
C. R. Acad. Sci. Paris, Ser. I 356 (2018) 846–851
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Lie algebras/Differential geometry

Geodesic orbit metrics on compact simple Lie groups arising 

from flag manifolds

Métriques définies par les variétés de drapeaux sur les groupes de Lie 

compacts, simples, dont les géodésiques sont des orbites

Huibin Chen a, Zhiqi Chen a, Joseph A. Wolf b

a School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, PR China
b Department of Mathematics, University of California, Berkeley CA 94720-3840, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 May 2018
Accepted 26 June 2018
Available online 29 June 2018

Presented by Michèle Vergne
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all these left-invariant geodesic orbit metrics on simple Lie groups are naturally reductive.
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r é s u m é

Dans cet article, nous étudions les métriques à géodésiques homogènes, invariantes à 
gauche, sur des groupes de Lie simples connexes, où les métriques sont définies par les 
structures de variétés de drapeaux. Nous montrons que toutes ces métriques à géodésiques 
homogènes invariantes à gauche sur des groupes de Lie simples sont naturellement 
réductives.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Consider a homogeneous Riemannian manifold (M = G/H, g), where H is a compact subgroup of G and g is a 
G-invariant Riemannian metric on M . If every geodesic of M is the orbit of some 1-parameter subgroup of G , then M
is called a geodesic orbit space (g.o. space), and the metric g is called a geodesic orbit metric (g.o. metric). A complete Rie-
mannian manifold (M, g) is called geodesic orbit if it is a geodesic orbit space with respect to the isometry group. This 
terminology was introduced by O. Kowalski and L. Vanhecke in [9], where they started a systematic research program on 
geodesic orbit manifolds including the classification in dimensions � 6.

After that, classifications were worked out under various settings. See [10], [13], [6] and their references.
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In [11], Nikonorov started to investigate g.o. metrics on compact simple Lie groups G with isometry group G × K , where 
K is a compact subgroup of G . He obtained an equivalent algebraic condition for g.o. spaces. In [7], it was shown that all 
the g.o. metrics on compact Lie groups, arising from generalized Wallach spaces, are naturally reductive.

In this paper, we investigate all the geodesic orbit metrics on compact simple Lie groups G with the structure from flag 
manifolds. Using the structure of flag manifolds, we prove that all such g.o. metrics are naturally reductive with respect to 
G × K .

This paper is organized as follows. In Section 2, we recall the definition and structure of flag manifolds, along with some 
basic facts on g.o. metrics on compact simple Lie groups. In Section 3, we prove that all these g.o. metrics are naturally 
reductive by using the structure of flag manifolds.

The first author thanks the China Scholarship Council for support at the University of California at Berkeley, and he 
thanks U. C. Berkeley for hospitality.

2. Geodesic orbit metrics on compact simple Lie groups and flag manifolds

In this paper, the Lie groups G and K are always assumed to be connected.
We first recall some basic concepts. Let K be a closed subgroup of Lie group G , a G-invariant metric g on M = G/K

corresponds to an Ad(K )-invariant scalar product ( , ) on m = To M and vice versa. The metric g is called standard if the 
scalar product ( , ) on m is the restriction of B , where B is the negative of the Killing form of g. For a given non-degenerate 
Ad(K )-invariant scalar product ( , ) on m, there exists an Ad(K )-invariant positive definite symmetric operator A on m
such that (x, y) = B(Ax, y) for x, y ∈ m. Conversely, any such operator A determines an Ad(K )-invariant scalar product 
(x, y) = B(Ax, y) on m. We call such A a metric endomorphism. A homogeneous Riemannian metric on M = G/K is called 
naturally reductive if

([Z , X]m, Y ) + (X, [Z , Y ]m) = 0,∀X, Y , Z ∈m.

In [2], there is an equivalent algebraic description of g.o. metrics on M = G/K , which we recall below.

Theorem 2.1 ([2] Corollary 2). Let (M = G/K , g) be a homogeneous Riemannian manifold. Then M is geodesic orbit space if and only 
if, for every X ∈ m, there exists an a(X) ∈ k such that

[a(X) + X, A X] ∈ k,

where A is the metric endomorphism.

According to the Ochiai–Takahashi theorem [12], the full connected isometry group Isom(G , g) of a simple compact 
Lie group G with a left-invariant Riemannian metric g is contained in the group L(G)R(G), the product of left and right 
translations. Hence G is a normal subgroup in Isom(G , g), which is locally isomorphic to the group G × K , where K is a 
closed subgroup of G , with action (a, b)(c) = acb−1, where a, c ∈ G and b ∈ K .

