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Colmez conjectured a formula relating the Faltings height of CM abelian varieties to a 
certain linear combination of logarithmic derivatives of L-functions. In this paper, we study 
the case of unitary CM fields and by studying the class functions that arise, we reduce the 
conjecture to a special case. Using the Galois action, we prove more cases of the Colmez 
Conjecture.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Colmez a conjecturé une formule établissant une relation entre la hauteur de Faltings d’une 
variété abélienne à multiplication complexe et une combinaison linéaire particulière de 
dérivées logarithmiques de fonctions L. Dans cet article, nous restreindrons notre étude aux 
corps CM unitaires et, par l’étude des fonctions centrales qui se présentent, nous réduirons 
la conjecture à un cas particulier. En utilisant des actions de Galois, nous démontrerons la 
conjecture de Colmez pour différents cas.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Set up and theorem

The Colmez conjecture gives a formula for the Faltings height of a CM abelian variety in terms of log derivatives of 
L-functions arising from the CM type. This conjecture has proven useful in giving bounds for the Faltings height of CM 
abelian varieties (see [5] for the case of elliptic curves and [9] where a weaker form of the Colmez conjecture is used in the 
proof of the André–Oort conjecture for the moduli space of principally polarized abelian varieties).

Definition 1.1. A unitary CM field E is a CM field of the form E = kF , where F is a totally real number field and k ⊆ C is an 
imaginary quadratic field.
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Given a CM field E of degree 2n, a CM type of E consists of n embeddings of E into C such that no two of the 
embeddings differ by complex conjugation. For unitary CM fields, we will stratify the CM types by signature.

Definition 1.2. Let E = kF be a unitary CM field. A CM type � ⊆ Hom(E, C) has signature (n − r, r) if exactly n − r of the 
embeddings in � restrict to the identity k ↪→ C.

The main theorem of this paper is that, using results of Yang and Yin [10], which rely on deep results of [1], [11], or [3], 
we can reduce the Colmez conjecture in the unitary case to CM types of signature (n − 2, 2).

Theorem 1.3. Let E = kF be a unitary CM field. Then, the Colmez conjecture holds for E if and only if it holds for all CM types of 
signature (n − 2, 2).

We spend the remainder of this section providing a brief description of the Colmez conjecture and refer the reader 
to [10], giving a more thorough background to the conjecture. Section 2 contains the proof of Theorem 1.3 and, in Section 3, 
we apply Theorem 1.3 to obtain examples of CM fields where the Colmez conjecture holds.

Let � be a CM type of a CM field E and identify � with its characteristic function � : Hom(E, C) → {0, 1}. If Ec denotes 
the Galois closure of E (which is also a CM field), then the restriction map Hom(Ec, C) → Hom(E, C) can be used to extend 
� to �c , a CM type on Ec .

Choosing an identification of Hom(Ec, C) with Gal(Ec/Q), we obtain a function �c : Gal(Ec/Q) → {0, 1}, and we define 
the reflex CM type �̃c : Gal(Ec/Q) → {0, 1} by �̃c(g) = �c(g−1).

Let A� : Gal(Ec/Q) → C denote the function we obtain by taking a normalized convolution of �c and �̃c . More con-
cretely,

A�(g) = 1

# Gal(Ec/Q)

∑
σ∈Gal(Ec/Q)

�c(σ )�̃c(σ−1 g).

To obtain a class function A0
� , we take the average of A� among conjugates in Gal(Ec/Q). That is to say,

A0
�(g) = 1

# Gal(Ec/Q)

∑
h∈Gal(Ec/Q)

A�(hgh−1).

