Lie algebras

Action of Weyl group on zero-weight space

Action du groupe de Weyl sur l'espace de poids nul

Bruno Le Floch ${ }^{\text {a }}$, Ilia Smilga ${ }^{\text {b }}$
${ }^{\text {a }}$ Princeton Center for Theoretical Science, Princeton, NJ 08544, USA
${ }^{\text {b }}$ Yale University Mathematics Department, PO Box 208283, New Haven, CT 06520-8283, USA

A R T I C L E I N F O

Article history:

Received 31 May 2018
Accepted after revision 26 June 2018
Available online 13 July 2018
Presented by Michèle Vergne

Abstract

For any simple complex Lie group, we classify irreducible finite-dimensional representations ρ for which the longest element w_{0} of the Weyl group acts non-trivially on the zero-weight space. Among irreducible representations that have zero among their weights, w_{0} acts by \pm Id if and only if the highest weight of ρ is a multiple of a fundamental weight, with a coefficient less than a bound that depends on the group and on the fundamental weight.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Ré S U M É

Pour tout groupe de Lie complexe simple, nous classifions les représentations irréductibles ρ de dimension finie telles que le plus long mot w_{0} du groupe de Weyl agisse non trivialement sur l'espace de poids nul. Parmi les représentations irréductibles dont zéro est un poids, w_{0} agit par \pm Id si et seulement si le plus haut poids de ρ est un multiple d'un poids fondamental, avec un coefficient plus petit qu'une borne qui dépend du groupe et du poids fondamental.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main theorem

Consider a reductive complex Lie algebra \mathfrak{g}. Let \tilde{G} be the corresponding simply-connected Lie group.
We choose in \mathfrak{g} a Cartan subalgebra \mathfrak{h}. Let Δ be the set of roots of \mathfrak{g} in \mathfrak{h}^{*}. We call Λ the root lattice, i.e. the abelian subgroup of \mathfrak{h}^{*} generated by Δ. We choose in Δ a system Δ^{+}of positive roots; let $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ be the set of simple roots in Δ^{+}. Let $\varpi_{1}, \ldots, \varpi_{r}$ be the corresponding fundamental weights. Let $W:=N_{\tilde{G}}(\mathfrak{h}) / Z_{\tilde{G}}(\mathfrak{h})$ be the Weyl group, and let w_{0} be its longest element (defined by $w_{0}\left(\Delta^{+}\right)=-\Delta^{+}$).

[^0]For each simple Lie algebra, we call $\left(e_{1}, e_{2}, \ldots\right)$ the vectors called $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)$ in the appendix to [2], which form a convenient basis of a vector space containing \mathfrak{h}^{*}. Throughout the paper, we use the Bourbaki conventions [2] for the numbering of simple roots and their expressions in the coordinates e_{i}.

In the sequel, all representations are supposed to be complex and finite-dimensional. We call ρ_{λ} (resp. V_{λ}) the irreducible representation of \mathfrak{g} with highest weight λ (resp. the space on which it acts). Given a representation (ρ, V) of \mathfrak{g}, we call V^{λ} the weight subspace of V corresponding to the weight λ.

Definition 1.1. We say that a weight $\lambda \in \mathfrak{h}^{*}$ is radical if $\lambda \in \Lambda$.
Remark 1. An irreducible representation (ρ, V) has non-trivial zero-weight space V^{0} if and only if its highest weight is radical.

Definition 1.2. Let (ρ, V) be a representation of \mathfrak{g}. The action of $W=N_{\tilde{G}}(\mathfrak{h}) / Z_{\tilde{G}}(\mathfrak{h})$ on V^{0} is well-defined, since V^{0} is by definition fixed by \mathfrak{h}, hence by $Z_{\tilde{G}}(\mathfrak{h})$. Thus w_{0} induces a linear involution on V^{0}. Let p (resp. q) be the dimension of the subspace of V^{0} fixed by w_{0} (resp. by $-w_{0}$). We say that (p, q) is the w_{0}-signature of the representation ρ and that the representation is:

- w_{0}-pure if $p q=0$ (of sign +1 if $q=0$ and of sign -1 if $p=0$);
- w_{0}-mixed if $p q>0$.

Remark 2. Replacing \tilde{G} by any other connected group G with Lie algebra \mathfrak{g} (with a well-defined action on V) does not change the definition. Indeed the center of \tilde{G} is contained in $Z_{\tilde{G}}(\mathfrak{h})$, so acts trivially on V^{0}.

Our interest in this property originates in the study of free affine groups acting properly discontinuously (see [7]). We prove the following complete classification. To the best of our knowledge, this specific question has not been studied before; see [4] for a survey of prior work on related, but distinct, questions about the action of the Weyl group on the zero-weight space.

Theorem 1.3. Let \mathfrak{g} be any simple complex Lie algebra; let r be its rank. For every index $1 \leq i \leq r$, we denote by p_{i} the smallest positive integer such that $p_{i} \varpi_{i} \in \Lambda$. For every such i, let the "maximal value" $m_{i} \in \mathbb{Z}_{\geq 0} \cup\{\infty\}$ and the "sign" $\sigma_{i} \in\{ \pm 1\}$ be as given in Table 1 on page 854.

Let λ be a dominant weight.
(i) If $\lambda \notin \Lambda$, then the w_{0}-signature of the representation ρ_{λ} is $(0,0)$.
(ii) If $\lambda=k p_{i} \varpi_{i}$ for some $1 \leq i \leq r$ and $0 \leq k \leq m_{i}$, then ρ_{λ} is w_{0}-pure of sign $\left(\sigma_{i}\right)^{k}$.
(iii) Finally, if $\lambda \in \Lambda$ but is not of the form $\lambda=k p_{i} \varpi_{i}$ for any $1 \leq i \leq r$ and $0 \leq k \leq m_{i}$, then ρ_{λ} is w_{0}-mixed.

Example 1. Any irreducible representation of $\operatorname{SL}(2, \mathbb{C})$ is isomorphic to $S^{k} \mathbb{C}^{2}$ (the k-th symmetric power of the standard representation) for some $k \in \mathbb{Z}_{\geq 0}$. Its w_{0}-signature is $(0,0)$ if k is odd, $(1,0)$ if k is divisible by 4 and (0,1) if k is 2 modulo 4. This confirms the A_{1} entries $\left(p_{1}, m_{1}, \sigma_{1}\right)=(2, \infty,-1)$ of Table 1.

Table 1 also gives the values of p_{i}. These are not a new result; they are immediate to compute from the known descriptions of the simple roots and fundamental weights (given e.g. in [2]).

Point (i) is an immediate consequence of Remark 1.
For point (ii), we show in Section 3 that certain symmetric and antisymmetric powers of defining representations of classical groups are w_{0}-pure, and that almost all representations listed in point (ii) are sub-representations of these powers. The finitely many exceptions are treated by an algorithm described in Section 2.