In [3], Alekseevski and Nikonorov showed that, if we choose G as the isometry group of the compact Lie group G with 
a left-invariant Riemannian metric, then we have the following Proposition.

Proposition 2.2 ([3] Proposition 8). A compact Lie group G with a left-invariant metric g is a g.o. space if and only if the corresponding 
Euclidean metric ( , ) on the Lie algebra g is bi-invariant.

In [11], Nikonorov consider the isometry group of a compact simple Lie group G as G × K , where K is a closed subgroup 
of G . Then he obtained the equivalent algebraic description of g.o. metrics g on compact simple Lie groups G as follows.

Theorem 2.3 ([11] Proposition 10). Let (G, g) be a compact simple Lie group with a left-invariant Riemannian metric. Then the follow-
ing are equivalent: (i) (G, g) is a geodesic orbit manifold, (ii) there is a closed connected subgroup K of G such that, for any X ∈ g, there 
is W ∈ k such that ([X + W , Y ], X) = 0 for every Y ∈ g and (iii) [A(X), X + W ] = 0, where A : g → g is the metric endomorphism 
for (G, g).

Let B denote the negative of the Killing form of g, the Lie algebra of G . Then we have an inner product on g given by

( , ) = A0 B( , )|k0 + x1 B( , )|k1 + · · · + xp B( , )|kp + y1 B( , )|m1 + · · · + yq B( , )|mq , (2.1)

where k is the Lie algebra of K and k = k0 ⊕ k1 ⊕ · · · kp is the decomposition of k into non-isomorphic simple ideals and 
center, m is the B-orthogonal complement of k and m = m1 ⊕ · · · ⊕ mq is the decomposition of m into irreducible and 
mutually inequivalent Ad(K )-modules.

D’Atri and Ziller [8] have investigated naturally reductive metrics among the left-invariant metrics on compact Lie groups, 
and have given a complete classification in the case of simple Lie groups. The following is a description of naturally reductive 
left-invariant metrics on a compact simple Lie group (Theorem 2.4).



848 H. Chen et al. / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 846–851
Theorem 2.4 ([8] Theorem 1, Theorem 3). Under the notations above, a left-invariant metric on G of the form

( , ) = xB|m + A0|k0 + u1 B|k1 + · · · + up B|kp , (x, u1, · · · , up ∈R
+) (2.2)

is naturally reductive with respect to G × K , where G × K acts on G by (g, k)y = gyk−1 and where A0 is an arbitrary metric on k0. 
Conversely, if a left-invariant metric ( , ) on a compact simple Lie group G is naturally reductive, then there exists a closed subgroup K
of G such that the metric ( , ) is given by the form (2.2).

We have the following corollary.

Corollary 2.5. Let g of the form (2.1) be a non-naturally reductive g.o. metric on compact Lie group G and let g̃ be the restriction 
of g on m, denote the corresponding metric endomorphism by A and Ã, respectively. Then (M = G/K , ̃g) is a g.o. metric on M not 
homothetic to the standard metric.

Proof. Since g is a g.o. metric on G , then by Theorem 2.3 we have that, for any X ∈m, there exists W ∈ k such that

[W + X, A(X)] = [W + X, Ã(X)] = 0 ∈ k ;
by Theorem 2.1, (M = G/K , ̃g) is a g.o. space. From Theorem 2.4, we know that g̃ is not homothetic to the standard metric, 
because g is non-naturally reductive. �

Next, we describe some basic facts about flag manifolds.

Definition 2.6 ([15], or see [5]). A flag manifold is a homogeneous space of the form G/K = G/C(S), where G is a compact 
connected Lie group, S is a torus in G , and C(S) is the centralizer of S in G .

Let G/K = G/C(S) be a flag manifold, where G is a compact semisimple Lie group and S is a torus in G , here C(S)

denotes the centralizer of S in G . Let g and k be the Lie algebras of the Lie groups G and K respectively, and gC and 
kC be the complexifications of g and k, respectively. Let g = k ⊕ m be a reductive decomposition with respect to B with 
[k, m] ⊂ m. Let H be a maximal torus containing S . Then this is a maximal torus in K . Let h be the Lie algebra of H
and hC its complexification. Then hC is a Cartan subalgebra of gC . Let R be a root system gC with respect to hC and 
gC = hC ⊕ ∑

α∈R g
C
α be the root space decomposition.

