de l’algèbre du disque dont 
les dérivés possèdent des propriétés d’universalité disjointe au bord. L’ensemble des fonc-
tions ayant une telle propriété est topologiquement générique et contient un sous-espace 
dense et un sous-espace fermé de dimension infinie.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction and statement of the main result

Let us denote by T the boundary of the unit disc D := {z ∈ C, |z| < 1} and by H(D) the space of all holomorphic functions 
in D, endowed with the Fréchet topology of uniform convergence on compacta. The behaviour of functions in H(D) near 
T is of crucial interest in complex analysis. It was shown by Bagemihl in 1954 that, for any function ϕ measurable on T, 
there exists f in H(D) such that f (rζ ) → ϕ(ζ ) as r → 1, for almost every ζ ∈ T [2]. Kahane and Katznelson [11] proved 
that such functions can have an arbitrary radial growth to the boundary. Later, functions f ∈ H(D) enjoying the following 
universal property were exhibited [3,8]: given any measurable function ϕ on T, there exists an increasing sequence (rn)n , 
0 < rn < 1, converging to 1, such that, for any z0 ∈ D and almost every ζ ∈ T,

lim
n→∞ f (rn(ζ − z0) + z0) = ϕ(ζ ).
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Bayart’s result proves that the set of such functions is generic, i.e. is a countable intersection of open and dense subsets of 
H(D) [3]. These objects echo other universal objects, such as universal Taylor series, which have been much studied during 
the last two decades: f = ∑

k akzk ∈ H(D) is a universal Taylor series if given any compact set K ⊂ C \ D with connected 
complement, and any function g continuous on K and holomorphic in its interior, there exists an increasing sequence 
(λn)n of integers such that 

∑λn
k=1 akzk → g uniformly on K as n → ∞. The existence of such functions was proven in [14]. 

Universal Taylor series were shown to enjoy non-tangential or radial universal properties as above, see [9] and the references 
therein.

In the known results, building functions with universal boundary behaviour relies on applying complex approximation 
theorems, like Mergelyan’s theorem, and the constructions give functions with wild non-tangential behaviour near large 
subsets of T. Since these subsets are not explicit, the methods do not permit to prescribe points on T and to build explicit 
functions with universal behaviour near these specific points. In this short note, we will provide with a very simple way to 
build functions in H(D) having universal boundary behaviour near prescribed subsets of T. We will not make use of either 
Runge’s or Mergelyan’s theorems, as our construction will be simply based on polynomial interpolation. In particular, it will 
provide us with explicit functions universal with respect to the prescribed subset of T. Subsequently, the built functions will 
live in the disc algebra A(D) – the set of analytic functions in D that are continuous on D – and the universal approximation 
will be a property of their derivatives.

More precisely, the main result is as follows. We recall that a subset A of a complete metrizable topological vector space 
X is a dense Gδ-subset of X if it is a countable intersection of dense open sets. It is said to be densely lineable if it contains, 
except 0, a dense subspace in X , and it is called spaceable if it contains, except 0, an infinite dimensional closed subspace 
of X .

Main Theorem. Let (ζk)k∈N ⊂ T and (zk
n)n,k∈N ⊂ D be sequences such that zk

n → ζk as n → ∞, 1 ≤ k < ∞. There exists a function 
f ∈ A(D) with the following property: for any sequence (wk)k ⊂C, there exists an increasing sequence (n j) j∈N ⊂ N such that, for any 
k ≥ 1,

f (k)(zk
n j

) → wk as j → ∞.

The set of such functions, denoted by U((ζk), (zk
n)), is a dense Gδ-subset of A(D), and is densely lineable and spaceable.

An important feature is that the sequence (n j) j does not depend on k. Observe that the sequences of points converging 
to each ζk are arbitrary, and in particular possibly contained in a curve tangent to T. By the Riemann mapping theorem and 
its refinement ([12,16]), the theorem easily extends to any bounded simply connected domain with piecewise C∞ boundary. 
For such domains, it is an improvement of a result due to Siskaki [17], which asserts that, generically, any function of the 
disc algebra has unbounded derivatives on D. Obviously, taking {ζk, k ≥ 1} dense in T, the elements of U((ζk), (zk

n)) are 
extendable at no point of T and totally unbounded. Thus we recover some generic results given in [10,15] for bounded 
simply connected domain with smooth boundary.