For point (iii), we prove in Section 4 that the set of highest weights of w_{0}-mixed representations of a given group is an ideal of the monoid of dominant radical weights. For any fixed group, this reduces the problem to checking w_{0}-mixedness of finitely many representations. In Section 5, we immediately conclude for exceptional groups and for low-rank classical groups by the algorithm of Section 2; we proceed by induction on rank for the remaining classical groups.

2. An algorithm to compute explicitly the \boldsymbol{w}_{0}-signature of a given representation

Proposition 2.1. Any simple complex Lie group G admits a reductive subgroup S whose Lie algebra is isomorphic to $\mathfrak{s l}(2, \mathbb{C})^{s} \times \mathbb{C}^{t}$, where (t, s) is the w_{0}-signature of the adjoint representation of G, and whose w_{0} element is compatible with that of G, in the sense that some representative of the w_{0} element of S is a representative of the w_{0} element of G. This subgroup S can be explicitly described.

Note that $s+t=r$ (the rank of $G)$ and that $t=0$ except for $A_{n}\left(t=\left\lfloor\frac{n}{2}\right\rfloor\right), D_{2 n+1}(t=1)$ and $E_{6}(t=2)$.

Table 1
Values of (p_{i}, m_{i}, σ_{i}) for simple Lie algebras. Theorem 1.3 states that among irreducible representations with a highest weight λ that is radical, only those with λ of the form $k p_{i} \varpi_{i}$ with $k \leq m_{i}$ are w_{0}-pure, with a sign given by σ_{i}^{k}. We write N.A. for σ_{i} sign entries that are not defined due to $m_{i}=0$. Since $A_{1} \simeq B_{1} \simeq C_{1}$ and $B_{2} \simeq C_{2}$ and $A_{3} \simeq D_{3}$, the results match up to reordering simple roots (namely reordering $i=1, \ldots, r$).

	Values of i and r		p_{i}	m_{i}	σ_{i}
$A_{r \geq 1}$	$i=1$ or r		$r+1$	∞	$(-1)^{\lfloor(r+1) / 2\rfloor}$
	$1<i<r$	$\begin{aligned} & r=3 \\ & r>3 \end{aligned}$	$\frac{r+1}{\operatorname{gcd}(i, r+1)}$	$\begin{aligned} & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & +1 \\ & \text { N.A. } \end{aligned}$
$B_{r \geq 1}$	$i=1$	$r>1$	1	∞	$(-1)^{r i-\lfloor i / 2\rfloor}$
	$i=2$	$r>2$	1	2	
	$2<i<r$		1	1	
	$i=r$	$\begin{aligned} & r=1,2 \\ & r>2 \end{aligned}$	2	∞	
$C_{r \geq 1}$	$i=1$		2	∞	-1
	$i=2$	$\begin{aligned} & r=2 \\ & r>2 \end{aligned}$	1	$\begin{aligned} & \infty \\ & 2 \end{aligned}$	+1
	i odd > 2	$\begin{aligned} & i=r=3 \\ & r>3 \end{aligned}$	2	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & -1 \\ & \text { N.A. } \end{aligned}$
	i even > 2	$\begin{aligned} & i=r=4 \\ & r>4 \end{aligned}$	1	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	+1
$\begin{aligned} & D_{r \geq 3} \\ & r \text { odd } \end{aligned}$	$i=1$		2	∞	+1
	$1<i<r-1$	i even i odd	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	0	N.A.
	$i=r-1 \text { or } r$	$\begin{aligned} & r=3 \\ & r>3 \end{aligned}$	4	$\begin{aligned} & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & +1 \\ & \text { N.A. } \end{aligned}$
$\begin{aligned} & D_{r \geq 4} \\ & r \text { even } \end{aligned}$	$i=1$		2	∞	+1
	$i=2$		1	2	-1
	$2<i<r-1$	i odd i even	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	N.A. $(-1)^{i / 2}$
	$i=r-1$ or r	$\begin{aligned} & r=4 \\ & r>4 \end{aligned}$	2	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$(-1)^{r / 2}$

	Values of i	p_{i}	m_{i}	σ_{i}
E_{6}	$i=1,3,5,6$	3	0	N.A.
	$i=2,4$	1	0	N.A.
E_{7}	$i=1$	1	2	-1
	$i=2,5$	2	0	N.A.
	$i=3,4$	1	0	N.A.
	$i=6$	1	1	+1
	$i=7$	2	1	-1
	$i=1$	1	1	+1
	$i=8$	1	0	N.A.
F_{4}	$i=1$	1	2	-1
	$i=2,3$	1	2	-1
	$i=4$	1	0	N.A.
G_{2}	$i=1,2$	1	2	+1

Table 2
Sets of strongly orthogonal roots that span the vector space $\left(\mathfrak{h}^{*}\right)^{-w_{0}}$. We chose them among the positive roots.

A_{n}	$\left\{e_{i}-e_{n+2-i} \mid 1 \leq i \leq\lfloor(n+1) / 2\rfloor\right\}$	E_{6}	$\left\{-e_{1}+e_{4},-e_{2}+e_{3}, \pm \frac{1}{2}\left(e_{1}+e_{2}+e_{3}+e_{4}\right)+\frac{1}{2}\left(e_{5}-e_{6}-e_{7}+e_{8}\right)\right\}$
$B_{2 n}$	$\left\{e_{2 i-1} \pm e_{2 i} \mid 1 \leq i \leq n\right\}$	E_{7}	$\left\{ \pm e_{1}+e_{2}, \pm e_{3}+e_{4}, \pm e_{5}+e_{6},-e_{7}+e_{8}\right\}$
$B_{2 n+1}$	$\left\{e_{2 i-1} \pm e_{2 i} \mid 1 \leq i \leq n\right\} \cup\left\{e_{2 n+1}\right\}$	E_{8}	$\left\{ \pm e_{1}+e_{2}, \pm e_{3}+e_{4}, \pm e_{5}+e_{6}, \pm e_{7}+e_{8}\right\}$
C_{n}	$\left\{2 e_{i} \mid 1 \leq i \leq n\right\}$	F_{4}	$\left\{e_{1} \pm e_{2}, e_{3} \pm e_{4}\right\}$
D_{n}	$\left\{e_{2 i-1} \pm e_{2 i} \mid 1 \leq i \leq\lfloor n / 2\rfloor\right\}$	G_{2}	$\left\{e_{1}-e_{2},-e_{1}-e_{2}+2 e_{3}\right\}$