Obviously, kC contains hC , so there exists a subset R K of R such that kC = hC + ∑
α∈R K

gCα . We can choose � and �K to 
be simple roots of R and R K , respectively, such that �K ⊂ �. Let R M = R \ R K , then we have mC = ∑

α∈R M
gCα and

gC = hC ⊕
∑

α∈R K

gCα ⊕
∑

α∈RM

gCα .

We choose a Weyl basis {Hα, Eα |α ∈ R} in gC with B(Eα, E−α) = 1, [Eα, E−α] = Hα and

[Eα, Eβ ] =
{

0 if α + β /∈ R and α + β �= 0

Nα,β Eα+β if α + β ∈ R ,

where Nα,β(�= 0) is the structure constant with Nα,β = −N−α,−β and Nα,β = −Nβ,α . The following is a compact real form 
of gC:

gμ =
∑

α∈R+
R

√−1Hα ⊕
∑

α∈R+
(RAα +RBα),

where R+ is the positive root system of g and Aα = Eα − E−α, Bα = √−1(Eα + E−α). Since any two compact real forms of 
gC are conjugated, we can identify g with gμ . If we set R+

M = R+ \ R+
K , then we have

k=
∑

α∈R+
R

√−1Hα ⊕
∑

α∈R+
K

(RAα +RBα) and m =
∑

α∈R+
M

(RAα +RBα).

The next lemma shows the bracket computation of g, which we will make much use of in the proof of our main theorem.

Lemma 2.7. The Lie brackets among {Aα = Eα − E−α, Bα = √−1(Eα + E−α), 
√−1Hβ | α ∈ R+, β ∈ �} of g are given by

[√−1Hα, Aβ ] = β(Hα)Bβ, [Aα, Aβ ] = Nα,β Aα+β + N−α,β Aα−β(α �= β),

[√−1Hα, Bβ ] = −β(Hα)Aβ, [Bα, Bβ ] = −Nα,β Aα+β − Nα,−β Aα−β(α �= β),

[Aα, Bα] = 2
√−1Hα, [Aα, Bβ ] = Nα,β Bα+β + Nα,−β Bα−β(α �= β),

where Nα,β are the structural constants in Weyl basis.
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In flag manifolds, the so-called t-roots play an very important role, which we now describe. These results are essentially 
due to Kostant in 1965; see [14, Theorem 8.13.3].

From now on we fix a system of simple roots � = {α1, · · · , αr, φ1, · · · , φk} of R , so that �K = {φ1, · · · , φk} is a basis of 
the root system R K and �M = � \�K = {α1, · · · , αr}(r +k = l). Let {hα1 , · · · , hαr , hφ1 , · · · , hφk } be the fundamental weights. 
Let

t= z(kC) ∩ √−1h,

where z(kC) is the center of kC . Consider the restriction map π : (hC)∗ → t∗ defined by π(α) = α|t, and set Rt = π(R) =
π(R M). t-roots are the elements of Rt. For an invariant ordering R+

M = R+ \ R+
K in R M , we set R+

t = π(R+
M) and R−

t = −R+
t . 

It is obvious that R−
t = π(R−

M), thus the splitting Rt = R−
t ∪ R+

t defines an ordering in Rt. A t-root ξ ∈ R+
t (respectively 

ξ ∈ R−
t ) will be called positive (respectively negative). A t-root is called simple if it is not a sum of two positive t-roots.

Theorem 2.8. ([14, Theorem 8.13.3]; or see [4, Corollary 3.1] ) There is one-to-one correspondence between t-roots and complex irre-
ducible ad(kC)-submodules mξ of mC . This correspondence is given by

Rt � ξ ↔mξ =
∑

α∈RM ,π(α)=ξ

CEα,

Hence mC = ∑
ξ∈Rt

mξ . Moreover, these submodules are non-equivalent ad(kC)-modules.

Since the complex conjugation τ : gC → gC with respect to the compact real form g interchanges the root spaces, a 
decomposition of the real ad(k)-module m = (mC)τ into real irreducible ad(k)-submodule is given by

m =
∑
ξ∈R+

t

(mξ ⊕m−ξ )
τ , (2.3)

where V τ denotes the set of fixed points of the complex conjugation τ in a vector subspace V ⊂ gC . If we set R+
t =

{ξ1, · · · , ξs}, then according to (2.3) each real irreducible ad(k)-submodule mi = (mξi ⊕ m−ξi )
τ (1 ≤ i ≤ s) corresponding to 

the positive t-roots ξi , is given by

mi =
∑

α∈R+
M ,π(α)=ξi

(RAα +RBα).