Our main theorem has some operator-theoretic flavour. Indeed, if you denote by (Lk
n)n : A(D) �→ C the sequence of 

continuous linear maps defined by Lk
n( f ) := f (k)(zk

n), k ≥ 1, this theorem can be reformulated into saying that the family 
{(Lk

n)n, k ≥ 1} is disjoint universal in the sense of [5,7]. We may also add that the search for linear structures in sets of 
strange functions is a classical topic, e.g., [1,6].

2. Preliminaries

The Main Theorem will be obtained as an application of general results from the theory of universality. Let Y be a 
separable complete metrizable topological vector space (over K = R or C) and Z a metrizable topological vector space 
(over K), whose topologies are induced by translation-invariant metrics dY and �, respectively. Let Ln : Y → Z , n ∈ N, be 
continuous linear mappings.

Definition 2.1. We say that y ∈ Y is universal with respect to (Ln)n if

Z ⊂ {Ln y : n ∈N}.
We denote by U (Ln) the set of such universal elements.

Most of the classical universality results can be viewed as applications of the following theorem.

Theorem 2.2. (1) ([4, Theorems 26 and 27]) We assume that there exists a dense subset Y0 of Y such that (Ln y)n converges to an 
element in Z for any y ∈ Y0 . Then the following are equivalent:

(i) U (Ln) 	= ∅;
(ii) for any open subset U 	= ∅ of Y and any open subset V 	= ∅ of Z , there is some n ∈N with Ln(U ) ∩ V 	= ∅;
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(iii) for every z ∈ Z and ε > 0, there exist n ≥ 0 and y ∈ Y such that

� (Ln y, z) < ε and dY (y,0) < ε;
(iv) U (Ln) is a dense Gδ subset of Y .

(2) ([4, Theorem 28 (1)]) If, for every increasing sequence (μn)n ⊂ N, U
(
Lμn

)
is non-empty, then U (Ln) contains, apart from 0, a 

dense subspace of Y .

Remark 2.3. When the sequence (Ln)n satisfies Condition (ii) in the above theorem, we say that (Ln)n is topologically 
transitive. If for every increasing sequence (μn)n ⊂ N, U

(
Lμn

)
is non-empty, then (Ln)n is mixing (see for example [4, 

Remark 27 (b)]).

The question of the spaceability of the set of universal elements has always been considered separately. Actually, it 
is more involved in general because the condition U (Ln) 	= ∅ does not always imply that U (Ln) is spaceable. Yet some 
criterion of spaceability has been recently exhibited by Menet [13], under the assumption that, for every increasing sequence 
(μn)n ⊂ N, U

(
Lμn

) 	= ∅, as in Theorem 2.2 (2). Let us state it in a bit weaker form that will be enough to us.

Theorem 2.4. ([13, Theorem 1.11 and Remark 1.12]) With the above notation, we assume that Y is a Fréchet space with a continuous 
norm. Let (pn)n be a non-decreasing sequence of norms and (qn)n a non-decreasing sequence of semi-norms defining the topologies of 
Y and Z , respectively. If U

(
Lμn

) 	= ∅ for every increasing sequence (μn)n ⊂ N, and if there exists a non-increasing sequence of infinite 
dimensional closed subspaces 

(
M j

)
j of Y such that for every continuous semi-norm q on Z , there exists a positive number C , an integer 

k ≥ 1 and a continuous norm p on Y such that we have, for any j ≥ k and any x ∈ M j,

q
(
Ln j (x)

) ≤ Cp(x),

then U (Ln) is spaceable.