As A0
� is a class function, we may write

A0
� =

∑
χ

aχχ,

where aχ ∈C and χ ranges through the irreducible representations of Gal(Ec/Q). Then define the function Z(s, A0
�) by

Z(s, A0
�) :=

∑
χ

aχ Z(s,χ), Z(s,χ) := L′(s,χ)

L(s,χ)
+ 1

2
log fχ ,

where L(s, χ) is the Artin L-function of χ and fχ is the Artin conductor of χ .
Let Qcm denote the compositum of all CM number fields. This field is an infinite-degree Galois extension of Q with a 

well-defined complex conjugation, which we will denote by ρ . Via the quotient map Gal(Qcm/Q) � Gal(Ec/Q), we may 
consider A0

� as a class function on Gal(Qcm/Q).
In his 1993 paper [4], Colmez looks at CM0, the Q vector space of class functions f : Gal(Qcm/Q) → Q such that 

f (g) + f (ρg) is independent of g ∈ Gal(Qcm/Q). One can check that, for every CM type �, the function A0
� is an element 

of CM0. Colmez defines a Q-linear height function ht : CM0 → R such that if X� is an abelian variety with CM by (OE , �)

with stable Faltings height hFal(X�), then

hFal(X�) = −ht(A0
�).

Here, E is a CM field, � is a CM type of E , and hFal denotes the Faltings height of an abelian variety. The Q-linearity of 
Colmez’s ht will be important to us later. Colmez’s conjecture is the following alternate formula for ht(A0

�).

Conjecture 1.4. For any CM type �, ht(A0
�) = Z(0, A0

�).
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2. Proof of the theorem

Before we start the proof of Theorem 1.3, let us introduce some notation. If F is a totally real number field of degree n, 
denote by F c the Galois closure of F . Let k be an imaginary quadratic field and let E := kF be a unitary CM field with 
complex conjugation ρ . We will denote the Galois closure of E by Ec, and thus Ec = kF c. Furthermore, let H := Gal(F c/F ) ≤
Gal(F c/Q) =: G and suppose #H = h. Then, we can identify the embeddings of F into C, which we will call {σ1, . . . , σn}, 
with coset representatives for H\G .

An embedding E ↪→ C is uniquely determined by a pair of embeddings F ↪→ C and k ↪→ C. We denote by {1, ρ} the two 
embeddings of k into C and for an embedding σ : F → C, we write ρ iσ for the embedding of E into C given by the pair 
{ρ i, σ }. If i = 0, we simply write σ for 1σ .

A CM type of E := kF consists of a choice of one of the embeddings k ↪→ C for each embedding of F ↪→ C. Thus we can 
parametrize CM types of E via subsets of {1, 2, . . . , n}. Given S ⊆ {1, 2, . . . , n}, the corresponding CM type of E is given by

�S = {ρ ji σi : ji = 1 if i ∈ S, ji = 0 if i /∈ S}.
Then, �S is a CM type of signature (n − ε, ε), where ε = #S . We will often write CM types as sums,

�S =
∑
i∈S

ρσi +
∑
i /∈S

σi

= trE/k +(ρ − 1)
∑
i∈S

σi .

The first step in the proof of the theorem is an explicit calculation of A0
�S

.

Proposition 2.1. Let S ⊆ {1, 2, . . .n} be of size ε . Then,

A0
�S

= 1

2
trEc/k −ε

n
(1 − ρ) trEc/k + ε

n2
(1 − ρ)χIndG

H (χ0)
+ 1

hn2
(1 − ρ)

∑
g∈G

g

( ∑
i �= j∈S

σi Hσ−1
j

)
g−1.

Proof. Recall that

�S = trE/k +(ρ − 1)
∑
i∈S

σi .

Extending �S to �c
S , the CM type on Ec, amounts to determining which embeddings Ec ↪→ C when restricted to E are 

in �S . Since E is the fixed field in Ec by the subgroup H , �c
S is given by

�c
S = trEc/k +(ρ − 1)

∑
i∈S

σi H .

When we write �c
S as a sum in this manner, we are interpreting �c

S as an element of C[Gal(Ec/Q)] that is isomorphic (as 
a ring) to the ring (under convolution) of all maps from Gal(Ec/Q) to C. Next we find the reflex type �̃c

S by inverting every 
element in �c

S ,

�̃c
S = trEc/k +(ρ − 1)

∑
j∈S

Hσ−1
j .