3. Main theorem and its proof

In this section, we will state and prove our main theorem.

Theorem 3.1. All the g.o. metrics on compact simple Lie groups G of the form (2.1) arising from flag manifolds are naturally reductive.

In [2], the authors investigated all g.o. metrics on flag manifolds on compact simple Lie groups and they proved that only 
SO(2l + 1)/U(l)(l ≥ 2) and Sp(l)/U(1)Sp(l − 1)(l ≥ 3) can admit g.o. metrics not homothetic to the standard metrics. As a 
result of Corollary 2.5, we only need to consider whether there are non-naturally reductive g.o. metrics on SO(2l + 1)(l ≥ 2)

and Sp(l)(l ≥ 3) with the corresponding metric forms. For these two special flag manifolds, the metric for (2.1) can be 
simplified as follows:

( , ) = B( , )|u(1) + uB( , )|k0 + xB( , )|m1 + yB( , )|m2 , (3.1)

where u(1) is a 1-dimensional center of k and k0 is a simple Lie algebra.
When we apply Theorem 2.3 to the metric form (3.1), we can immediately obtain the following equivalent description 

of g.o. metric of the following form.

Theorem 3.2. A compact simple Lie group G with the left-invariant metric induced by (3.1) is a geodesic orbit space if and only if, for 
any T ∈ u(1), H ∈ k0, X1 ∈m1, X2 ∈m2 , there exists K ∈ k such that the following three conditions hold:

(1) [H, K ] = 0;
(2) [(x − 1)T + (x − u)H + xK + (x − y)X2, X1] = 0;
(3) [(y − 1)T + (y − u)H + yK , X2] = 0.

In the following, we will prove that all the g.o. metrics of the form (3.1) on SO(2l +1)(l ≥ 2) and Sp(l)(l ≥ 3) are naturally 
reductive for each case.
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3.1. Case of SO(2l + 1)

The painted Dynkin diagram of this case is

Bl : ◦ ◦ . . . . . . ◦ > •
α1 α2 αl−1 αl

Hence we can give the basis for each of the four parts in the decomposition so(2l + 1) = u(1) ⊕ su(l) ⊕m1 ⊕m2.
u(1) = spanR{√−1Hαl },
su(l) = spanR{Aα, Bα, 

√−1Hβ |α = αp + · · · + αk, 1 ≤ p ≤ k ≤ l − 1; β = αp, 1 ≤ p ≤ l − 1},
m1 = spanR{Aα, Bα |α = αk + · · · + αl−1 + αl, 1 ≤ k ≤ l},
m2 = spanR{Aα, Bα |α = αk + · · · + 2αp + · · · + 2αl, 1 ≤ k < p ≤ l}.

Then we choose T = √−1Hαl , H = ∑l−1
i=1

√−1Hαi , X1 = Bαl , X2 = Aα1+···+αl−1+2αl , and we assume that the metric of the 
form (3.1) is a g.o. metric; by Theorem 3.2, there exists some K ∈ k such that

(1) [H, K ] = 0;
(2) [(x − 1)T + (x − u)H + xK + (x − y)X2, X1] = 0;
(3) [(y − 1)T + (y − u)H + yK , X2] = 0.

From (2), we have [(x − 1)
√−1Hαl + (x − u) 

∑l−1
i=1

√−1Hαi + xK , Bαl ] = (y − x)[Aα1+···+αl−1+2αl , Bαl ].
By Lemma 2.7, we have

[(x − 1)
√−1Hαl + (x − u)

l−1∑
i=1

√−1Hαi + xK , Bαl ] = (y − x)Nα1+···+αl−1+2αl,−αl Aα1+···+αl−1+αl .