Proof. Let $\left(\mathfrak{h}^{*}\right)^{-w_{0}}$ be the -1 eigenspace of w_{0}. Recall that two roots α and β are called strongly orthogonal if $\langle\alpha, \beta\rangle=0$ and neither $\alpha+\beta$ nor $\alpha-\beta$ is a root. Table 2 exhibits pairwise strongly orthogonal roots $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\} \subset \Delta$ spanning $\left(\mathfrak{h}^{*}\right)^{-w_{0}}$ as a vector space. (Our sets are conjugate to those of [1], but these authors did not need the elements w_{0} to match.) We then set

$$
\mathfrak{s}:=\mathfrak{h} \oplus \bigoplus_{i=1}^{s}\left(\mathfrak{g}^{\alpha_{i}} \oplus \mathfrak{g}^{-\alpha_{i}}\right)
$$

where \mathfrak{g}^{α} denotes the root space corresponding to α. This is a Lie subalgebra of \mathfrak{g}, as follows from $\left[\mathfrak{g}^{\alpha}, \mathfrak{g}^{\beta}\right] \subset \mathfrak{g}^{\alpha+\beta}$ and from strong orthogonality of the α_{i}. It is isomorphic to $\mathfrak{s l}(2, \mathbb{C})^{s} \times \mathbb{C}^{t}$, because it has Cartan subalgebra \mathfrak{h} of dimension $r=s+t$ and a root system of type A_{1}^{s}. We define S to be the connected subgroup of G with algebra \mathfrak{s}.

Let $\overline{\sigma_{i}}:=\exp \left[\frac{\pi}{2}\left(X_{\alpha_{i}}-Y_{\alpha_{i}}\right)\right] \in S$, where for every α, X_{α} and Y_{α} denote the elements of \mathfrak{g} introduced in [3, Theorem 7.19]. We claim that $\bar{\sigma}:=\prod_{i} \overline{\sigma_{i}}$ is a representative of the w_{0} element of S and of the w_{0} element of G. By [3, Proposition 11.35], $\overline{\sigma_{i}}$ is a representative of the reflection $s_{\alpha_{i}}$, which shows the first statement. Now since the α_{i} are orthogonal, the product of $s_{\alpha_{i}}$ acts by -Id on their span $\left(\mathfrak{h}^{*}\right)^{-w_{0}}$ and acts trivially on its orthogonal complement, like w_{0}.

Then the w_{0}-signature of any representation ρ of G is equal to that of its restriction $\left.\rho\right|_{S}$ to S. We use branching rules to decompose $\left.\rho\right|_{S}=\oplus_{i} \rho_{i}$ into irreducible representations of S. The total w_{0}-signature is then the sum of those of the ρ_{i}.

Each ρ_{i} is a tensor product $\rho_{i, 1} \otimes \cdots \otimes \rho_{i, s} \otimes \rho_{i, \mathrm{Ab}}$, where $\rho_{i, j}$ for $1 \leq j \leq s$ is an irreducible representation of the factor $\mathfrak{s}_{j} \simeq \mathfrak{s l}(2, \mathbb{C})$, and $\rho_{i, \mathrm{Ab}}$ is an irreducible representation of the abelian factor isomorphic to \mathbb{C}^{t}. The w_{0}-signature of ρ_{i} is then the "product" of those of these factors, according to the rule $(p, q) \otimes\left(p^{\prime}, q^{\prime}\right)=\left(p p^{\prime}+q q^{\prime}, p q^{\prime}+q p^{\prime}\right)$. The w_{0}-signatures of all irreducible representations of $\mathfrak{s l}(2, \mathbb{C})$ have been described in Example 1 ; the w_{0}-signature of $\rho_{i, \mathrm{Ab}}$ is just $(1,0)$ if the representation is trivial and $(0,0)$ otherwise.

Branching rules are provided by several software packages. We implemented our algorithm separately in LiE [10] and in Sage [8]. In Sage, we used the Branching Rules module [9], largely written by Daniel Bump.

3. Proof of (ii): that some representations are $\boldsymbol{w}_{\mathbf{0}}$-pure

We must prove that representations of highest weight $\lambda=k p_{i} \varpi_{i}, k \leq m_{i}$ are w_{0}-pure of sign σ_{i}^{k} (with data p_{i}, m_{i}, σ_{i} given in Table 1). We denote by \square the defining representation of each classical group (\mathbb{C}^{n+1} for $A_{n}, \mathbb{C}^{2 n+1}$ for B_{n}, $\mathbb{C}^{2 n}$ for C_{n} and D_{n}), and introduce a basis of it: for every $\varepsilon \in\{-1,0,1\}$ and i such that εe_{i} (or for A_{n} its orthogonal projection onto \mathfrak{h}^{*}) is a weight of \square, we call $h_{\varepsilon i}$ some nonzero vector in the corresponding weight space.

For exceptional groups, all m_{i} are finite, so the algorithm of Section 2 suffices; we also use it for the representations with highest weight $2 \varpi_{3}$ of C_{3} and $2 \varpi_{4}$ of C_{4}.

Most other cases are subrepresentations of $S^{m} \square$ of A_{n} or $D_{2 n+1}$, or one of $S^{m} \square$ or $\Lambda^{m} \square$ or $S^{2}\left(\Lambda^{2} \square\right)$ of B_{n} or C_{n} or $D_{2 n}$, all of which will prove to be w_{0}-pure. Here $S^{m} \rho$ and $\Lambda^{m} \rho$ denote the symmetric and the antisymmetric tensor powers of a representation ρ. The remaining cases are mapped to these by the isomorphisms $B_{2} \simeq C_{2}$ and $A_{3} \simeq D_{3}$ and the outer automorphisms $\mathbb{Z} / 2 \mathbb{Z}$ of A_{n} and \mathfrak{S}_{3} of D_{4}.

For $A_{n}=\mathfrak{s l}(n+1, \mathbb{C})$, the defining representation is $\square=\mathbb{C}^{n+1}=\operatorname{Span}\left\{h_{1}, \ldots, h_{n+1}\right\}$. A representative $\overline{w_{0}} \in \operatorname{SL}(n+1, \mathbb{C})$ of w_{0} acts on \square by $h_{j} \mapsto h_{n+2-j}$ for $1 \leq j<n+1$ and by $h_{n+1} \mapsto \sigma_{1} h_{1}$ where $\sigma_{1}=(-1)^{\lfloor(n+1) / 2\rfloor}$, the sign being such that det $\overline{w_{0}}=+1$. We consider the representation $S^{k(n+1)} \square$. Its zero-weight space V^{0} is spanned by symmetrized tensor products $h_{j_{1}} \otimes \cdots \otimes h_{j_{k(n+1)}}$ in which each h_{j} appears equally many times, namely k times. Hence, V^{0} is one-dimensional (the representation is thus w_{0}-pure) and spanned by the symmetrization of $v=h_{1}^{\otimes k} \otimes h_{2}^{\otimes k} \otimes \cdots \otimes h_{n+1}^{\otimes k}$. We compute $\overline{w_{0}} \cdot v=h_{n+1}^{\otimes k} \otimes \cdots \otimes h_{2}^{\otimes k} \otimes\left(\sigma_{1} h_{1}\right)^{\otimes k}$, whose symmetrization is equal to σ_{1}^{k} times that of v; this gives the announced sign σ_{1}^{k}.