Then take the convolution of �c
S and �̃c

S ,

A�S = 1

[Ec : Q]�
c�̃c

= 1

2hn

(
trEc/k +(ρ − 1)

∑
i∈S

σi H

)(
trEc/k +(ρ − 1)

∑
j∈S

Hσ−1
j

)

= 1

2
trEc/k −ε

n
(1 − ρ) trEc/k +1

n
(1 − ρ)

∑
i, j∈S

σi Hσ−1
j .

Finally, we need to project A�S onto the space of class functions to obtain A0
�S

,

A0
�S

= 1

2
trEc/k −ε

n
(1 − ρ) trEc/k +1

n
(1 − ρ)

1

hn

∑
g

( ∑
σi Hσ−1

j

)
g−1. (1)
g∈G i, j∈S
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The main difficulty in (1) is the final term. We first look at the elements of the sum with i = j.

1

hn

∑
g∈G

g

(∑
i∈S

σi Hσ−1
i

)
g−1 = 1

hn

∑
i∈S

(∑
g∈G

gσi Hσ−1
i g−1

)
(2)

= 1

hn

∑
i∈S

(∑
g∈G

g H g−1

)
(3)

= ε

hn

∑
g∈G

g H g−1. (4)

The following proposition simplifies (4), and combining the following proposition with equation (1) concludes the proof. �
Proposition 2.2. Let χ0 : H → C be the trivial character. As functions G →C, we have the relation∑

g∈G

g H g−1 = hχIndG
H (χ0)

.

Proof. This is proven on page 18 of [10], but we sketch a proof. Recall that the representation IndG
H (χ0) is given by

IndG
H (χ0) = { f : G →C : f (xg) = f (g) ∀x ∈ H, g ∈ G},

where G acts by right translation. The space IndG
H (χ0) consists exactly of the functions f : H\G → C. Therefore a standard 

calculation shows that the representation IndG
H (χ0) is isomorphic to the representation arising from the action of G on H\G

via g · Hσ := Hσ g−1. Recall that we have identified {σ1, . . . , σn} with coset representatives for H\G .
It is straightforward to compute the character of a permutation representation, namely it is the number of fixed points. 

That is to say, for σ ∈ G ,

χIndG
H (χ0)

(σ ) = #{i ∈ {1, . . . ,n} : σ · Hσi = Hσi}
= #{i ∈ {1, . . . ,n} : σ ∈ σi Hσ−1

i }.
On the other hand,(∑

g∈G

g H g−1

)
(σ ) = #{g ∈ G : σ ∈ g H g−1}.

However, for a given i with σ ∈ σi Hσ−1
i , then every g ∈ σi H satisfies σ ∈ g H g−1 and since #H = h, we obtain 

∑
g∈G

g H g−1 =
hχIndG

H (χ0)
. �

Let us record a few particular cases of Proposition 2.1 which will be of use:

A0
�∅

= 1

2
trEc/k,

A0
�{i} = 1

2
trEc/k −1

n
(1 − ρ) trEc/k + 1

n2
(1 − ρ)χIndG

H (χ0)
,

A0
�{i, j} = 1

2
trEc/k −2

n
(1 − ρ) trEc/k + 2

n2
(1 − ρ)χIndG

H (χ0)
+ 1

hn2
(1 − ρ)

∑
g∈G

(
gσi Hσ−1

j g−1 + gσ j Hσ−1
i g−1

)
.

Corollary 2.3. For any subset S ⊆ {1, 2, . . . , n} of size ε , we have

A0
�S

=
∑

{i, j}⊆S

A0
�{i, j} − (ε − 2)

∑
i∈S

A0
�{i} + (ε − 1)(ε − 2)

2
A0

�∅
.