We next prove that there is no Aα1+···+αl−1+αl -component in [(x − 1)
√−1Hαl + (x − u) 

∑l−1
i=1

√−1Hαi + xK , Bαl ]; 
in fact, we only need to show that K does not contain any Bα1+···+αl−1 -component by Lemma 2.7. If K contains a 
Bα1+···+αl−1 -component, then

[
l−1∑
i=1

√−1Hαi , Bα1+···+αl−1 ] = −
l−1∑
i=1

(α1 + · · · + αl−1)(Hαi )Aα1+···+αl−1 (3.2)

= −
l−1∑
i=1

< α1 + · · · + αl−1,αi > Aα1+···+αl−1 (3.3)

From the Cartan matrix of Bl , we know [∑l−1
i=1

√−1Hαi , Bα1+···+αl−1 ] �= 0, which is a contradiction to (1) above. As a result, 
there is no Aα1+···+αl−1+αl -component in [(x − 1)

√−1Hαl + (x − u) 
∑l−1

i=1

√−1Hαi + xK , Bαl ]. Hence, x = y. By Theorem 2.4, 
geodesic orbit metrics on SO(2l + 1) of the form (3.1) are naturally reductive with respect to SO(2l + 1) × U(l).

3.2. Case of Sp(l)

The painted Dynkin diagram of this case is

Cl : • ◦ . . . . . . ◦ < ◦
α1 α2 αl−1 αl

The basis of each part of the decomposition sp(l) = u(1) ⊕ sp(l − 1) ⊕m1 ⊕m2 are as follows:
u(1) = spanR{√−1Hα1 },
sp(l − 1) = spanR{Aα, Bα, 

√−1Hβ |β = αi(2 ≤ i ≤ l); α = αp + · · · + αk(2 ≤ p ≤ k ≤ l) or α = αp + αp+1 + · · · + 2αk + · · · +
2αl−1 + αl(2 ≤ p ≤ k ≤ l − 1)},
m1 = spanR{Aα, Bα |α = α1 + · · · + αk(1 ≤ k ≤ l) or α = α1 + α2 + · · · + 2αp + · · · + 2αl−1 + αl(2 ≤ p ≤ l − 1)},
m2 = spanR{A2α1+···+2αl−1+αl , B2α1+···+2αl−1+αl }.

We assume the metric of the form (3.1) on Sp(l) is a geodesic orbit metric, then for T = √−1Hα1 , H = ∑l
i=2

√−1Hαi ,

X1 = Bα1 , X2 = A2α1+···+2αl−1+αl , by Theorem 3.2, there exists some K ∈ k such that

(1) [H, K ] = 0;
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(2) [(x − 1)T + (x − u)H + xK + (x − y)X2, X1] = 0;
(3) [(y − 1)T + (y − u)H + yK , X2] = 0.

From (2) above, we have [(x − 1)
√−1Hα1 + (x − u) 

∑l
i=2

√−1Hαi + xK , Bα1 ] = (y − x)[A2α1+···+2αl−1+αl , Bα1 ].
By Lemma 2.7, we have

[(x − 1)
√−1Hα1 + (x − u)

l∑
i=2

√−1Hαi + xK , Bα1 ] = (y − x)N2α1+···+2αl−1+αl,−α1 Aα1+2α2+···+2αl−1+αl .

We next prove that there is no Aα1+2α2+···+2αl−1+αl -component in [(x − 1)
√−1Hα1 + (x − u) 

∑l
i=2

√−1Hαi + xK , Bα1 ], 
in fact, we only need to show K does not contain any B2α2+···+2αl−1+αl -component by Lemma 2.7. If K contains a 
B2α2+···+2αl−1+αl -component, then

[
l∑

i=2

√−1Hαi , B2α2+···+2αl−1+αl ] = −
l∑

i=2

(2α2 + · · · + 2αl−1 + αl)(Hαi )A2α2+···+2αl−1+αl (3.4)

= −
l∑

i=2

< 2α2 + · · · + 2αl−1 + αl,αi > A2α2+···+2αl−1+αl (3.5)

From the Cartan matrix of Cl , we know that [∑l
i=2

√−1Hαi , B2α2+···+2αl−1+αl ] �= 0. This contradicts (1) above, so [(x − 1)√−1Hα1 + (x − u) 
∑l

i=2

√−1Hαi + xK , Bα1 ] has no Aα1+2α2+···+2αl−1+αl -component. Hence, x = y. By Theorem 2.4, geodesic 
orbit metrics on Sp(l) of the form (3.1) are naturally reductive with respect to Sp(l) × (U(1) × Sp(l − 1)).

That completes the proof of Theorem 3.1.

Remark 3.3. For the details of the relationship between painted Dynkin diagrams and flag manifolds, see [15] (for the 
viewpoint of complex groups and manifolds), [1] and [5] (for the viewpoint of compact groups and manifolds).
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