For $D_{2 n+1}=\mathfrak{s o}(4 n+2, \mathbb{C})$, the defining representation is $\square=\mathbb{C}^{4 n+2}=\operatorname{Span}\left\{h_{ \pm j} \mid 1 \leq j \leq 2 n+1\right\}$ and $\overline{w_{0}}$ maps $h_{ \pm j} \mapsto h_{\mp j}$ for $1 \leq j \leq 2 n$, but fixes $h_{ \pm(2 n+1)}$. The zero-weight space V^{0} of $S^{2 k} \square$ is spanned by symmetrizations of $h_{j_{1}} \otimes h_{-j_{1}} \otimes \cdots \otimes$ $h_{j_{k}} \otimes h_{-j_{k}}$, each of which is fixed by $\overline{w_{0}}$. The representation is w_{0}-pure with $\sigma_{1}=+1$, as announced.

The cases of $B_{n}=\mathfrak{s o}(2 n+1, \mathbb{C}), C_{n}=\mathfrak{s p}(2 n, \mathbb{C})$ and $D_{n \text { even }}=\mathfrak{s o}(2 n, \mathbb{C})$ are treated together:

- B_{n} has $\square=\mathbb{C}^{2 n+1}=\operatorname{Span}\left\{h_{j} \mid-n \leq j \leq n\right\}$ and $\overline{w_{0}}$ acts by $h_{j} \mapsto h_{-j}$ for $j \neq 0$ and $h_{0} \mapsto(-1)^{n} h_{0}$;
- C_{n} has $\square=\mathbb{C}^{2 n}=\operatorname{Span}\left\{h_{ \pm j} \mid 1 \leq j \leq n\right\}$ and $\overline{w_{0}}$ acts by $h_{j} \mapsto h_{-j}$ and $h_{-j} \mapsto-h_{j}$ for $j>0$;
- D_{n} has $\square=\mathbb{C}^{2 n}=\operatorname{Span}\left\{h_{ \pm j} \mid 1 \leq j \leq n\right\}$ and, for n even, $\overline{w_{0}}$ acts by $h_{j} \mapsto h_{-j}$ for all j.

First consider $\Lambda^{m} \square$ and $S^{m} \square$. Their zero-weight spaces are spanned by (anti)symmetrizations of $h_{j_{1}} \otimes h_{-j_{1}} \otimes \cdots \otimes h_{j_{k}} \otimes$ $h_{-j_{k}} \otimes h_{0}^{\otimes l}$, where $2 k+l=m$. Each of these vectors is fixed by $\overline{w_{0}}$ up to a sign that only depends on the group, the representation, and on (k, l) or equivalently (l, m). For C_{n} and D_{n} we have $l=0$ so for each m the representation is w_{0}-pure, with a sign $(-1)^{k}$ for $S^{2 k} \square$ of C_{n} and $\Lambda^{2 k} \square$ of D_{n}, and no sign otherwise. For $\Lambda^{m} \square$ of B_{n} we note that $l \in\{0,1\}$ is fixed by the parity of m so the representation is w_{0}-pure; its sign is $(-1)^{n l+k}=(-1)^{n m+\lfloor m / 2\rfloor}=\sigma_{m}$. For $S^{m} \square$ of B_{n}, only the parity of l is fixed, but the $\operatorname{sign}(-1)^{n l}=(-1)^{n m}=\sigma_{1}^{m}$ still only depends on the representation; it confirms the data of Table 1. Finally, consider the representation $S^{2}\left(\Lambda^{2} \square\right)$. Its zero-weight space is spanned by symmetrizations of $\left(h_{j} \wedge h_{-j}\right) \otimes\left(h_{k} \wedge h_{-k}\right)$ and $\left(h_{j} \wedge h_{k}\right) \otimes\left(h_{-j} \wedge h_{-k}\right)$ all of which are fixed by $\overline{w_{0}}$.

4. Cartan product: $\boldsymbol{w}_{\mathbf{0}}$-mixed representations form an ideal

Let G be a simply-connected simple complex Lie group and N a maximal unipotent subgroup of G. Define $\mathbb{C}[G / N]$ the space of regular (i.e. polynomial) functions on G / N. Pointwise multiplication of functions is G-equivariant and makes $\mathbb{C}[G / N]$ into a \mathbb{C}-algebra without zero divisors (because G / N is irreducible as an algebraic variety).

Theorem 4.1 ([6, (3.20)-(3.21)]). Each finite-dimensional representation of G (or equivalently of its Lie algebra \mathfrak{g}) occurs exactly once as a direct summand of the representation $\mathbb{C}[G / N]$. The \mathbb{C}-algebra $\mathbb{C}[G / N]$ is graded in two ways:

- by the highest weight λ, in the sense that the product of a vector in V_{λ} by a vector in V_{μ} lies in $V_{\lambda+\mu}$ (where V_{λ} stands here for the subrepresentation of $\mathbb{C}[G / N]$ with highest weight λ);
- by the actual weight λ, in the sense that the product of a weight vector with weight λ by a weight vector with weight μ is still a weight vector, with weight $\lambda+\mu$.

For given λ and μ, we call Cartan product the induced bilinear map $\odot: V_{\lambda} \times V_{\mu} \rightarrow V_{\lambda+\mu}$. Given $u \in V_{\lambda}$ and $v \in V_{\mu}$, this defines $u \odot v \in V_{\lambda+\mu}$ as the projection of $u \otimes v \in V_{\lambda} \otimes V_{\mu}=V_{\lambda+\mu} \oplus \ldots$. Since $\mathbb{C}[G / N]$ has no zero divisor, $u \odot v \neq 0$ whenever $u \neq 0$ and $v \neq 0$. We deduce the following.

Lemma 4.2. The set of highest weights of w_{0}-mixed irreducible representations of \mathfrak{g} is an ideal $\mathcal{I}_{\mathfrak{g}}$ of the additive monoid \mathcal{M} of dominant elements of the root lattice.