3. Proof of the Main Theorem

The proof is based on Theorems 2.2 and 2.4. With the notations of the previous section, we set Y = A(D), Z = C
N and 

Z N = C
N , N ≥ 1, where Z and Z N are both endowed with the Cartesian topology. For any n ≥ 1 and N ≥ 1, we also set 

Ln : Y → Z , Ln( f ) := ( f (k)(zk
n))k≥1 and LN

n : Y → Z , LN
n ( f ) := ( f (k)(zk

n))1≤k≤N . By taking Y0 as the set of all polynomials, we 
easily check that the assumption of Theorem 2.2 is satisfied by Y , Z , (Ln)n , and Y , Z N , (LN

n )n , N ≥ 1 as well. We fix (ζk)

and (zk
n) as in the theorem and, for convenience, simply denote by U the set U((ζk), (zk

n)).
We start with the topological genericity of U . First of all, for N ≥ 1, let UN stand for the set of those functions f in A(D)

such that, for any w1, . . . , w N ∈ C, there exists a sequence (n j) j such that, for any 1 ≤ k ≤ N , f (k)(zk
n j

) → wk . Thus

U =
⋂

N

UN .

Indeed, let us fix f ∈ ⋂
N UN and (wk)k ⊂ C. We build by induction an increasing sequence of integers (n j) j such that 

f (k)(zk
n j

) → wk for any k ≥ 1. Since f ∈ U1, there exists n1 ∈ N such that | f (1)(z1
n1

) − w1| < 1. We assume that n1, . . . , n j

have been built. Since f ∈ U j+1, there exists n j+1 ∈ N so that | f (k)(zk
n j+1

) − wk| < 1
j+1 for every 1 ≤ k ≤ j + 1. It is now 

plain to check that (n j) j is the sequence that we seek for.
Thus by the Baire Category Theorem, in order to prove the topological genericity of U , we are reduced to prove that 

of UN for every N ≥ 1. We fix (p1
j , . . . , p

N
j ) j a countable dense family in CN and ε > 0. By Part (1) of Theorem 2.2, it is 

then enough to find m1, . . . , mN ∈ N, c1, . . . , cN ∈ C and n ∈ N so that the polynomial h := c1zm1 + . . . cN zmN satisfies the 
following two:

(1) ‖h‖∞ = ∥∥c1zm1 + . . . cN zmN
∥∥∞ < ε;

(2)
∣∣∣h(k)(zk

n) − pk
j

∣∣∣ < 1
s for any 1 ≤ k ≤ N .

Since ζk = limn zk
n ∈ T and by continuity of h(k) on C for any k ≥ 1, in order to satisfy (2), it is enough to find m1, . . . , mN ∈N

and c1, . . . , cN ∈C such that
⎧⎪⎪⎨
⎪⎪⎩

h(1)(ζ1) = p1
j

...
...

h(N)(ζN) = pN

. (3.1)
j
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Since h(k)(ζk) = c1m1(m1 − 1) . . . (m1 − k + 1)ζ
m1−k
k + . . . + cNmN(mN − 1) . . . (mN − k + 1)ζ

mN −k
k (here we only con-

sider m1, . . . , mN each larger than N), we are thus able to solve (1) and (2) whenever we have shown that the system 
M(c1, . . . , cN) = (b1, . . . , bN), with bk := pk

j , associated with the matrix

M :=

⎛
⎜⎜⎜⎜⎝

m1ζ
m1−1
1 . . . mNζ

mN −1
1

m1(m1 − 1)ζ
m1−2
2 . . . mN(mN − 1)ζ

mN −2
2

...
...

m1(m1 − 1) . . . (m1 − N + 1)ζ
m1−N
N . . . mN(mN − 1) . . . (mN − N + 1)ζ

mN −N
N

⎞
⎟⎟⎟⎟⎠

has a solution (c1, . . . , cN) with |ck| < ε
N . Now we have the following.