Theorem 1.3 follows from Corollary 2.3, the linearity of ht and Z and the known equalities ht(A0
�∅

) = Z(0, A0
�∅

) (the 
classical Chowla–Selberg formula) and ht(A0 ) = Z(0, A0 ) (due to Yang and Yin [10]).
�{i} �{i}
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3. Galois action on CM types

There is an action of Galois on the set of CM types. Namely, g ∈ Gal(Ec/Q) acts on a CM type � by g ·� := {gσ : σ ∈ �}. 
It is well known and straightforward to check that if �1 and �2 are two CM types that are equivalent under this action, 
then A0

�1
= A0

�2
.

As in Section 2, let F be a totally real number field with Galois closure F c, with G := Gal(F c/Q) and H := Gal(F c/F ). Let 
k be an imaginary quadratic field and consider the unitary CM field E := kF . We can describe the action of Gal(Ec/Q) ∼=
G × Z/2Z on the set of CM types. The Z/2Z component acts as a complex conjugation, taking a CM type of signature 
(n − ε, ε) to a CM type of signature (ε, n − ε). The action of Gal(Ec/k) fixes the signature of a CM type and this action on 
CM types of signature (n − ε, ε) is isomorphic to the action of G on the set of subsets of G/H of size ε .

One of the main results of [10] is that the Colmez conjecture holds if we average amongst CM types of a given signature. 
That is to say, if �(E)ε denotes all CM types of E of signature (n − ε, ε), then∑

�∈�(E)ε

ht(A0
�) =

∑
�∈�(E)ε

Z(0, A0
�).

If there is only one equivalence class of CM types in a given signature, then their result immediately implies that the Colmez 
conjecture holds for the CM type of that signature. This is the idea behind Yang and Yin’s proof that the Colmez conjecture 
holds for CM types of signature (n, 0) and (n − 1, 1). In particular, combining these ideas with our Theorem 1.3 gives the 
following theorem.

Theorem 3.1. Let k be an imaginary quadratic field and let F be a totally real number field with Galois closure F c. Let H :=
Gal(F c/F ) ≤ Gal(F c/Q) =: G. If G acts 2-transitively on G/H, then the Colmez conjecture holds for every CM type of the unitary 
CM field E := kF .

We note that there are examples of such a pair (G, H). The fact that G is the Galois group of the Galois closure of F and 
H is the subgroup fixing the field F implies that the action of G on G/H induces an embedding G ↪→ Sym(G/H) of G into 
the symmetric group on the set of cosets of G by H .

Thus, we may apply Theorem 3.1 to any G that is a doubly transitive subgroup of a symmetric group, and we take H to be 
the stabilizer of any element. As a corollary of the classification of finite simple groups, a classification of doubly transitive 
subgroups of symmetric groups is known. There are infinite families and sporadic examples. We list this information in the 
following table, as well as whether or not the group G is known to be the Galois group of a totally real field. We refer the 
reader to [6] and [2] for further details on these groups and their doubly transitive actions. In the following table, unless 
otherwise specified n is an integer and q is a prime power.

G H Is G the Galois group of a totally real field?

Sn Sn−1 Yes [7].
An An−1 Yes for n ≤ 16 [8].
PSLn(Fq) Stabilizer of a point in Pn−1(Fq) Yes for n = 2,q ≤ 11 [8].
PGLn(Fq) Stabilizer of a point in Pn−1(Fq) Yes for n = 2,q ≤ 7 [8].
Sp2m(F2), m ≥ 2 GO+

2m(F2)

Sp2m(F2), m ≥ 2 GO−
2m(F2)

PSU3(Fq) Stabilizer of a isotropic line in F3
q2

PGU3(Fq) Stabilizer of a isotropic line in F3
q2

Sz(q), q an odd power of 2 Stabilizer in Sq2+1
R(q), q an odd power of 3 Stabilizer in Sq3+1
M11, M12, M22, M23, M24 Mi is a doubly transitive subgroup of Si Yes for M11 [8].
M11 Stabilizer in S12

PSL2(F11) Stabilizer in S11 Yes [8].
A7 Stabilizer in S8

HS Stabilizer in S176

Co3 Stabilizer in S276
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