Proof. Consider a w_{0}-mixed representation V_{λ} and a representation V_{μ} whose highest weight is radical. We can choose u_{+}and u_{-}in the zero-weight space of V_{λ} such that $w_{0} \cdot u_{+}=u_{+}$and $w_{0} \cdot u_{-}=-u_{-}$, and choose v in the zero-weight space of V_{μ} such that $w_{0} \cdot v= \pm v$ for some sign. Then $u_{+} \odot v$ and $u_{-} \odot v$ are non-zero elements of the zero-weight space of $V_{\lambda+\mu}$ on which w_{0} acts by opposite signs.

5. Proof of (iii): that other representations are \boldsymbol{w}_{0}-mixed

Let $\mathcal{I}_{\mathfrak{g}}^{\text {Table }}$ be the set of dominant radical weights that are not of the form $\lambda=k p_{i} \varpi_{i}, k \leq m_{i}$ (with data p_{i}, m_{i} given in Table 1). Observe that $\mathcal{I}_{\mathfrak{g}}^{\text {Table }}$ is an ideal of \mathcal{M}. In Section 3 we showed $\mathcal{I}_{\mathfrak{g}} \subset \mathcal{I}_{\mathfrak{g}}^{\text {Table }}$. We now show that $\mathcal{I}_{\mathfrak{g}}^{\text {Table }} \subset \mathcal{I}_{\mathfrak{g}}$, namely that V_{λ} is w_{0}-mixed for radical λ other than those described by Table 1. By Lemma 4.2, it is enough to show this for the basis of $\mathcal{I}_{\mathfrak{g}}^{\text {Table }}$. For any given group, $\mathcal{I}_{\mathfrak{g}}^{\text {Table }}$ has a finite basis, so we simply used the algorithm of Section 2 to conclude for $A_{\leq 5}, B_{\leq 4}, C_{\leq 5}, D_{\leq 6}$ and all exceptional groups.

Now let \mathfrak{g} be one of $A_{>5}, B_{>4}, C_{>5}, D_{>6}$ and λ be in $\mathcal{I}_{\mathfrak{g}}^{\text {Table }}$. We proceed by induction on the rank of \mathfrak{g}.
Define as follows a reductive Lie subalgebra $\mathfrak{f} \times \mathfrak{g}^{\prime} \subset \mathfrak{g}$:

- if $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{C})$, we choose $\mathfrak{f} \times \mathfrak{g}^{\prime} \simeq(\mathfrak{g l}(1, \mathbb{C}) \times \mathfrak{s l}(2, \mathbb{C})) \times \mathfrak{s l}(n-2, \mathbb{C})$, where \mathfrak{f} has the roots $\pm\left(e_{1}-e_{n}\right)$ and \mathfrak{g}^{\prime} has the roots $\pm\left(e_{i}-e_{j}\right)$ for $1<i<j<n$;
- if $\mathfrak{g}=\mathfrak{s o}(n, \mathbb{C})$, we choose $\mathfrak{f} \times \mathfrak{g}^{\prime} \simeq \mathfrak{s o}(4, \mathbb{C}) \times \mathfrak{s o}(n-4, \mathbb{C})$, where \mathfrak{f} has the roots $\pm e_{1} \pm e_{2}$ and \mathfrak{g}^{\prime} has the roots $\pm e_{i} \pm e_{j}$ for $3 \leq i<j \leq n$;
- if $\mathfrak{g}=\mathfrak{s p}(2 n, \mathbb{C})$, we choose $\mathfrak{f} \times \mathfrak{g}^{\prime} \simeq \mathfrak{s p}(2, \mathbb{C}) \times \mathfrak{s p}(2 n-2, \mathbb{C})$, where \mathfrak{f} has the roots $\pm 2 e_{1}$ and \mathfrak{g}^{\prime} has the roots $\pm e_{i} \pm e_{j}$ for $2 \leq i<j \leq n$ and $\pm 2 e_{i}$ for $2 \leq i \leq n$.

In all three cases, $\mathfrak{f} \times \mathfrak{g}^{\prime}$ and \mathfrak{g} share their Cartan subalgebra, hence restricting a representation V of \mathfrak{g} to $\mathfrak{f} \times \mathfrak{g}^{\prime}$ does not change the zero-weight space V^{0}. Additionally, consider any connected Lie group G with Lie algebra \mathfrak{g} : then the w_{0} elements of the connected subgroup of G with Lie algebra $\mathfrak{f} \times \mathfrak{g}^{\prime}$ and of G itself coincide, or more precisely have a common representative in G, because the Lie algebras have the same Lie subalgebra \mathfrak{s} defined in Proposition 2.1. It follows that a representation of \mathfrak{g} is w_{0}-mixed if and only if its restriction to $\mathfrak{f} \times \mathfrak{g}^{\prime}$ is.

Next, decompose $V_{\lambda}=\bigoplus_{\iota}\left(V_{\xi_{\iota}} \otimes V_{\mu_{\iota}}\right)$ into irreducible representations of $\mathfrak{f} \times \mathfrak{g}^{\prime}$, where ξ_{ι} and μ_{ι} are dominant weights of \mathfrak{f} and \mathfrak{g}^{\prime}, respectively. Consider the subspace

$$
\begin{equation*}
V_{\lambda}^{(0, \bullet)}:=\bigoplus_{\iota}\left(V_{\xi_{l}}^{0} \otimes V_{\mu_{l}}\right) \subset V_{\lambda} \tag{1}
\end{equation*}
$$

fixed by the Cartan algebra of \mathfrak{f}. It is a representation of \mathfrak{g}^{\prime} whose zero-weight subspace coincides with that of V_{λ}. The direct sum obviously restricts to radical ξ_{l}, and $\operatorname{dim} V_{\xi_{l}}^{0}=1$ because we chose \mathfrak{f} to be a product of $\mathfrak{s l}(2, \mathbb{C})$ and $\mathfrak{g l}(1, \mathbb{C})$ factors. Thus the w_{0} element of \mathfrak{g} acts on $V_{\xi_{l}}^{0} \otimes V_{\mu_{l}}$ in the same way, up to a sign, as the w_{0} element of \mathfrak{g}^{\prime} acts on $V_{\mu_{l}}$. Lemma 5.2 shows that $V_{\lambda}^{(0, \bullet)}$ has an irreducible subrepresentation V_{v} such that $v \in \mathcal{I}_{\mathfrak{g}^{\prime}}^{\text {Table }}$. By the induction hypothesis, V_{ν} is then w_{0}-mixed hence w_{0} has both eigenvalues ± 1 on the zero-weight space $V_{\lambda}^{0} \subset V_{\lambda}^{(0, \bullet)}$, namely V_{λ} is w_{0}-mixed.