Claim. Let N ≥ 2 be an integer and let (mk,n)n, 1 ≤ k ≤ N, be N increasing sequences of integers such that m1,n → ∞ and 
mk+1,n/mk,n → ∞ as n → ∞ for any 1 ≤ k ≤ N − 1. We denote by Mn the matrix

⎛
⎜⎜⎜⎜⎝

m1,nζ
m1,n−1
1 . . . mN,nζ

mN,n−1
1

m1,n(m1,n − 1)ζ
m1,n−2
2 . . . mN,n(mN,n − 1)ζ

mN,n−2
2

...
...

m1,n(m1,n − 1) . . . (m1,n − N + 1)ζ
m1,n−N
N . . . mN,n(mN,n − 1) . . . (mN,n − N + 1)ζ

mN,n−N
N

⎞
⎟⎟⎟⎟⎠

.

Then for any (b1, . . . , bN) ∈C
N and any ε > 0, there exists n0 ∈N such that the system Mn0(c1, . . . , cN) = (b1, . . . , bN) has a (unique) 

solution (c1, . . . , cN ) with |ck| < ε
N .

Proof of the claim. Using that |ζk| = 1, 1 ≤ k ≤ N , and the assumptions on the sequences (mk,n)n , 1 ≤ k ≤ N , it is not 
difficult to see that the modulus of the determinant |Mn| of the system Mn(c1, . . . , cN) = (b1, . . . , bN) is equivalent to

N∏
i=1

mi
i,n

(this can be seen by induction on N ≥ 2 and upon developing the determinant along the first row), which tends to ∞ as n
goes to ∞. So, there exists n1 ∈N such that the matrix Mn is invertible for any n ≥ n1, i.e. such that, for such n, the system 
Mn(c1, . . . , cN) = (b1, . . . , bN ) has a unique solution (c(n)

1 , . . . , c(n)
N ). This solution is given by Cramer’s formulae:

c(n)

k =

∣∣∣∣∣∣∣∣∣∣

m1,nζ
m1,n−1
1 . . . b1 . . . mN,nζ

mN,n−1
1

m1,n(m1,n − 1)ζ
m1,n−2
2 . . . b2 . . . mN,n(mN,n − 1)ζ

mN,n−2
2

...
...

...

m1,n(m1,n − 1) . . . (m1,n − N + 1)ζ
m1,n−N
N . . . bN . . . mN,n(mN,n − 1) . . . (mN,n − N + 1)ζ

mN,n−N
N

∣∣∣∣∣∣∣∣∣∣
det(M)

,

1 ≤ k ≤ N , where at the numerator the k-th column of M have been substituted by t(b1, . . . , bN). As for |Mn| (upon devel-
oping along the k-th column for example), it is easily seen that, under the assumptions of the claim, the modulus of the 
determinant at the numerator of ck is equivalent as n goes to ∞ to

b1

k−1∏
i=1

mi+1
i,n

N∏
i=k+1

mi
i,n.

Therefore,

c(n)

k ∼n→∞
b1

∏k−1
i=1 mi,n

mk
k,n

→ 0, n → ∞.

We conclude that there exists n0 ≥ n1 in N such that (c1, . . . , cN) := (c(n0)
1 , . . . , c(n0)

N ) satisfies the conclusion of the claim. �
To finish the proof of the topological genericity of UN , we fix N increasing sequences of integers such that m1,n → ∞

and mk+1,n/mk,n → ∞ as n → ∞ for any 1 ≤ k ≤ N − 1, and we choose n0 and (c1, . . . , cN) as in the claim. We finally set 
(m1, . . . , mN) := (m1,n0 , . . . , mN,n0) and observe that the corresponding polynomial h well satisfies (1) and (2).
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We have just shown that U((ζk), (zk
n)) is non-empty for any sequence (zn)n converging to 1, so in particular for any 

sequence (zk
λn

). Thus the dense lineability of U((ζk), (zk
n)) follows from Theorem 2.2, Part (2). As for the spaceability, we 

apply Theorem 2.4. With its notation, let

M j =
n j⋂

l=0

n j⋂
s=0

Ker
(

f �→ f (l)(zs(l))
)

.

(M j) j is a non-increasing sequence of closed infinite dimensional subspaces of A(D). It is now immediate to check that the 
last assumption of Theorem 2.4 is satisfied.
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