This concludes the proof of Theorem 1.3.
There remains to state and prove two lemmas. Let \mathfrak{g} be A_{n-1}, B_{n}, C_{n} or D_{n} and let λ be a dominant radical weight of \mathfrak{g}. It can then be expressed in the standard basis e_{1}, \ldots, e_{n} as $\lambda=\sum_{i=1}^{n} \lambda_{i} e_{i}$ where $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ are integers subject to: for $A_{n-1}, \sum_{i} \lambda_{i}=0$; for $B_{n}, \lambda_{n} \geq 0$; for $C_{n}, \lambda_{n} \geq 0$ and $\sum_{i} \lambda_{i} \in 2 \mathbb{Z}$; for $D_{n}, \lambda_{n-1} \geq\left|\lambda_{n}\right|$ and $\sum_{i} \lambda_{i} \in 2 \mathbb{Z}$. In addition, let $\mathfrak{f} \times \mathfrak{g}^{\prime} \subset \mathfrak{g}$ be the subalgebra defined above. We identify weights of \mathfrak{g}^{\prime} with the corresponding weights of \mathfrak{g} (acting trivially on the Cartan subalgebra of \mathfrak{f}). Note that this introduces a shift in their coordinates: the dual of the Cartan subalgebra of \mathfrak{g}^{\prime} is spanned by a subset of the vectors e_{i} (corresponding to \mathfrak{g}) that starts at e_{2} or e_{3}, not at e_{1} as expected.

Lemma 5.1. Let μ be the dominant weight of \mathfrak{g}^{\prime} defined as follows:

- for $A_{n-1}, \mu=\left(\sum_{i=1}^{\ell-1} \lambda_{i} e_{i+1}\right)+\lambda_{\ell} e_{\ell}+\left(\sum_{i=\ell+1}^{n} \lambda_{i} e_{i-1}\right)$ where $1<\ell<n$ is an index such that $\lambda_{\ell-1}+\lambda_{\ell} \geq 0 \geq \lambda_{\ell}+\lambda_{\ell+1}$ (when several ℓ obey this, μ does not depend on the choice);
- for $B_{n}, \mu=\sum_{i=1}^{n-2} \lambda_{i} e_{i+2}$;
- for $C_{n}, \mu=\sum_{i=1}^{n-1} \lambda_{i} e_{i+1}-\eta e_{n}$ where $\eta \in\{0,1\}$ obeys $\eta \equiv \lambda_{n}(\bmod 2)$;
- for $D_{n}, \mu=\sum_{i=1}^{n-2} \lambda_{i} e_{i+2}-\eta e_{n}$ where $\eta \in\{0,1\}$ obeys $\eta \equiv \lambda_{n+1}+\lambda_{n}(\bmod 2)$.

Then V_{μ} is a sub-representation of the space $V_{\lambda}^{(0, \bullet)}$ defined earlier.
Proof for $\boldsymbol{A}_{\boldsymbol{n}-\mathbf{1}}$. Let $v=\sum_{i=2}^{n-1} v_{i} e_{i}$ be a dominant radical weight of \mathfrak{g}^{\prime}. The weight v is among weights of $V_{\lambda}^{(0, \bullet)}$ if and only if it is among weights of V_{λ}. The condition is that $\left\langle\lambda-\tilde{v}, \varpi_{k}\right\rangle \geq 0$ for all k, where \tilde{v} is the unique dominant weight of \mathfrak{g} in the orbit of v under the Weyl group of \mathfrak{g}.

Explicitly, $\tilde{v}=\left(\sum_{i=1}^{p-1} v_{i+1} e_{i}\right)+\sum_{i=p+2}^{n} v_{i-1} e_{i}$, where p is any index such that $v_{p} \geq 0 \geq v_{p+1}$. Then the condition is $\sum_{i=1}^{k} \lambda_{i} \geq \sum_{i=2}^{k+1} \nu_{i}$ for $1 \leq k<p$ and $\sum_{i=1}^{p} \lambda_{i} \geq \sum_{i=2}^{p} \nu_{i}$ and $\sum_{i=1}^{k} \lambda_{i} \geq \sum_{i=2}^{k-1} \nu_{i}$ for $p<k<n$. Let us show that this is equivalent to

$$
\begin{equation*}
\sum_{i=2}^{k} v_{i} \leq \min \left(\sum_{i=1}^{k-1} \lambda_{i}, \sum_{i=1}^{k+1} \lambda_{i}\right) \text { for all } 2 \leq k \leq n-2 \tag{2}
\end{equation*}
$$

In one direction, the only non-trivial statement is that $2 \sum_{i=1}^{p} \lambda_{i} \geq \sum_{i=1}^{p-1} \lambda_{i}+\sum_{i=1}^{p+1} \lambda_{i} \geq 2 \sum_{i=2}^{p} \nu_{i}$, where we used $2 \lambda_{p} \geq$ $\lambda_{p}+\lambda_{p+1}$. In the other direction, we check $\sum_{i=2}^{k} \nu_{i} \leq \sum_{i=2}^{\min (p, k+2)} \nu_{i} \leq \sum_{i=1}^{k+1} \lambda_{i}$ for $k \leq p-1$ using $\nu_{2} \geq \cdots \geq v_{p} \geq 0$, and similarly for $p+1 \leq k$ using $0 \geq v_{p+1} \geq \cdots \geq v_{n-1}$.

Now, $\lambda_{\ell-1}+\lambda_{\ell} \geq 0 \geq \lambda_{\ell}+\lambda_{\ell+1}$ implies $\lambda_{\ell-2} \geq \lambda_{\ell-1} \geq \lambda_{\ell-1}+\lambda_{\ell}+\lambda_{\ell+1} \geq \lambda_{\ell+1} \geq \lambda_{\ell+2}$, so μ is a dominant weight of \mathfrak{g}^{\prime}. It is radical because $\sum_{i=2}^{n-1} \mu_{i}=\sum_{i=1}^{n} \lambda_{i}=0$. Furthermore, μ saturates all bounds (2) (with v replaced by μ), as seen using $\lambda_{k}+\lambda_{k+1} \geq 0$ or ≤ 0 for $k<\ell$ or $k \geq \ell$ respectively. In particular, we deduce that μ is among the weights of $V_{\lambda}^{(0, \bullet)}$, hence of some irreducible summand $V_{\nu} \subset V_{\lambda}^{(0, \bullet)}$. The dominant radical weight ν of \mathfrak{g}^{\prime} must also obey (2), namely $\sum_{i=2}^{k} v_{i} \leq \sum_{i=2}^{k} \mu_{i}$ (due to the aforementioned saturation). Since μ is dominant and among weights of V_{ν}, we must also have $\left\langle\nu-\mu, \varpi_{k}^{\prime}\right\rangle \geq 0$ for all fundamental weights ϖ_{k}^{\prime} of \mathfrak{g}^{\prime}. This is precisely the reverse inequality $\sum_{i=2}^{k} v_{i} \geq \sum_{i=2}^{k} \mu_{i}$. We conclude that $\mu=v$.

Proof for $\boldsymbol{B}_{\boldsymbol{n}}, \boldsymbol{C}_{\boldsymbol{n}}, \boldsymbol{D}_{\boldsymbol{n}}$. Let $\varepsilon=1$ for C_{n} and otherwise $\varepsilon=2$. Again, a dominant radical weight $v=\sum_{i=1+\varepsilon}^{n}\left(\nu_{i} e_{i}\right)$ of \mathfrak{g}^{\prime} is a weight of $V_{\lambda}^{(0, \bullet)}$ if and only if all $\left\langle\lambda-\tilde{v}, \varpi_{k}\right\rangle \geq 0$, where \tilde{v} is the unique dominant weight of \mathfrak{g} in the Weyl orbit of ν. In all three cases, $\tilde{v}=\sum_{i=1}^{n-\varepsilon}\left|\nu_{i+\varepsilon}\right| e_{i}$, where the absolute value is only useful for the v_{n} component for D_{n}. The condition is worked out to be $\sum_{i=1}^{k} \lambda_{i} \geq \sum_{i=1}^{k}\left|\nu_{i+\varepsilon}\right|$ for $1 \leq k \leq n-\varepsilon$. It is easy to check that μ is a dominant radical weight of \mathfrak{g}^{\prime} and that it obeys these conditions.

Consider now an irreducible summand $V_{\nu} \subset V_{\lambda}^{(0, \bullet)}$ that has μ among its weights. On the one hand, $\sum_{i=1}^{k} \lambda_{i} \geq \sum_{i=1}^{k}\left|\nu_{i+\varepsilon}\right|$ for $1 \leq k \leq n-\varepsilon$, where the absolute value is only useful for v_{n} for D_{n}. On the other hand, $\left\langle v-\mu, \varpi^{\prime}\right\rangle \geq 0$ for all dominant weights ϖ^{\prime} of \mathfrak{g}^{\prime} (in particular $e_{1+\varepsilon}+\cdots+e_{k+\varepsilon}$), so $\sum_{i=1}^{k} v_{i+\varepsilon} \geq \sum_{i=1}^{k} \mu_{i+\varepsilon}$ for $1 \leq k \leq n-\varepsilon$. The two inequalities fix $\nu_{i}=\mu_{i}$ for all i, except $i=n$ when $\eta=1$ for C_{n} and D_{n} : in these cases, we conclude by using $\sum_{i} \nu_{i}-\sum_{i} \mu_{i} \in 2 \mathbb{Z}$, since both weights are radical.

Lemma 5.2. For any $\lambda \in \mathcal{I}_{\mathfrak{g}}^{\text {Table }}$, there exists $v \in \mathcal{I}_{\mathfrak{g}^{\prime}}^{\text {Table }}$ such that the representation of \mathfrak{g}^{\prime} with highest weight v is a subrepresentation of $V_{\lambda}^{(\bullet, 0)}$.

Proof for $\boldsymbol{A}_{\boldsymbol{n}-\mathbf{1}}$ with $\boldsymbol{n} \geq 7$. If the weight μ defined by Lemma 5.1 is in $\mathcal{I}_{\mathfrak{g}^{\prime}}^{\text {Table }}$, we are done. Otherwise, $\mu=m(n-2) \varpi_{1}^{\prime}$ or $\mu=m(n-2) \varpi_{n-3}^{\prime}$. By symmetry under $e_{i} \mapsto-e_{n+1-i}$, it is enough to consider the second case, so $\mu=\sum_{i=2}^{n-1} \mu_{i} e_{i}$ with $\mu_{i}=m$ for $2 \leq i \leq n-2$ and $\mu_{n-1}=-m(n-3)$. By the construction of μ in terms of λ, we know that there exists $1<\ell<n$ such that $\mu_{i}=\lambda_{i-1} \geq 0$ for $1<i<\ell$ and $\lambda_{\ell-1} \geq \mu_{\ell}=\lambda_{\ell-1}+\lambda_{\ell}+\lambda_{\ell+1} \geq \lambda_{\ell+1}$ and $\mu_{i}=\lambda_{i+1} \leq 0$ for $\ell<i<n$. Since only $\mu_{n-1} \leq 0$, the last constraint sets $\ell=n-2$ or $\ell=n-1$. In the first case, we learn that $\lambda_{i}=m$ for $1 \leq i \leq n-4$, but also that $m=\mu_{n-3}=\lambda_{n-4} \geq \lambda_{n-3} \geq \mu_{n-2}=m$ so $\lambda_{n-3}=m$, thus $\lambda_{n-2}+\lambda_{n-1}=\mu_{n-2}-\lambda_{n-3}=0$, and we can change ℓ to $n-1$ (recall that the choice of ℓ such that $\lambda_{\ell-1}+\lambda_{\ell} \geq 0 \geq \lambda_{\ell}+\lambda_{\ell+1}$ does not affect μ). We are thus left with the case $\ell=n-1$, where $\lambda_{i}=m$ for $1 \leq i \leq n-3$, and where $\lambda_{n-2}+\lambda_{n-1} \geq 0$ and $m=\lambda_{n-3} \geq \lambda_{n-2}$.

We conclude that $\lambda=m\left(\sum_{i=1}^{n-3} e_{i}\right)+l e_{n-2}+k e_{n-1}-((n-3) m+l+k) e_{n}$ for integers $m \geq l \geq|k|$, with the exclusion of the case $k=l=m$ because of $\lambda \in \mathcal{I}_{\mathfrak{g}}^{\text {Table }}$. For these dominant weights, the particular irreducible summand $V_{\mu} \subset V_{\lambda}^{(0, \bullet)}$ of Lemma 5.1 is w_{0}-pure, but we now determine another summand that is w_{0}-mixed. The branching rules from \mathfrak{g} to $\mathfrak{f} \times \mathfrak{g}^{\prime}$ can easily be deduced from the classical branching rules from $\mathfrak{g l}(n, \mathbb{C})$ to $\mathfrak{g l}(n-1, \mathbb{C})$ (given for example in [5, Theorem 9.14]). Namely, consider the representation of $\mathfrak{g l}(n, \mathbb{C})$ on V_{λ} such that the diagonal $\mathfrak{g l}(1, \mathbb{C})$ acts by zero. Then $V_{\lambda}^{(0, \bullet)} \subset V_{\lambda}$ is the subspace on which all three $\mathfrak{g l}(1, \mathbb{C})$ factors of $\mathfrak{g l}(1, \mathbb{C}) \times \mathfrak{g l}(n-2, \mathbb{C}) \times \mathfrak{g l}(1, \mathbb{C}) \subset \mathfrak{g l}(n, \mathbb{C})$ act by zero. It decomposes into irreducible representations of $\mathfrak{g}^{\prime} \simeq \mathfrak{s l}(n-2, \mathbb{C})$ with highest weights $\lambda^{\prime \prime}=\sum_{i=2}^{n-1} \lambda_{i}^{\prime \prime} e_{i}$ such that $\sum_{i} \lambda_{i}^{\prime \prime}=0$ and such that there exists $\lambda_{1}^{\prime}, \ldots, \lambda_{n-1}^{\prime}$ with $\sum_{i} \lambda_{i}^{\prime}=0$, and $\lambda_{1} \geq \lambda_{1}^{\prime} \geq \lambda_{2} \geq \cdots \geq \lambda_{n-1}^{\prime} \geq \lambda_{n}$ and $\lambda_{1}^{\prime} \geq \lambda_{2}^{\prime \prime} \geq \lambda_{2}^{\prime} \geq \cdots \geq \lambda_{n-1}^{\prime \prime} \geq \lambda_{n-1}^{\prime}$. Concretely we
focus on the summand where $\left(\lambda_{i}\right)_{i=1}^{n}$ and $\left(\lambda_{i}^{\prime}\right)_{i=1}^{n-1}$ and $\left(\lambda_{i}^{\prime \prime}\right)_{i=2}^{n-1}$ all take the form $(m, \ldots, m, l, k,-S)$ where S is the sum of all other entries, with a different number of m in each case. Given that we started in rank at least 6 , the resulting weight $\lambda^{\prime \prime}$ cannot be a multiple of a fundamental weight, hence $\lambda^{\prime \prime} \in \mathcal{I}_{\mathfrak{g}^{\prime}}^{\text {Table }}$.

Proof for $\boldsymbol{B}_{\boldsymbol{n}}$ with $\boldsymbol{n} \geq \mathbf{5}, \boldsymbol{C}_{\boldsymbol{n}}$ with $\boldsymbol{n} \geq \mathbf{6}, \boldsymbol{D}_{\boldsymbol{n}}$ with $\boldsymbol{n} \geq \mathbf{7}$. We recall $\varepsilon=1$ for C_{n} and otherwise $\varepsilon=2$. If the weight μ defined by Lemma 5.1 is in $\mathcal{I}_{\mathfrak{g}^{\prime}}^{\text {Table }}$, we are done. Otherwise, μ can take a few possible forms because we took rank $\mathfrak{g}^{\prime}=n-\varepsilon$ large enough to avoid special values listed in Table 1. Note that, by construction of $\mu=\sum_{i=1+\varepsilon}^{n} \mu_{i} e_{i}$, we have $\lambda_{i}=\mu_{i+\varepsilon}$ for $1 \leq i \leq n-3$ for D_{n} and $1 \leq i \leq n-2$ for B_{n} and C_{n}. The possible dominant radical weights not in $\mathcal{I}_{\mathfrak{g}^{\prime}}^{\text {Table }}$ are as follows.

- First, $\mu=m \varpi_{1}^{\prime}=m e_{1+\varepsilon}$, where additionally m is even for C_{n} and D_{n}. Then $\lambda_{1}=\mu_{1+\varepsilon}=m$ and $\lambda_{2}=\mu_{2+\varepsilon}=0$ fix $\lambda=m \varpi_{1}$, which is not in $\mathcal{I}_{\mathfrak{g}}^{\text {Table }}$.
- Second, $\mu=2 \varpi_{2}^{\prime}=2\left(e_{1+\varepsilon}+e_{2+\varepsilon}\right)$, except for D_{n} with odd n. Then $\lambda_{1}=\lambda_{2}=2$ and $\lambda_{3}=0$ fix $\lambda=2 \varpi_{2}$, which is not in $\mathcal{I}_{\mathfrak{g}}^{\text {Table }}$.
- Third, $\mu=\sum_{i=1}^{m} e_{i+\varepsilon}$ for some $m \geq 2$, except for D_{n} with odd n, and where additionally m is even for D_{n} with even n and for C_{n}. Since $\lambda_{1}=\mu_{1+\varepsilon}=1$ and λ is dominant, we deduce that either $\lambda_{1}=\cdots=\lambda_{p}=1$ for some p and all other $\lambda_{i}=0$, or (only in the D_{n} case) $\lambda_{1}=\cdots=\lambda_{n-1}=1=-\lambda_{n}$. These weights λ are not in $\mathcal{I}_{\mathfrak{g}}^{\text {Table }}$. Note, of course, that p and m are not independent; for example for $m \leq n-3$ one has $m=p$.
- Fourth, $\mu=\left(\sum_{i=1}^{n-3} e_{i+2}\right)-e_{n}$ for D_{n} with even n. This weight is not of the form of Lemma 5.1 because one would need $-1=\lambda_{n-2}-\eta \geq-\eta \geq-1$; hence $\eta=1$ and $\lambda_{n-2}=0$, so $\lambda_{n-1}=\lambda_{n}=0$ so $1=\eta \equiv \lambda_{n-1}+\lambda_{n}=0(\bmod 2)$.

Acknowledgements

We would like to thank Ernest Vinberg, who suggested the crucial idea of using Theorem 4.1 to prove Lemma 4.2; as well as Jeffrey Adams and Yifan Wang for some interesting discussions. The second author of the present paper was supported by the National Science Foundation grant DMS-1709952.

References

[1] Y. Agaoka, E. Kaneda, On local isometric immersions of Riemannian symmetric spaces, Tohoku Math. J. 36 (1984) 107-140.
[2] N. Bourbaki, Éléments de mathématique, groupes et algèbres de Lie: chapitres 4, 5 et 6, Hermann, 1968.
[3] B.C. Hall, Lie Groups, Lie Algebras and Representations: An Elementary Introduction, second edition, Springer International Publishing, 2015.
[4] J. Humphreys, Weyl group representations on zero weight spaces, http://people.math.umass.edu/~jeh/pub/zero.pdf, 2014.
[5] A.W. Knapp, Lie Groups Beyond an Introduction, Birkhäuser, 1996.
[6] V.L. Popov, E.B. Vinberg, Invariant Theory, Springer, 1994.
[7] I. Smilga, Proper affine actions: a sufficient criterion, submitted, available at arXiv:1612.08942.
[8] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.1), 2017, http://www.sagemath.org.
[9] The Sage Developers, Branching rules, http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/root_system/branching_rules.html.
[10] M.A.A. van Leeuwen, A.M. Cohen, B. Lisser, LiE, a package for Lie group computations, http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/, 2000.

[^0]: E-mail addresses: blefloch@princeton.edu (B. Le Floch), ilia.smilga@normalesup.org (I. Smilga).
 URL: http://gauss.math.yale.edu/~is362/index.html (I. Smilga).

